1
|
Sudalaimani S, Esokkiya A, Kumar KS, Giribabu K. Electrified liquid - liquid interface strategy for sensing lactic acid in buttermilk extract. Food Chem 2025; 463:141493. [PMID: 39366093 DOI: 10.1016/j.foodchem.2024.141493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Lactic acid (LA) serves as a freshness marker in certain foods. In the present work, electrified interfaces of different nature (i.e., liquid-liquid and liquid-organogel) have been developed for the quantification of LA. Electrochemical sensing of LA at the liquid-organogel interface revealed that adsorptive stripping voltammetry, with a preconcentration time of 500 s offered better sensitivity. Electroanalytical ability of LA under optimized conditions displayed a detection limit of 0.97 μM and 0.71 μM with sensitivity of 2.84 nA μM-1 and 3.59 nA μM-1 for liquid-liquid and liquid-organogel interfaces respectively. Quantification of LA using the developed methodology has been demonstrated in buttermilk as the real matrix. Analysis demonstrate that electrified liquid-liquid and liquid-organogel interfaces are promising approach for sensing LA in buttermilk extract.
Collapse
Affiliation(s)
- S Sudalaimani
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - A Esokkiya
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - K Sanjeev Kumar
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - K Giribabu
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
2
|
Ribeiro JA, Silva AF, Girault HH, Pereira CM. Electroanalytical applications of ITIES - A review. Talanta 2024; 280:126729. [PMID: 39180876 DOI: 10.1016/j.talanta.2024.126729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Over the last decades, the interface between two immiscible electrolyte solutions (ITIES) attracted considerable attention of the scientific community due to their vast applications, such as extraction, catalysis, partition studies and sensing. The aim of this Review is to highlight the potential of electrochemistry at the ITIES for analytical purposes, focusing on ITIES-based sensors for detection and quantification of chemically and biologically relevant (bio)molecules. We start by addressing the evolution of ITIES in terms of number of publications over the years along with an overview of their main applications (Chapter 1). Then, we provide a general historical perspective about pioneer voltammetric studies at water/oil systems (Chapter 2). After that, we discuss the most impacting improvements on ITIES sensing systems from both perspectives, set-up design (interface stabilization and miniaturization, selection of the organic solvent, etc.) and optimization of experimental conditions to improve selectivity and sensitivity (Chapter 3). In Chapter 4, we discuss the analytical applications of ITIES for electrochemical sensing of several types of analytes, including drugs, pesticides, proteins, among others. Finally, we highlight the present achievements of ITIES as analytical tool and provide future challenges and perspectives for this technology (Chapter 5).
Collapse
Affiliation(s)
- José A Ribeiro
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal.
| | - A Fernando Silva
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal
| | - H H Girault
- Institut des Sciences et Ingénierie Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Carlos M Pereira
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal.
| |
Collapse
|
3
|
Elangovan S, Puri SR, Madawala H, Pantano J, Pellock B, Kiesewetter MK, Kim J. Nanoscale Carbonate Ion-Selective Amperometric/Voltammetric Probes Based on Ion-Ionophore Recognition at the Organic/Water Interface: Hidden Pieces of the Puzzle in the Nanoscale Phase. Anal Chem 2023; 95:4271-4281. [PMID: 36808982 DOI: 10.1021/acs.analchem.2c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Here, we report on the successful demonstration and application of carbonate (CO32-) ion-selective amperometric/voltammetric nanoprobes based on facilitated ion transfer (IT) at the nanoscale interface between two immiscible electrolyte solutions. This electrochemical study reveals critical factors to govern CO32--selective nanoprobes using broadly available Simon-type ionophores forming a covalent bond with CO32-, i.e., slow dissolution of lipophilic ionophores in the organic phase, activation of hydrated ionophores, peculiar solubility of a hydrated ion-ionophore complex near the interface, and cleanness at the nanoscale interface. These factors are experimentally confirmed by nanopipet voltammetry, where a facilitated CO32- IT is studied with a nanopipet filled with an organic phase containing the trifluoroacetophenone derivative CO32-ionophore (CO32-ionophore VII) by voltammetrically and amperometrically sensing CO32- in water. Theoretical assessments of reproducible voltammetric data confirm that the dynamics of CO32- ionophore VII-facilitated ITs (FITs) follows the one-step electrochemical (E) mechanism controlled by both water-finger formation/dissociation and ion-ionophore complexation/dissociation during interfacial ITs. The yielded rate constant, k0 = 0.048 cm/s, is very similar to the reported values of other FIT reactions using ionophores forming non-covalent bonds with ions, implying that a weak binding between CO32- ion-ionophore enables us to observe FITs by fast nanopipet voltammetry regardless of the nature of bondings between the ion and ionophore. The analytical utility of CO32--selective amperometric nanoprobes is further demonstrated by measuring the CO32- concentration produced by metal-reducing bacteria Shewanella oneidensis MR-1 as a result of organic fuel oxidation in bacterial growth media in the presence of various interferents such as H2PO4-, Cl-, and SO42-.
Collapse
Affiliation(s)
- Subhashini Elangovan
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Surendra Raj Puri
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Hiranya Madawala
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Justin Pantano
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Brett Pellock
- Department of Biology, Providence College, Providence, Rhode Island 02981, United States
| | - Matthew K Kiesewetter
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Jiyeon Kim
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
4
|
Sudalaimani S, Arun S, Esokkiya A, Sanjeev Kumar K, Sivakumar C, Giribabu K. Disposable-micropipette tip supported electrified liquid-organogel interface as a platform for sensing acetylcholine. Analyst 2023; 148:1451-1459. [PMID: 36804568 DOI: 10.1039/d2an01663j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Sensing acetylcholine has been predominantly based on enzymatic strategies using acetylcholine esterase and choline oxidase because of its electrochemical inertness. Electrified liquid-liquid interfaces are not limited to oxidation/reduction processes, and can be utilized to detect non-redox molecules which cannot be detected using conventional solid electrodes. In this study, a disposable micropipette tip based liquid-organogel interface, in the presence/absence of calixarene has been developed as a platform for sensing acetylcholine. We also explored a liquid-liquid interface approach for sensing acetylcholine using a pre-pulled glass micropipette. In both approaches, the configuration, i.e., liquid-organogel and liquid-liquid interface-current linearly increases during the backward transfer of acetylcholine. The simple and facilitated ion transfer of acetylcholine across the liquid-organogel exhibited a linear range of 10-50 μM and 1-30 μM with a detection limit of 0.18 μM and 0.23 μM and a sensitivity of 9.52 nA μM-1 and 9.20 nA μM-1, respectively. Whereas, the detection limit of simple and facilitated ion transfer of liquid-liquid interface using pre-pulled glass micropipette was found to be 0.42 μM and 0.13 μM with a sensitivity of 5 × 10-3 nA μM-1 and 3.39 × 10-2 nA μM-1. The results indicate that the liquid-organogel configuration supported on a disposable micropipette tip without any pre-fabrication is highly suitable for electrified soft interface sensing applications.
Collapse
Affiliation(s)
- S Sudalaimani
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi-630 003, Tamil Nadu, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - S Arun
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi-630 003, Tamil Nadu, India.
| | - A Esokkiya
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi-630 003, Tamil Nadu, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - K Sanjeev Kumar
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi-630 003, Tamil Nadu, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - C Sivakumar
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi-630 003, Tamil Nadu, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - K Giribabu
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi-630 003, Tamil Nadu, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Trojánek A, Mareček V, Samec Z. Bovine serum albumin adsorption at a polarized water/1,2‐dichloroethane interface with no effect on the ion transfer kinetics. ChemElectroChem 2022. [DOI: 10.1002/celc.202200409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Antonín Trojánek
- J Heyrovsky Institute of Physical Chemistry Czech Academy of Sciences: Ustav fyzikalni chemie J Heyrovskeho Akademie Ved Ceske Republiky Department of biophysics Dolejškova 3 18223 Prague 8 CZECH REPUBLIC
| | - Vladimír Mareček
- J Heyrovsky Institute of Physical Chemistry Czech Academy of Sciences: Ustav fyzikalni chemie J Heyrovskeho Akademie Ved Ceske Republiky Management Dolejskova 3 18223 Prague 8 CZECH REPUBLIC
| | - Zdenek Samec
- J Heyrovsky Institute of Physical Chemistry Czech Academy of Sciences: Ustav fyzikalni chemie J Heyrovskeho Akademie Ved Ceske Republiky Department of Electrocatalysis Dolejskova 3 18223 Prague 8 CZECH REPUBLIC
| |
Collapse
|
6
|
Li M, He P, Yu Z, Zhang S, Gu C, Nie X, Gu Y, Zhang X, Zhu Z, Shao Y. Investigation of Dendrimer Transfer Behaviors at the Micro-Water/1,2-Dichloroethane Interface Facilitated by Dibenzo-18-Crown-6. Anal Chem 2021; 93:1515-1522. [PMID: 33356146 DOI: 10.1021/acs.analchem.0c03815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trans-interfacial behaviors of multiple ionic species at the interface between two immiscible electrolyte solutions (ITIES) are of importance to biomembrane mimicking, chemical and biosensing, and interfacial molecular catalysis. Utilizing host-guest interaction to facilitate ion transfer is an effective and commonly used method to decrease the Gibbs energy of transfer of a target molecule. Herein, we investigated a facilitated ion transfer (FIT) process of poly(amidoamine)dendrimer (PAMAM, G0-G2) by dibenzo-18-crown-6 (DB18C6) at the microinterfaces between water and 1,2-dichloroethane (μ-W/DCE). Because of the host-guest interaction between a dendrimer and a ligand, negative shifts of the transfer potentials were observed using cyclic voltammetry or Osteryoung square wave voltammetry. From the FIT behavior of the dendrimer, we revealed that each DB18C6 could selectively coordinate with one amino group. We first evaluated the protonated status of the intermediate state (1:2) exactly under the conditions the dendrimer (G1) transfers across the interface using the electrochemical mass spectrometry (EC-MS)-hyphenated technique, which is much smaller than the protonated status in the water phase (1:8 to 14). Using the same methodology, we also studied the facilitated transfer behaviors of G0 and G2. Based on these results, we put forward the mechanism of the FIT process, which might involve a deprotonating process at the interface for higher-generation dendrimers.
Collapse
Affiliation(s)
- Mingzhi Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhengyou Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shudong Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chaoyue Gu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yaxiong Gu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianhao Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiwei Zhu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Detection of zwitterion at an electrified liquid-liquid interface: A chemical equilibrium perspective. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Suárez-Herrera MF, Scanlon MD. Quantitative Analysis of Redox-Inactive Ions by AC Voltammetry at a Polarized Interface between Two Immiscible Electrolyte Solutions. Anal Chem 2020; 92:10521-10530. [PMID: 32608226 DOI: 10.1021/acs.analchem.0c01340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The interface between two immiscible electrolyte solutions (ITIES) is ideally suited to detect redox-inactive ions by their ion transfer. Such electroanalysis, based on the Nernst-Donnan equation, has been predominantly performed using amperometry, cyclic voltammetry, or differential pulse voltammetry. Here, we introduce a new electroanalytical method based on alternating-current (AC) voltammetry with inherent advantages over traditional approaches such as avoidance of positive feedback iR compensation, a major issue for liquid|liquid electrochemical cells containing resistive organic media and interfacial areas in the cm2 and mm2 range. A theoretical background outlining the generation of the analytical signal is provided and based on extracting the component that depends on the Warburg impedance from the total impedance. The quantitative detection of a series of model redox-inactive tetraalkylammonium cations is demonstrated, with evidence provided of the transient adsorption of these cations at the interface during the course of ion transfer. Since ion transfer is diffusion-limited, by changing the voltage excitation frequency during AC voltammetry, the intensity of the Faradaic response can be enhanced at low frequencies (1 Hz) or made to disappear completely at higher frequencies (99 Hz). The latter produces an AC voltammogram equivalent to a "blank" measurement in the absence of analyte and is ideal for background subtraction. Therefore, major opportunities exist for the sensitive detection of ionic analyte when a "blank" measurement in the absence of analyte is impossible. This approach is particularly useful to deconvolute signals related to reversible electrochemical reactions from those due to irreversible processes, which do not give AC signals.
Collapse
Affiliation(s)
- Marco F Suárez-Herrera
- Departamento De Química, Facultad De Ciencias, Universidad Nacional De Colombia, Cra 30 # 45-03, Edificio 451, Bogotá, Colombia
| | - Micheál D Scanlon
- The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| |
Collapse
|
9
|
Zhang S, Yin X, Li M, Zhang X, Zhang X, Qin X, Zhu Z, Yang S, Shao Y. Ionic Current Behaviors of Dual Nano- and Micropipettes. Anal Chem 2018; 90:8592-8599. [PMID: 29939012 DOI: 10.1021/acs.analchem.8b01765] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ionic current rectification (ICR) phenomena within dual glass pipettes are investigated for the first time. We demonstrate that the ionic flow presents different behaviors in dual nano- and micropipettes when the two channels are filled with the same electrolyte KCl and hung in air. Bare dual nanopipettes cannot rectify the ionic current because of their geometric symmetry, but the ICR can be directly observed based on bare dual micropipettes. The phenomena based on dual micropipettes could be explained by the simulation of the Poisson-Nernst-Plank equation. After modification with different approaches, the dual nanopipettes have asymmetric charge patterns and show various ICR behaviors. They have been successfully employed to fabricate various nanodevices, such as ionic diodes and bipolar junction transistors. Due to the simple and fast fabrication with high reproducibility, these dual pipettes can provide a novel platform for controlling ionic flow in nano- and microfluidics, fabrication of novel nanodevices, and detection of biomolecules.
Collapse
Affiliation(s)
- Shudong Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xiaohong Yin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Mingzhi Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xianhao Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xin Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xiaoli Qin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhiwei Zhu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Shuang Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
10
|
Scanlon MD, Smirnov E, Stockmann TJ, Peljo P. Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics. Chem Rev 2018; 118:3722-3751. [DOI: 10.1021/acs.chemrev.7b00595] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Micheál D. Scanlon
- The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Evgeny Smirnov
- Laboratoire d’Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - T. Jane Stockmann
- Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086, Sorbonne Paris Cité, Paris Diderot University, 15 Rue J.A. Baïf, 75013 Paris, France
| | - Pekka Peljo
- Laboratoire d’Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|