1
|
Maji A, Naskar R, Mitra D, Gharami S, Murmu N, Mondal TK. Fabrication of a New Coumarin Based Fluorescent "turn-on" Probe for Distinct and Sequential Recognition of Al 3+ and F - Along With Its Application in Live Cell Imaging. J Fluoresc 2023; 33:2403-2414. [PMID: 37084063 DOI: 10.1007/s10895-023-03208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 04/22/2023]
Abstract
A new coumarin based fluorescent switch PCEH is fabricated which displays high selective sensing towards Al3+ among other metal cations at physiological pH. On gradual addition of Al3+, PCEH shows a brilliant "turn-on" emission enhancement in MeOH/H2O (4/1, v/v) solution. This new fluorescent switch is proven to be a reversible probe by gradual addition of F- into the PCEH-Al3+ solution. Detection limit as well as binding constant values are calculated to be in the order of 10-9 M and 104 M-1 respectively. We have also explored its potential as a biomarker in the application of live cell imaging using breast cancer cells (MDA-MB-231 cell).
Collapse
Affiliation(s)
- Atanu Maji
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Rahul Naskar
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines (STBA), Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | | |
Collapse
|
2
|
Li Y, Liu Y, Wei X, Wang L, Wang Y, Zhang Q. A symmetric Schiff base fluorescent “turn-on” chemosensor for aluminum (III) ion selective detection based on hydrolysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Zhang S, Wang Y, Xu H. A new naphthalimide-picolinohydrazide derived fluorescent "turn-on" probe for hypersensitive detection of Al 3+ ions and applications of real water analysis and bio-imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121193. [PMID: 35364410 DOI: 10.1016/j.saa.2022.121193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The development of high-selective chemosensors for trace Al3+ detection in the ecosystem is crucially importance due to its detrimental effects. In this work, a simple Schiff-base fluorescent probe NPP derived from naphthalimide and picolinohydrazide was rationally designed and prepared for efficient detection of Al3+. NPP exhibited prominent sensing behaviors toward Al3+ with low detection limit (LOD) (39 nM), rapid response time (1 min), strong binding affinity (4.02 × 104), good anti-interference characteristics and visual detection. Binding ratio of NPP-Al3+ complex was determined to be 1:1 by Job's plot analysis. In addition, the chelation mechanism of NPP with Al3+ ions was proposed and substantiated by the density functional theory (DFT) and time-dependent density functional theory (TD-DFT), IR spectrum and 1H NMR titration experiments. Furthermore, this "signal-on" probe NPP was efficiently utilized as a promising indicator for Al3+ detection in environmental and biological samples.
Collapse
Affiliation(s)
- Shanzhu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yu Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| |
Collapse
|
4
|
Xu H, Zhang S, Gu Y, Lu H. Naphthalimide appended isoquinoline fluorescent probe for specific detection of Al 3+ ions and its application in living cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120364. [PMID: 34520897 DOI: 10.1016/j.saa.2021.120364] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Herein, a novel Schiff base fluorescent probe NIQ based on naphthalimide and iso-quinoline units has been readily prepared for the selective detection of Al3+ ions. The obviously visible color changes and prominent fluorescence enhancement were observed upon the addition of Al3+ to NIQ, which could be attributed to the complexation of NIQ with Al3+ and thus leading to the inhibition of photo-induced electron transfer (PET) and the chelation-enhanced fluorescence (CHEF) progress. The limit of detection (LOD) was 52 nM that was far below the standard recommended by the WHO. Binding ratio (1:1) of NIQ with Al3+ ions was supported by Job's plot. The binding constant of NIQ for Al3+ were calculated to be 3.27 × 105 M-1 on the basis of benesi-Hildebrand plot. The plausible binding mechanism for NIQ towards Al3+ ions was evidenced by the density functional theory (DFT) and 1H NMR titration experiment. Furthermore, this "turn-on" probe NIQ has been successfully applied as a biomarker for imaging the Al3+ ions in living cells.
Collapse
Affiliation(s)
- Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Shanzhu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yunlan Gu
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| |
Collapse
|
5
|
Zhang S, Gu Y, Shi Z, Lu N, Xu H. A novel reversible fluorescent probe based on naphthalimide for sequential detection of aluminum (Al 3+) and fluoride (F -) ions and its applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5360-5368. [PMID: 34730585 DOI: 10.1039/d1ay01545a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A new Schiff base fluorescent probe NBP derived from the one-step condensation strategy of 2-butyl-6-hydroxy-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinoline-5-carbaldehyde and N-(2-(hydrazinecarbonyl)phenyl)benzamide was synthesized and characterized. NBP exhibited high selectivity toward Al3+ along with naked-eye color changes and prominent fluorescence enhancement. The limit of detection (LOD) of NBP toward Al3+ was detected to be 80 nM. The binding ratio of NBP with Al3+ ions was obtained as 1 : 2 on the basis of Job's plot with the association constant Ka value of 4.22 × 1010 M-1/2. The plausible complexation mechanism of NBP toward Al3+ ions was validated by the density functional theory (DFT) and IR spectrum. In addition, in situ formed "NBP + Al3+" could be utilized as the second sensor for selective recognition of F-via fluorescence quenching with a low detection limit (44 nM). Furthermore, the cell imaging experiments of probe NBP in HeLa cells have successfully demonstrated that NBP could serve as an indicator for monitoring Al3+ ions in living cells. On top of that, NBP could be used to prepare simple test paper strips for quickly and qualitatively detecting a trace amount of Al3+ ions in a visible manner.
Collapse
Affiliation(s)
- Shanzhu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Yunlan Gu
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China
| | - Zongqian Shi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Nan Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| |
Collapse
|
6
|
Immanuel David C, Prabakaran G, Nandhakumar R. Recent approaches of 2HN derived fluorophores on recognition of Al3+ ions: A review for future outlook. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Synthesis, characterization and computational studies of 4-[(Pyridine-3-carbonyl)-hydrazonomethyl]-benzoic acid. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
A fluorescent light-up probe for selective detection of Al3+ and its application in living cell imaging. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Kaur B, Kaur N. Detection of Al3+and Hg2+ions with anthracene appended Schiff base and its reduced analogue. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1656335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Baljeet Kaur
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
10
|
A Dual-Target Fluorescent Probe with Response-Time Dependent Selectivity for Cd 2+ and Cu 2. J Fluoresc 2018; 28:1115-1119. [PMID: 30084020 DOI: 10.1007/s10895-018-2274-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
A novel fluorescent probe (NT) was developed by merging 2-hydrazinylbenzothiazole with 2-hydroxy-1-naphthaldehyde for the detection of Cd2+ and Cu2+. The probe alone is almost nonfluorescent due to the isomerization of C=N in the excited state. The addition of Cd2+ can cause an immediate strong green fluorescence owing to the suppression of C=N isomerization by Cd2+-coordination. Furthermore, NT gives a delayed turn-on fluorescence response to Cu2+ although it is a vigorous fluorescence quencher, which was thanks to the inhibition of the electron transfer between excited fluorophore and paramagnetic Cu2+ by sulfur donor. Based on fluorescence spectra and ESI-MS analysis, the binding modes between NT and Cd2+/Cu2+ were proposed.
Collapse
|
11
|
|
12
|
Sun XY, Wu LL, Shen JS, Cao XG, Wen C, Liu B, Wang HQ. Highly selective and sensitive sensing for Al3+ and F− based on green photoluminescent carbon dots. RSC Adv 2016. [DOI: 10.1039/c6ra19370f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel sensor for metal ions by mean of CDs with a PL enhancement response, which shows high sensitivity and selectivity. Furthermore, the CDs-Al3+ ions system could be employed to probe F− anions based on a PL “on–off” model.
Collapse
Affiliation(s)
- Xiang-Ying Sun
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- China
| | - Lu-Lu Wu
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- China
| | - Jiang-Shan Shen
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- China
| | - Xue-Gong Cao
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- China
| | - Cunjin Wen
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- China
| | - Bin Liu
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- China
| | | |
Collapse
|