1
|
Mahjour BA, Coley CW. RDCanon: A Python Package for Canonicalizing the Order of Tokens in SMARTS Queries. J Chem Inf Model 2024; 64:2948-2954. [PMID: 38488634 DOI: 10.1021/acs.jcim.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
SMARTS is a widely used language in cheminformatics for defining substructural queries for database lookups, reaction templates for chemical transformations, and other applications. As an extension to SMILES, many SMARTS patterns can represent the same query. Despite this, no canonicalization algorithm invariant of the line notation sequence or atomic numbering is publicly available. Here, we introduce RDCanon, an open-source Python package that can be used to standardize SMARTS queries. RDCanon is designed to ensure that the sequence of atomic queries remains consistent for all graphs representing the same substructure query and to ensure a canonical sequence of primitives within each individual atom query; furthermore, the algorithm can be applied to canonicalize the order of reactants, agents, and products and their atom map numbers in reaction SMARTS templates. As part of its canonicalization algorithm, RDCanon provides a mechanism in which the canonicalized SMARTS is optimized for speed against specific molecular databases. Several case studies are provided to showcase improved efficiency in substructure matching and retrosynthetic analysis.
Collapse
Affiliation(s)
- Babak A Mahjour
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Connor W Coley
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Su C, Dallaston MA, Watson RD, Fahrenhorst-Jones T, Cameron JP, Pierens GK, Bernhardt PV, Savage GP, Williams CM. The (±)-5-Aza[1.0]triblattane Skeleton via Azetine Cycloaddition. Org Lett 2024; 26:2827-2831. [PMID: 38253345 DOI: 10.1021/acs.orglett.3c03655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The first synthesis of the 5-aza[1.0]triblattane skeleton was achieved through a [4 + 2] cycloaddition approach using a suitably protected azetine and cyclopentadiene. A series of azetines were synthesized to explore both stability and suitable N-protection. The key step following cycloaddition utilized a noninitiated protonated aminyl radical cyclization to install the final 5-azatriblattane bond, but it was found to be considerably more unstable than the 6-aza isomer under acidic conditions.
Collapse
Affiliation(s)
- Chuyi Su
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland Australia
| | - Madeleine A Dallaston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland Australia
| | - Renée D Watson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland Australia
| | - Tyler Fahrenhorst-Jones
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland Australia
| | - Jacob P Cameron
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland Australia
| | - Gregory K Pierens
- Centre for Advanced Imaging, University of Queensland, Brisbane, 4072 Queensland Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland Australia
| | - G Paul Savage
- CSIRO Manufacturing, Ian Wark Laboratory, Melbourne, 3168 Victoria, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland Australia
| |
Collapse
|
3
|
Latendresse M, Malerich JP, Herson J, Krummenacker M, Szeto J, Vu VA, Collins N, Madrid PB. SynRoute: A Retrosynthetic Planning Software. J Chem Inf Model 2023; 63:5484-5495. [PMID: 37635298 PMCID: PMC10498441 DOI: 10.1021/acs.jcim.3c00491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Indexed: 08/29/2023]
Abstract
Computer-assisted synthetic planning has seen major advancements that stem from the availability of large reaction databases and artificial intelligence methodologies. SynRoute is a new retrosynthetic planning software tool that uses a relatively small number of general reaction templates, currently 263, along with a literature-based reaction database to find short, practical synthetic routes for target compounds. For each reaction template, a machine learning classifier is trained using data from the Pistachio reaction database to predict whether new computer-generated reactions based on the template are likely to work experimentally in the laboratory. This reaction generation methodology is used together with a vectorized Dijkstra-like search of top-scoring routes organized by synthetic strategies for easy browsing by a synthetic chemist. SynRoute was able to find routes for an average of 83% of compounds based on selection of random subsets of drug-like compounds from the ChEMBL database. Laboratory evaluation of 12 routes produced by SynRoute, to synthesize compounds not from the previous random subsets, demonstrated the ability to produce feasible overall synthetic strategies for all compounds evaluated.
Collapse
Affiliation(s)
| | | | - James Herson
- SRI International, 333 Ravenswood Ave, Menlo Park, California 94025, United States
| | - Markus Krummenacker
- SRI International, 333 Ravenswood Ave, Menlo Park, California 94025, United States
| | | | | | | | | |
Collapse
|
4
|
Microwave-Aided Reactions of Aniline Derivatives with Formic Acid: Inquiry-Based Learning Experiments. CHEMISTRY-DIDACTICS-ECOLOGY-METROLOGY 2022. [DOI: 10.2478/cdem-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
The synthesis of amides belongs to traditional experimental tasks not only in organic chemistry exercises at universities but also at chemically focused secondary schools or in special practices at general high schools. An example of such a synthesis may be the preparation of acetanilide via reaction of aniline with acetic acid or acetic anhydride. However, both of these reactions are associated with a rather long reaction time and certain hazards that limit their straightforward use in pedagogical practice. Conveniently, the reaction of aniline with acetic acid may be significantly optimised if it is performed under solvent-free conditions in the presence of microwaves, which reduces considerably the reaction time and provides very good yield, compared to traditional heating by a heating nest. In this study, the main pedagogical aim of the experimental design is elucidation of the influence of the structure of the amines on the course of the reaction with formic acid through inquiry-based learning. Specifically, the proposed experiments consist in investigation of the chemical yield achieved in microwave assisted reactions of aniline and its derivatives with formic acid in such a way that is adequate for constructive learning of undergraduate chemistry students. The selected series of amines involves aniline, 4-methoxyaniline, 4-chloroaniline, and 4-nitroaniline. In accordance with the chemical reactivity principles, students gradually realise that the influence of the substituent is reflected in the reaction yield, which grows in the following order: N-(4-nitrophenyl)formamide ˂ N-(4-chlorophenyl)formamide ˂ N-phenylformamide ˂ N-(4-methoxyphenyl)formamide. Therefore, the results of the experiments enable students to discover that stronger basicity of the amine increases the yield of the amide. In order to deepen the students’ chemical knowledge and skills, the concept of the experiments was transformed to support inquiry-based student learning. The proposed experiments are intended for experimental learning in universities educating future chemistry teachers, but they may be also utilised in the form of workshops for students at secondary schools of a general educational nature.
Collapse
|
5
|
Grzybowski BA, Badowski T, Molga K, Szymkuć S. Network search algorithms and scoring functions for advanced‐level computerized synthesis planning. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bartosz A. Grzybowski
- Institute of Organic Chemistry, Polish Academy of Sciences Warsaw Poland
- Center for Soft and Living Matter, Institute for Basic Science (IBS) Ulsan Republic of Korea
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan Republic of Korea
| | - Tomasz Badowski
- Institute of Organic Chemistry, Polish Academy of Sciences Warsaw Poland
| | - Karol Molga
- Institute of Organic Chemistry, Polish Academy of Sciences Warsaw Poland
| | - Sara Szymkuć
- Institute of Organic Chemistry, Polish Academy of Sciences Warsaw Poland
| |
Collapse
|
6
|
Cox PB, Gupta R. Contemporary Computational Applications and Tools in Drug Discovery. ACS Med Chem Lett 2022; 13:1016-1029. [DOI: 10.1021/acsmedchemlett.1c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Philip B. Cox
- Drug Discovery Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064-6217, United States
| | - Rishi Gupta
- Drug Discovery Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064-6217, United States
| |
Collapse
|
7
|
Beck H, Härter M, Haß B, Schmeck C, Baerfacker L. Small molecules and their impact in drug discovery: A perspective on the occasion of the 125th anniversary of the Bayer Chemical Research Laboratory. Drug Discov Today 2022; 27:1560-1574. [PMID: 35202802 DOI: 10.1016/j.drudis.2022.02.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
The year 2021 marks the 125th anniversary of the Bayer Chemical Research Laboratory in Wuppertal, Germany. A significant number of prominent small-molecule drugs, from aspirin to Xarelto, have emerged from this research site. In this review, we shed light on historic cornerstones of small-molecule drug research, discussing current and future trends in drug discovery as well as providing a personal outlook on the future of drug research with a focus on small molecules.
Collapse
Affiliation(s)
- Hartmut Beck
- Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany.
| | - Michael Härter
- Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Bastian Haß
- Digital & Commercial Innovation, Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Carsten Schmeck
- Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Lars Baerfacker
- Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| |
Collapse
|
8
|
Fahrenhorst-Jones T, Bernhardt PV, Savage GP, Williams CM. The (±)-6-Aza[1.0]triblattane Skeleton: Contraction beyond the Wilder-Culberson Ring System. Org Lett 2022; 24:903-906. [PMID: 35043631 DOI: 10.1021/acs.orglett.1c04240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthesis of the 6-aza[1.0]triblattane skeleton and the unexpected construction of the 7-azatetracyclo[4.2.1.02,5.03,7]nonane framework are reported, as inspired by the Wilder-Culberson 1-aza[1.1]triblattane ring system. The key steps to assess the 6-aza[1.0]triblattane include accessing the 1,6-cycloaddition product from reaction of chlorosulfonyl isocyanate with cyclohept-1,3,5-triene followed by intramolecular electrocyclization and aminium radical cyclization.
Collapse
Affiliation(s)
- Tyler Fahrenhorst-Jones
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - G Paul Savage
- Ian Wark Laboratory, CSIRO Manufacturing, Melbourne, Victoria 3168, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
9
|
Bettencourt CJ, Chow S, Moore PW, Read CDG, Jiao Y, Bakker JP, Zhao S, Bernhardt PV, Williams CM. Tandem Oxidation-Dehydrogenation of (Hetero)Arylated Primary Alcohols via Perruthenate Catalysis. Aust J Chem 2021. [DOI: 10.1071/ch21137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tandem oxidative-dehydrogenation of primary alcohols to give α,β-unsaturated aldehydes in one pot are rare transformations in organic synthesis, with only two methods currently available. Reported herein is a novel method using the bench-stable salt methyltriphenylphosphonium perruthenate (MTP3), and a new co-oxidant NEMO·PF6 (NEMO = N-ethyl-N-hydroxymorpholinium) which provides unsaturated aldehydes in low to moderate yields. The Ley-Griffith oxidation of (hetero)arylated primary alcohols with N-oxide co-oxidants NMO (NMO = N-methylmorpholine N-oxide)/NEMO, is expanded by addition of the N-oxide salt NEMO·PF6 to convert the intermediate saturated aldehyde into its unsaturated counterpart. The discovery, method development, reaction scope, and associated challenges of this method are highlighted. The conceptual value of late-stage dehydrogenation in natural product synthesis is demonstrated via the synthesis of a polyene scaffold related to auxarconjugatin B.
Collapse
|