1
|
Qi R, Shen W, Xu R, Li Z, Long Z, Wang Y, Tang Q, Kipper MJ, Popat K, Belfiore LA, Tang J. Excellent Electroluminescent Property of Eu 3+-Induced Polystyrene- co-poly(acrylic acid) Aggregates (EIPAs) in Polymeric Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36715-36726. [PMID: 38978456 DOI: 10.1021/acsami.4c06466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Eu3+-induced polystyrene-co-poly(acrylic acid) aggregates (EIPAs) were synthesized using a self-assembly approach, and their structures and photophysical characteristics were examined to achieve effective monochromatic red emission in polymer light-emitting diodes (PLEDs). By adjusting the monomer ratio in RAFT polymerization, the size of Eu3+-induced block copolymer nanoaggregates can be regulated, thereby modulating the luminescence intensity. High-performance bilayer polymer light-emitting devices were fabricated using poly(9,9-dioctylfluorene) (PFO) and 2-(tert-butylphenyl)-5-biphenylyl-1,3,4-oxadiazole (PBD) as the host matrix, with EIPAs as the guest dopant. The devices exhibited narrow red emission at 615 nm with a full width at half-maximum (fwhm) of 15 nm across doping concentrations of 1, 3, 5, and 10 wt %. At a doping concentration of 3 wt %, the device achieved a maximum brightness of 1864.48 cd/m2 at 193.82 mA/cm2 and an external quantum efficiency of 3.20% at a current density of 3.5 mA/cm2. These results indicate that incorporating polystyrene-co-poly(acrylic acid) with Eu3+ complexes enhances the excitation and emission intensity, as well as the structural stability of the emitting layer in PLEDs, thereby improving the device performance.
Collapse
Affiliation(s)
- Rui Qi
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Wenfei Shen
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Rui Xu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zengkun Li
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zaixin Long
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Qinglin Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ketul Popat
- Department of Bioengineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Laurence A Belfiore
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
2
|
Clothier GKK, Guimarães TR, Thompson SW, Rho JY, Perrier S, Moad G, Zetterlund PB. Multiblock copolymer synthesis via RAFT emulsion polymerization. Chem Soc Rev 2023; 52:3438-3469. [PMID: 37093560 DOI: 10.1039/d2cs00115b] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A multiblock copolymer is a polymer of a specific structure that consists of multiple covalently linked segments, each comprising a different monomer type. The control of the monomer sequence has often been described as the "holy grail" of synthetic polymer chemistry, with the ultimate goal being synthetic access to polymers of a "perfect" structure, where each monomeric building block is placed at a desired position along the polymer chain. Given that polymer properties are intimately linked to the microstructure and monomer distribution along the constituent chains, it goes without saying that there exist seemingly endless opportunities in terms of fine-tuning the properties of such materials by careful consideration of the length of each block, the number and order of blocks, and the inclusion of monomers with specific functional groups. The area of multiblock copolymer synthesis remains relatively unexplored, in particular with regard to structure-property relationships, and there are currently significant opportunities for the design and synthesis of advanced materials. The present review focuses on the synthesis of multiblock copolymers via reversible addition-fragmentation chain transfer (RAFT) polymerization implemented as aqueous emulsion polymerization. RAFT emulsion polymerization offers intriguing opportunities not only for the advanced synthesis of multiblock copolymers, but also provides access to polymeric nanoparticles of specific morphologies. Precise multiblock copolymer synthesis coupled with self-assembly offers material morphology control on length scales ranging from a few nanometers to a micrometer. It is imperative that polymer chemists interact with physicists and material scientists to maximize the impact of these materials of the future.
Collapse
Affiliation(s)
- Glenn K K Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Thiago R Guimarães
- MACROARC, Queensland University of Technology, Brisbane City, QLD 4000, Australia
| | - Steven W Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Julia Y Rho
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Sébastien Perrier
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Clothier GKK, Guimarães TR, Strover LT, Zetterlund PB, Moad G. Electrochemically-Initiated RAFT Synthesis of Low Dispersity Multiblock Copolymers by Seeded Emulsion Polymerization. ACS Macro Lett 2023; 12:331-337. [PMID: 36802531 PMCID: PMC10035029 DOI: 10.1021/acsmacrolett.3c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
We describe electrochemically initiated emulsion polymerization with reversible addition-fragmentation chain transfer (eRAFT) to form well-defined multiblock copolymers with low molar mass dispersity. We demonstrate the utility of our emulsion eRAFT process with the synthesis of low dispersity multiblock copolymers by seeded RAFT emulsion polymerization at ambient temperature (∼30 °C). Thus, a triblock, poly(butyl methacrylate)-block-polystyrene-block-poly(4-methylstyrene) [PBMA-b-PSt-b-PMS], and a tetrablock, poly(butyl methacrylate)-block-polystyrene-block-poly(styrene-stat-butyl acrylate)-block-polystyrene [PBMA-b-PSt-b-P(BA-stat-St)-b-PSt], were synthesized as free-flowing, colloidally stable latexes commencing with a surfactant-free poly(butyl methacrylate) macroRAFT agent seed latex. A straightforward sequential addition strategy with no intermediate purification steps was able to be employed due to the high monomer conversions achieved in each step. The method takes full advantage of compartmentalization phenomena and the nanoreactor concept described in previous work to achieve the predicted molar mass, low molar mass dispersity (Đ ∼ 1.1-1.2), incrementing particle size (Zav = 100-115 nm), and low particle size dispersity (PDI ∼ 0.02) for each generation of the multiblocks.
Collapse
Affiliation(s)
- Glenn K K Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| |
Collapse
|
4
|
Boyer C, Kamigaito M, Satoh K, Moad G. Radical-Promoted Single-unit Monomer Insertion (SUMI) [aka. Reversible-Deactivation Radical Addition (RDRA)]. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Evolution of Molar Mass Distributions Using a Method of Partial Moments: Initiation of RAFT Polymerization. Polymers (Basel) 2022; 14:polym14225013. [PMID: 36433139 PMCID: PMC9696826 DOI: 10.3390/polym14225013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
We describe a method of partial moments devised for accurate simulation of the time/conversion evolution of polymer composition and molar mass. Expressions were derived that enable rigorous evaluation of the complete molar mass and composition distribution for shorter chain lengths (e.g., degree of polymerization, Xn = N < 200 units) while longer chains (Xn ≥ 200 units) are not neglected, rather they are explicitly considered in terms of partial moments of the molar mass distribution, μxN(P)=∑n=N+1∞nx[Pn] (where P is a polymeric species and n is its’ chain length). The methodology provides the exact molar mass distribution for chains Xn < N, allows accurate calculation of the overall molar mass averages, the molar mass dispersity and standard deviations of the distributions, provides closure to what would otherwise be an infinite series of differential equations, and reduces the stiffness of the system. The method also allows for the inclusion of the chain length dependence of the rate coefficients associated with the various reaction steps (in particular, termination and propagation) and the various side reactions that may complicate initiation or initialization. The method is particularly suited for the detailed analysis of the low molar mass portion of molar mass distributions of polymers formed by radical polymerization with reversible addition-fragmentation chain transfer (RAFT) and is relevant to designing the RAFT-synthesis of sequence-defined polymers. In this paper, we successfully apply the method to compare the behavior of thermally initiated (with an added dialkyldiazene initiator) and photo-initiated (with a RAFT agent as a direct photo-iniferter) RAFT-single-unit monomer insertion (RAFT-SUMI) and oligomerization of N,N-dimethylacrylamide (DMAm).
Collapse
|
6
|
Lehnen AC, Kurki J, Hartlieb M. The difference between photo-iniferter and conventional RAFT polymerization: high livingness enables the straightforward synthesis of multiblock copolymers. Polym Chem 2022. [DOI: 10.1039/d1py01530c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-iniferter (PI)-RAFT polymerization, the direct activation of chain transfer agents via light, is a fascinating polymerization technique, as it overcomes some restriction of conventional RAFT polymerization. As such, we elucidated...
Collapse
|
7
|
Sivokhin A, Orekhov D, Kazantsev O, Sivokhina O, Orekhov S, Kamorin D, Otopkova K, Smirnov M, Karpov R. Random and Diblock Thermoresponsive Oligo(ethylene glycol)-Based Copolymers Synthesized via Photo-Induced RAFT Polymerization. Polymers (Basel) 2021; 14:137. [PMID: 35012157 PMCID: PMC8747269 DOI: 10.3390/polym14010137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 01/11/2023] Open
Abstract
Amphiphilic random and diblock thermoresponsive oligo(ethylene glycol)-based (co)polymers were synthesized via photoiniferter polymerization under visible light using trithiocarbonate as a chain transfer agent. The effect of solvent, light intensity and wavelength on the rate of the process was investigated. It was shown that blue and green LED light could initiate RAFT polymerization of macromonomers without an exogenous initiator at room temperature, giving bottlebrush polymers with low dispersity at sufficiently high conversions achieved in 1-2 h. The pseudo-living mechanism of polymerization and high chain-end fidelity were confirmed by successful chain extension. Thermoresponsive properties of the copolymers in aqueous solutions were studied via turbidimetry and laser light scattering. Random copolymers of methoxy- and alkoxy oligo(ethylene glycol) methacrylates of a specified length formed unimolecular micelles in water with a hydrophobic core consisting of a polymer backbone and alkyl groups and a hydrophilic oligo(ethylene glycol) shell. In contrast, the diblock copolymer formed huge multimolecular micelles.
Collapse
Affiliation(s)
- Alexey Sivokhin
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Dmitry Orekhov
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Oleg Kazantsev
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Olga Sivokhina
- V.A. Kargin Research Institute of Chemistry and Technology of Polymers with Pilot Plant, 606000 Dzerzhinsk, Russia;
| | - Sergey Orekhov
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Denis Kamorin
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
- Chromatography Laboratory, Department of Production Control and Chromatography Methods, Lobachevsky State University of Nizhni Novgorod, Dzerzhinsk Branch, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia
| | - Ksenia Otopkova
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Michael Smirnov
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Rostislav Karpov
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| |
Collapse
|
8
|
Hartlieb M. Photo-Iniferter RAFT Polymerization. Macromol Rapid Commun 2021; 43:e2100514. [PMID: 34750911 DOI: 10.1002/marc.202100514] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Indexed: 12/27/2022]
Abstract
Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT-polymerization is possible via multiple routes. Besides the use of photo-initiators, or photo-catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo-iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI-RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail.
Collapse
Affiliation(s)
- Matthias Hartlieb
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany.,Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476, Potsdam, Germany
| |
Collapse
|
9
|
Clothier GKK, Guimarães TR, Moad G, Zetterlund PB. Multiblock Copolymer Synthesis via Reversible Addition–Fragmentation Chain Transfer Emulsion Polymerization: Effects of Chain Mobility within Particles on Control over Molecular Weight Distribution. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Glenn K. K. Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Thiago R. Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10,l, Clayton South, Victoria 3169, Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
10
|
Molle E, Frech S, Grüger T, Theato P. Electrochemically-initiated polymerization of reactive monomers via 4-fluorobenzenediazonium salts. Polym Chem 2021. [DOI: 10.1039/d1py00536g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the electrochemically-initiated polymerization of reactive monomers using a fluorine-labelled aromatic diazonium salt in an undivided cell setup with subsequent post-polymerization modifications of the intact reactive moieties.
Collapse
Affiliation(s)
- Edgar Molle
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institute for Biological Interfaces III (IBG-3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Frech
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institute for Biological Interfaces III (IBG-3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Tilman Grüger
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
| | - Patrick Theato
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- Institute for Biological Interfaces III (IBG-3), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Wentrup C. RACI and AAS Awards 2018–2020. Aust J Chem 2021. [DOI: 10.1071/chv74n1_fo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Strover LT, Postma A, Horne MD, Moad G. Anthraquinone-Mediated Reduction of a Trithiocarbonate Chain-Transfer Agent to Initiate Electrochemical Reversible Addition–Fragmentation Chain Transfer Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Almar Postma
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | | | - Graeme Moad
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| |
Collapse
|