1
|
Wang Z, Lu D, Kondamareddy KK, He Y, Gu W, Li J, Fan H, Wang H, Ho W. Recent Advances and Insights in Designing Zn xCd 1-xS-Based Photocatalysts for Hydrogen Production and Synergistic Selective Oxidation to Value-Added Chemical Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48895-48926. [PMID: 39235068 DOI: 10.1021/acsami.4c09599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Combining the hydrogen (H2) extraction process and organic oxidation synthesis in photooxidation-reduction reactions mediated by semiconductors is a desirable strategy because rich chemicals are evolved as byproducts along with hydrogen in trifling conditions upon irradiation, which is the only effort. The bifunctional photocatalytic strategy facilitates the feasible formation of a C═O/C─C bond from a large number of compounds containing a X-H (X = C, O) bond; therefore, the production of H2 can be easily realized without support from third agents like chemical substances, thus providing an eco-friendly and appealing organic synthesis strategy. Among the widely studied semiconductor nanomaterials, ZnxCd1-xS has been continuously studied and explored by researchers over the years, and it has attracted much consideration owing to its unique advantages such as adjustable band edge position, rich elemental composition, excellent photoelectric properties, and ability to respond to visible light. Therefore, nanostructures based on ZnxCd1-xS have been widely studied as a feasible way to efficiently prepare hydrogen energy and selectively oxidize it into high-value fine chemicals. In this Review, first, the crystal and energy band structures of ZnxCd1-xS, the model of twin nanocrystals, the photogenerated charge separation mechanism of the ZB-WZ-ZB homojunction with crisscross bands, and the Volmer-Weber growth mechanism of ZnxCd1-xS are described. Second, the morphology, structure, modification, synthesis, and vacancy engineering of ZnxCd1-xS are surveyed, summarized, and discussed. Then, the research progress in ZnxCd1-xS-based photocatalysis in photocatalytic hydrogen extraction (PHE) technology, the mechanism of PHE, organic substance (benzyl alcohol, methanol, etc.) dehydrogenation, the factors affecting the efficiency of photocatalytic discerning oxidation of organic derivatives, and selective C-H activation and C-C coupling for synergistic efficient dehydrogenation of photocatalysts are described. Conclusively, the challenges in the applicability of ZnxCd1-xS-based photocatalysts are addressed for further research development along this line.
Collapse
Affiliation(s)
- Zhennan Wang
- School of Science, Xi'an Polytechnic University, No.19 of Jinhua South Road, Beilin District, Xi'an 710048, P. R. China
| | - Dingze Lu
- School of Science, Xi'an Polytechnic University, No.19 of Jinhua South Road, Beilin District, Xi'an 710048, P. R. China
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong 999077, P. R. China
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Kiran Kumar Kondamareddy
- School of Pure Science, College of Engineering and Technical Vocational Education and Training (CETVET), Fiji National University, Lautoka, Fiji
| | - Yang He
- School of Science, Xi'an Polytechnic University, No.19 of Jinhua South Road, Beilin District, Xi'an 710048, P. R. China
| | - Wenju Gu
- School of Science, Xi'an Polytechnic University, No.19 of Jinhua South Road, Beilin District, Xi'an 710048, P. R. China
| | - Jing Li
- School of Science, Xi'an Polytechnic University, No.19 of Jinhua South Road, Beilin District, Xi'an 710048, P. R. China
| | - Huiqing Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Hongmei Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Wingkei Ho
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong 999077, P. R. China
| |
Collapse
|
2
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
4
|
Qi MY, Conte M, Anpo M, Tang ZR, Xu YJ. Cooperative Coupling of Oxidative Organic Synthesis and Hydrogen Production over Semiconductor-Based Photocatalysts. Chem Rev 2021; 121:13051-13085. [PMID: 34378934 DOI: 10.1021/acs.chemrev.1c00197] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Merging hydrogen (H2) evolution with oxidative organic synthesis in a semiconductor-mediated photoredox reaction is extremely attractive because the clean H2 fuel and high-value chemicals can be coproduced under mild conditions using light as the sole energy input. Following this dual-functional photocatalytic strategy, a dreamlike reaction pathway for constructing C-C/C-X (X = C, N, O, S) bonds from abundant and readily available X-H bond-containing compounds with concomitant release of H2 can be readily fulfilled without the need of external chemical reagents, thus offering a green and fascinating organic synthetic strategy. In this review, we begin by presenting a concise overview on the general background of traditional photocatalytic H2 production and then focus on the fundamental principles of cooperative photoredox coupling of selective organic synthesis and H2 production by simultaneous utilization of photoexcited electrons and holes over semiconductor-based catalysts to meet the economic and sustainability goal. Thereafter, we put dedicated emphasis on recent key progress of cooperative photoredox coupling of H2 production and various selective organic transformations, including selective alcohol oxidation, selective methane conversion, amines oxidative coupling, oxidative cross-coupling, cyclic alkanes dehydrogenation, reforming of lignocellulosic biomass, and so on. Finally, the remaining challenges and future perspectives in this flourishing area have been critically discussed. It is anticipated that this review will provide enlightening guidance on the rational design of such dual-functional photoredox reaction system, thereby stimulating the development of economical and environmentally benign solar fuel generation and organic synthesis of value-added fine chemicals.
Collapse
Affiliation(s)
- Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Marco Conte
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Masakazu Anpo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
5
|
Klarner M, Hammon S, Feulner S, Kümmel S, Kador L, Kempe R. Visible Light‐driven Dehydrogenation of Benzylamine under Liberation of H
2. ChemCatChem 2020. [DOI: 10.1002/cctc.202000329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mara Klarner
- Inorganic Chemistry II University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| | - Sebastian Hammon
- Theoretical Physics IV University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Sebastian Feulner
- Institute of Physics, Bayreuth Institute of Macromolecule Research (BIMF) University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Stephan Kümmel
- Theoretical Physics IV University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Lothar Kador
- Institute of Physics, Bayreuth Institute of Macromolecule Research (BIMF) University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Rhett Kempe
- Inorganic Chemistry II University of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| |
Collapse
|