Vandghanooni S, Eskandani M, Barar J, Omidi Y. Recent advances in aptamer-armed multimodal theranostic nanosystems for imaging and targeted therapy of cancer.
Eur J Pharm Sci 2018;
117:301-312. [PMID:
29499349 DOI:
10.1016/j.ejps.2018.02.027]
[Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/24/2018] [Accepted: 02/25/2018] [Indexed: 01/17/2023]
Abstract
The side effects of chemotherapeutics during the course of cancer treatment limit their clinical outcomes. The most important mission of the modern cancer therapy modalities is the delivery of anticancer drugs specifically to the target cells/tissue in order to avoid/reduce any inadvertent non-specific impacts on the healthy normal cells. Nanocarriers decorated with a designated targeting ligand such as aptamers (Aps) and antibodies (Abs) are able to deliver cargo molecules to the target cells/tissue without affecting other neighboring cells, resulting in an improved treatment of cancer. For targeted therapy of cancer, different ligands (e.g., protein, peptide, Abs, Aps and small molecules) have widely been used in the development of different targeting drug delivery systems (DDSs). Of these homing agents, nucleic acid Aps show unique targeting potential with high binding affinity to a variety of biological targets (e.g., genes, peptides, proteins, and even cells and organs). Aps have widely been used as the targeting agent, in large part due to their unique 3D structure, simplicity in synthesis and functionalization, high chemical flexibility, low immunogenicity and toxicity, and cell/tissue penetration capability in some cases. Here, in this review, we provide important insights on Ap-decorated multimodal nanosystems (NSs) and discuss their applications in targeted therapy and imaging of cancer.
Collapse