1
|
Kemp A, Durand M, Wall D, Szieber P, Hermanns MI, Oelgemöller M. Synthesis of 1H-isoindolin-1-ones via a simple photodecarboxylative addition of carboxylates to phthalimides and evaluation of their antibiotic activity. Photochem Photobiol Sci 2024; 23:1353-1360. [PMID: 38888704 DOI: 10.1007/s43630-024-00600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
A variety of 3-hydroxy-isoindolin-1-one derivatives were synthesized using the photodecarboxylative addition of carboxylates to phthalimide derivatives in aqueous media. Subsequent acid-catalyzed dehydration furnished 3-(alkyl and aryl)methyleneisoindolin-1-ones with variable E-diastereoselectivity in good to excellent overall yields. Noteworthy, the parent 3-phenylmethyleneisoindolin-1-one underwent isomerization and oxidative decomposition when exposed to light and air. Selected 3-hydroxy-isoindolin-1-one and 3-(alkyl and aryl)methyleneisoindolin-1-one derivatives showed moderate antibacterial activity that justifies future elaboration and study of these important bioactive scaffolds.
Collapse
Affiliation(s)
- Aiden Kemp
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Marine Durand
- Faculty of Chemistry & Biology, Hochschule Fresenius - University of Applied Sciences, Limburger Str. 2, 65510, Idstein, Germany
| | - Daniel Wall
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Peter Szieber
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - M Iris Hermanns
- Faculty of Chemistry & Biology, Hochschule Fresenius - University of Applied Sciences, Limburger Str. 2, 65510, Idstein, Germany
| | - Michael Oelgemöller
- Faculty of Chemistry & Biology, Hochschule Fresenius - University of Applied Sciences, Limburger Str. 2, 65510, Idstein, Germany.
| |
Collapse
|
2
|
Gómez Fernández MA, Hoffmann N. Photocatalytic Transformation of Biomass and Biomass Derived Compounds-Application to Organic Synthesis. Molecules 2023; 28:4746. [PMID: 37375301 PMCID: PMC10301391 DOI: 10.3390/molecules28124746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Biomass and biomass-derived compounds have become an important alternative feedstock for chemical industry. They may replace fossil feedstocks such as mineral oil and related platform chemicals. These compounds may also be transformed conveniently into new innovative products for the medicinal or the agrochemical domain. The production of cosmetics or surfactants as well as materials for different applications are examples for other domains where new platform chemicals obtained from biomass can be used. Photochemical and especially photocatalytic reactions have recently been recognized as being important tools of organic chemistry as they make compounds or compound families available that cannot be or are difficultly synthesized with conventional methods of organic synthesis. The present review gives a short overview with selected examples on photocatalytic reactions of biopolymers, carbohydrates, fatty acids and some biomass-derived platform chemicals such as furans or levoglucosenone. In this article, the focus is on application to organic synthesis.
Collapse
Affiliation(s)
| | - Norbert Hoffmann
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| |
Collapse
|
3
|
Kramer WH, Razinoubakht D, Kaur G, Klein A, Garbe S, Neudörfl J, Molitor S, Zimmer A, Griesbeck AG. Awakening a Molecular Mummy: The Inter-and Intramolecular Photochemistry of Pyromellitic Diimides with Alkyl Carboxylates. PHOTOCHEM 2022; 2:717-732. [PMID: 38784069 PMCID: PMC11115379 DOI: 10.3390/photochem2030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Pyromellitic acid diimides are not as chemically unreactive as conjecturable (and presupposed) from their numerous applications as electron acceptor units or electron carriers in molecular donor-acceptor dyads or triads. Similar to the corresponding phthalimides, electronically excited pyromellitic diimides oxidize alkyl carboxylates in aqueous solution via intermolecular electron transfer (PET) processes, which eventually results in radical-radical combination products, e.g., the benzylation product 6 from N,N'-dimethyl pyromellitic diimide 5. The analogous product 7 was formed with pivalic acid as tert-butyl radical source. One additional product 8 was isolated from alkylation/dearomatization and multiple radical additions, respectively, after prolonged irradiation. In intramolecular versions, from N-carboxyalkylated pyromellitic diimides 9a-e (C1 to C5-spaced), degradation processes were detected, e.g., the cyclization products 10 from the GABA substrate 9c. In sharp contrast to phthalimide photochemistry, the green pyromellitic diimide radical anion was detected here by UV-vis absorption (λabs = 720 nm), EPR (from 9d), and NMR spectroscopy for several intramolecular electron transfer examples. Only the yellow 1,4-quinodial structure is formed from intermolecular PET, which was deduced from the absorption spectra (λabs = 440 nm) and the subsequent chemistry. The pyromellitimide radical anion lives for hours at room temperature in the dark, but is further degraded under photochemical reaction conditions.
Collapse
Affiliation(s)
- Wolfgang H. Kramer
- Department of Chemistry and Biochemistry, Millsaps College, 1701 North State Street, Jackson, MS 39210, USA
| | - Donya Razinoubakht
- Department of Chemistry and Biochemistry, Millsaps College, 1701 North State Street, Jackson, MS 39210, USA
| | - Gurjit Kaur
- Department of Chemistry and Biochemistry, Millsaps College, 1701 North State Street, Jackson, MS 39210, USA
| | - Axel Klein
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Inorganic Chemistry, Greinstr. 6, 50939 Köln, Germany
| | - Simon Garbe
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Inorganic Chemistry, Greinstr. 6, 50939 Köln, Germany
| | - Jörg Neudörfl
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Organic Chemistry, Greinstr. 4, 50939 Köln, Germany
| | - Sabrina Molitor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Organic Chemistry, Greinstr. 4, 50939 Köln, Germany
| | - Anne Zimmer
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Organic Chemistry, Greinstr. 4, 50939 Köln, Germany
| | - Axel G. Griesbeck
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Organic Chemistry, Greinstr. 4, 50939 Köln, Germany
| |
Collapse
|
4
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 264] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Varenikov A, Shapiro E, Gandelman M. Decarboxylative Halogenation of Organic Compounds. Chem Rev 2021; 121:412-484. [PMID: 33200917 PMCID: PMC7884003 DOI: 10.1021/acs.chemrev.0c00813] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Decarboxylative halogenation, or halodecarboxylation, represents one of the fundamental key methods for the synthesis of ubiquitous organic halides. The method is based on conversion of carboxylic acids to the corresponding organic halides via selective cleavage of a carbon-carbon bond between the skeleton of the molecule and the carboxylic group and the liberation of carbon dioxide. In this review, we discuss and analyze major approaches for the conversion of alkanoic, alkenoic, acetylenic, and (hetero)aromatic acids to the corresponding alkyl, alkenyl, alkynyl, and (hetero)aryl halides. These methods include the preparation of families of valuable organic iodides, bromides, chlorides, and fluorides. The historic and modern methods for halodecarboxylation reactions are broadly discussed, including analysis of their advantages and drawbacks. We critically address the features, reaction selectivity, substrate scopes, and limitations of the approaches. In the available cases, mechanistic details of the reactions are presented, and the generality and uniqueness of the different mechanistic pathways are highlighted. The challenges, opportunities, and future directions in the field of decarboxylative halogenation are provided.
Collapse
Affiliation(s)
- Andrii Varenikov
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Evgeny Shapiro
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Mark Gandelman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| |
Collapse
|
6
|
Chen J, Allyson ZG, Xin J, Guan Z, He Y. Photo‐Mediated Decarboxylative Ketonization of Atropic Acids with Sulfonyl Hydrazides: Direct Access to
β
‐Ketosulfones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jie Chen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 People's Republic of China
| | - Zoe G. Allyson
- Department of ChemistryCollege of Saint Benedict and Saint John's University Collegeville MN 56321 USA
| | - Jing‐Rui Xin
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 People's Republic of China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 People's Republic of China
| | - Yan‐Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 People's Republic of China
| |
Collapse
|
7
|
Kubosaki S, Takeuchi H, Iwata Y, Tanaka Y, Osaka K, Yamawaki M, Morita T, Yoshimi Y. Visible- and UV-Light-Induced Decarboxylative Radical Reactions of Benzoic Acids Using Organic Photoredox Catalysts. J Org Chem 2020; 85:5362-5369. [DOI: 10.1021/acs.joc.0c00055] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suzuka Kubosaki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Haruka Takeuchi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Yutaka Iwata
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Yosuke Tanaka
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Kazuyuki Osaka
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Mugen Yamawaki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Toshio Morita
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
8
|
Continuous Flow Photochemical and Thermal Multi-Step Synthesis of Bioactive 3-Arylmethylene-2,3-Dihydro-1 H-Isoindolin-1-Ones. Molecules 2019; 24:molecules24244527. [PMID: 31835663 PMCID: PMC6943768 DOI: 10.3390/molecules24244527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 11/28/2022] Open
Abstract
An effective multi-step continuous flow approach towards N-diaminoalkylated 3-arylmethylene-2,3-dihydro-1H-isoindolin-1-ones, including the local anesthetic compound AL-12, has been realized. Compared to the traditional decoupled batch processes, the combined photochemical–thermal–thermal flow setup rapidly provides the desired target compounds in superior yields and significantly shorter reaction times.
Collapse
|
9
|
Ozaki Y, Yamada T, Mizuno T, Osaka K, Yamawaki M, Maeda H, Morita T, Yoshimi Y. Retention of chirality of 5-membered alicyclic α-amino acids bearing N-(2-phenyl)benzoyl group in photoinduced decarboxylative intermolecular radical addition to acrylonitrile. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Osaka K, Usami A, Iwasaki T, Yamawaki M, Morita T, Yoshimi Y. Sequential Intermolecular Radical Addition and Reductive Radical Cyclization of Tyrosine and Phenylalanine Derivatives with Alkenes via Photoinduced Decarboxylation: Access to Ring-Constrained γ-Amino Acids. J Org Chem 2019; 84:9480-9488. [DOI: 10.1021/acs.joc.9b00970] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kazuyuki Osaka
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Ayuka Usami
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Tomoya Iwasaki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Mugen Yamawaki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Toshio Morita
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|