1
|
Oxazolidine Nitroxide Transformation in a Coordination Sphere of the Ln 3+ Ions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051626. [PMID: 35268728 PMCID: PMC8911955 DOI: 10.3390/molecules27051626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
Upon the interaction of the hydrated lanthanide(III) salts found in acetonitrile solution with a tripodal paramagnetic compound, 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl (Rad), functionalized by two pyridyl groups, three neutral, structurally characterized complexes with diamagnetic polydentate ligands—[Dy(RadH)(hbpm)Cl2], [Yb2(ipapm)2(NO3)4], and [Ce2(ipapm)2(NO3)4(EtOAc)2]—were obtained. These coordination compounds are minor uncolored crystalline products, which were formed in a reaction mixture due to the Rad transformation in a lanthanide coordination sphere, wherein the processes of its simultaneous disproportionation, hydrolysis, and condensation proceed differently than in the absence of Ln ions. The latter fact was confirmed by the formation of the structurally characterized product of the oxazolidine nitroxide transformation during its crystallization in toluene solution. Such a conversion in the presence of 4f elements ions is unique since no similar phenomenon was observed during the synthesis of the 3d-metal complexes with Rad.
Collapse
|
2
|
Abstract
Two diradical complexes of the formula [LnRad2(CF3SO3)3] c (Ln(III) = Dy, Eu, Rad = 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl) were obtained in air conditions. These are the first examples of diradical compounds of lanthanides and oxazolidine nitroxide. The complexes were characterized crystallographically and magnetically. Single crystal XRD analysis revealed that their coordination sphere is composed of three monodentate triflates and two tripodal Rad, which coordinate the central atom in a tridentate manner via two N atoms of the pyridine groups and the O atom of a nitroxide group. The LnO5N4 polyhedron represents a spherical capped square antiprism with point symmetry close to C4v. The data of static magnetic measurements are compatible with the presence of two paramagnetic ligands in the coordination sphere of the metal.
Collapse
|
3
|
Gass IA, Lu J, Ojha R, Asadi M, Lupton DW, Geoghegan BL, Moubaraki B, Martin LL, Bond AM, Murray KS. [FeII(L•)2][TCNQF4•−]2: A Redox-Active Double Radical Salt. Aust J Chem 2019. [DOI: 10.1071/ch19175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The reaction of [FeII(L•)2][BF4]2 with LiTCNQF4 results in the formation of [FeII(L•)2][TCNQF4•−]2·2CH3CN (1) (L• is the neutral aminoxyl radical ligand 4,4-dimethyl-2,2-di(2-pyridyl)oxazolidine-N-oxide; TCNQF4 is 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane). Single-crystal X-ray diffraction; Raman, Fourier-transform infrared (FTIR) and ultraviolet–visible spectroscopies; and electrochemical studies are all consistent with the presence of a low-spin FeII ion, the neutral radical form (L•) of the ligand, and the radical anion TCNQF4•−. 1 is largely diamagnetic and the electrochemistry shows five well-resolved, diffusion-controlled, reversible one-electron processes.
Collapse
|
4
|
Gass IA, Lu J, Asadi M, Lupton DW, Forsyth CM, Geoghegan BL, Moubaraki B, Cashion JD, Martin LL, Bond AM, Murray KS. Use of the TCNQF 4 2- Dianion in the Spontaneous Redox Formation of [Fe III (L - ) 2 ][TCNQF 4 ⋅- ]. Chempluschem 2018; 83:658-668. [PMID: 31950640 DOI: 10.1002/cplu.201800010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/12/2018] [Indexed: 11/08/2022]
Abstract
The reaction of [FeII (L. )2 ](BF4 )2 with Li2 TCNQF4 results in the formation of [FeIII (L- )2 ][TCNQF4 . - ] (1) where L. is the radical ligand, 4,4-dimethyl-2,2-di(2-pyridyl)oxazolidine-N-oxide and TCNQF4 is 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane. This has been characterised by X-ray diffraction, Raman and Fourier transform infrared (FTIR) spectroscopy, variable-temperature magnetic susceptibility, Mössbauer spectroscopy and electrochemistry. X-ray diffraction studies, magnetic susceptibility measurements and Raman and FTIR spectroscopy suggest the presence of low-spin FeIII ions, the anionic form (L- ) of the ligand and the anionic radical form of TCNQF4 ; viz. TCNQF4 . - . Li2 TCNQF4 reduces the [FeII (L. )2 ]2+ dication, which undergoes a reductively induced oxidation to form the [FeIII (L- )2 ]+ monocation resulting in the formation of [FeIII (L- )2 ][TCNQF4 . - ] (1), the electrochemistry of which revealed four well-separated, diffusion-controlled, one-electron, reversible processes. Mössbauer spectroscopy and electrochemical measurements suggest the presence of a minor second species, likely to be [FeII (L. )2 ][TCNQF4 2- ].
Collapse
Affiliation(s)
- Ian A Gass
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
| | - Jinzhen Lu
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Mousa Asadi
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Craig M Forsyth
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Blaise L Geoghegan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, United Kingdom
| | | | - John D Cashion
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Keith S Murray
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
5
|
Pedersen AH, Geoghegan BL, Nichol GS, Lupton DW, Murray KS, Martínez-Lillo J, Gass IA, Brechin EK. Hexahalorhenate(iv) salts of metal oxazolidine nitroxides. Dalton Trans 2017; 46:5250-5259. [PMID: 28374882 DOI: 10.1039/c7dt00752c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Eight coordination compounds of formulae [FeII(L˙)2][ReIVCl6] (1a), [FeII(L˙)2][ReIVBr6] (1b), [CoII(L˙)2][ReIVCl6]·CH3CN (2a), [CoII(L˙)2][ReIVBr6] (2b), [NiII(L˙)(CH3CN)3][ReIVCl6]·CH3CN (3a), [NiII(L˙)(CH3CN)3][ReIVBr6]·3CH3CN (3b), [CuII(L˙)2][ReIVCl6] (4a) and [CuII(L˙)2][ReIVBr6] (4b), where L˙ is the aminoxyl radical chelating ligand, 4,4'-dimethyl-2,2'-di(2-pyridyl)oxazolidine-N-oxide, have been synthesised. Structural and magnetic studies reveal metal-radical intramolecular antiferromagnetic interactions in the [MII(L˙)2]2+ cations in the iron, cobalt and copper based compounds (1a, 1b, 2a, 2b, 4a and 4b) with the central metal ion low-spin in the case of iron (1a and 1b) and a gradual, cobalt based, spin-crossover transition present in 2a and 2b. The nickel based compounds, 3a and 3b, were analysed in the dried form (3a(dried) and 3b(dried)) and directly in acetonitrile (3a(solvated) and 3b(solvated)). Microanalysis and IR spectroscopy on 3a(dried) and 3b(dried) suggest that the dried samples are best formulated as [NiII(L˙)(H2O)3][ReIVX6], where X = Cl (3a(dried)) and Br (3b(dried)). All forms of 3a and 3b exhibit cationic metal-radical ferromagnetic interactions resulting in S = 3/2 ground states. In addition, 3a(dried) exhibits spin-canting behaviour with an ordering temperature of 2.7 K, an open hysteresis loop with a coercive field Hc = 580 Oe, and a remanent magnetisation Mr = 0.21μB, resulting in a canting angle of ∼1.8°. In contrast, 3b(dried) shows no spin-canting behaviour; a maximum in χMvs. T at T = 3 K suggesting long-range antiferromagnetic ordering. 3a(solvated) and 3b(solvated) show no indication of long-range magnetic ordering, unlike 4a and 4b where anomalies are evident in the low-temperature magnetic susceptibility measurements.
Collapse
Affiliation(s)
- Anders H Pedersen
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, Scotland, UK.
| | - Blaise L Geoghegan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| | - Gary S Nichol
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, Scotland, UK.
| | - David W Lupton
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Keith S Murray
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - José Martínez-Lillo
- Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán 2, 46980, Paterna (València), Spain.
| | - Ian A Gass
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| | - Euan K Brechin
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, Scotland, UK.
| |
Collapse
|
6
|
Neville SM. An Introduction to Molecular Magnetism: SANZMAG-1 (Southampton-Australia-New Zealand Workshop on Molecular Magnetism). Aust J Chem 2014. [DOI: 10.1071/ch14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|