1
|
Li L, Liu Z, Wu J. Genetic mapping of QTL for three root-related traits in wheat ( Triticum aestivum). BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2098817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Li Li
- Advanced Control & Modeling Laboratory, School of Computer Science & Technology, SouthWest University of Science & Technology, Mianyang, Sichuan, PR China
| | - Zhigui Liu
- Advanced Control & Modeling Laboratory, School of Computer Science & Technology, SouthWest University of Science & Technology, Mianyang, Sichuan, PR China
| | - Jun Wu
- Advanced Control & Modeling Laboratory, School of Information Engineering, SouthWest University of Science & Technology, Mianyang, Sichuan, PR China
- Advanced Control & Modeling Laboratory, School of Life Science & Engineering, SouthWest University of Science & Technology, Mianyang, Sichuan, PR China
| |
Collapse
|
2
|
Jin J, Liu D, Qi Y, Ma J, Zhen W. Major QTL for Seven Yield-Related Traits in Common Wheat (Triticum aestivum L.). Front Genet 2020; 11:1012. [PMID: 33005181 PMCID: PMC7485215 DOI: 10.3389/fgene.2020.01012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 08/10/2020] [Indexed: 11/13/2022] Open
Abstract
Flag leaves, plant height (PH), and spike-related traits are key determinants contributing to yield potential in wheat. In this study, we developed a recombinant inbred line (RIL) population with 94 lines derived from the cross between 'AS985472' and 'Sumai 3.' A genetic map spanned 3553.69 cM in length were constructed using 1978 DArT markers. Severn traits including flag leaf width (FLW), flag leaf length (FLL), PH, anthesis date (AD), spike length (SL), spikelet number spike (SNS), and spike density (SD) were evaluated against this RIL population under three different environments. Combined phenotypic data and genetic map, we identified quantitative trait loci (QTL) for each trait. A total of four major and stably expressed QTLs for FLW, PH, and SD were detected on chromosomes 2D and 4B. Of them, the major QTLs individually explained 10.10 - 30.68% of the phenotypic variation. QTLs with pleiotropic effects were identified on chromosomes 4A and 6D as well. Furthermore, the genetic relationships between seven yield-related traits were detected and discussed. A few genes related to leaf growth and development at the interval of a major locus for FLW on chromosome 2D were predicated. Overall, the present study provided useful information for understanding the genetic basis of yield-related traits and will be useful for marker-assisted selection in wheat breeding.
Collapse
Affiliation(s)
- Jingjing Jin
- College of Plant Protection, Hebei Agricultural University, Baoding, China.,State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
| | - Dan Liu
- Neijiang Academy of Agricultural Sciences, Neijiang, China.,School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yongzhi Qi
- College of Plant Protection, Hebei Agricultural University, Baoding, China.,State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
| | - Jun Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wenchao Zhen
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
3
|
Pariyar SR, Erginbas-Orakci G, Dadshani S, Chijioke OB, Léon J, Dababat AA, Grundler FMW. Dissecting the Genetic Complexity of Fusarium Crown Rot Resistance in Wheat. Sci Rep 2020; 10:3200. [PMID: 32081866 PMCID: PMC7035263 DOI: 10.1038/s41598-020-60190-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022] Open
Abstract
Fusarium crown rot (FCR) is one of the most important diseases of wheat (Triticum aestivum L.). FCR is mainly caused by the fungal pathogens Fusarium culmorum and F. pseudograminearum. In order to identify new sources of resistance to FCR and to dissect the complexity of FCR resistance, a panel of 161 wheat accessions was phenotyped under growth room (GR) and greenhouse conditions (GH). Analysis of variance showed significant differences in crown rot development among wheat accessions and high heritability of genotype-environment interactions for GR (0.96) and GH (0.91). Mixed linear model analysis revealed seven novel quantitative trait loci (QTLs) linked to F. culmorum on chromosomes 2AL, 3AS, 4BS, 5BS, 5DS, 5DL and 6DS for GR and eight QTLs on chromosomes on 3AS, 3BS, 3DL, 4BS (2), 5BS, 6BS and 6BL for GH. Total phenotypic variances (R²) explained by the QTLs linked to GR and GH were 48% and 59%, respectively. In addition, five favorable epistasis interactions among the QTLs were detected for both GR and GH with and without main effects. Epistatic interaction contributed additional variation up to 21% under GR and 7% under GH indicating strong effects of environment on the expression of QTLs. Our results revealed FCR resistance responses in wheat to be complex and controlled by multiple QTLs.
Collapse
Affiliation(s)
- Shree R Pariyar
- Forschungszentrum Jülich GmbH, Institut für Bio- und Geowissenschaften (IBG)-2, Pflanzenwissenschaften, D-52425, Jülich, Germany.,Institute of Crop Science and Resource Conservation (INRES), Molecular Phytomedicine, Karlrobert- Kreiten Strasse 13, D-53115, Bonn, Germany
| | - Gul Erginbas-Orakci
- International Maize and Wheat Improvement Centre (CIMMYT), P.K. 39 06511, Emek, Ankara, Turkey
| | - Said Dadshani
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, Katzenburgweg 5, D-53115, Bonn, Germany
| | - Oyiga Benedict Chijioke
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, Katzenburgweg 5, D-53115, Bonn, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES), Plant Breeding, Katzenburgweg 5, D-53115, Bonn, Germany
| | - Abdelfattah A Dababat
- International Maize and Wheat Improvement Centre (CIMMYT), P.K. 39 06511, Emek, Ankara, Turkey
| | - Florian M W Grundler
- Institute of Crop Science and Resource Conservation (INRES), Molecular Phytomedicine, Karlrobert- Kreiten Strasse 13, D-53115, Bonn, Germany.
| |
Collapse
|
4
|
Singh L, Anderson JA, Chen J, Gill BS, Tiwari VK, Rawat N. Development and Validation of a Perfect KASP Marker for Fusarium Head Blight Resistance Gene Fhb1 in Wheat. THE PLANT PATHOLOGY JOURNAL 2019; 35:200-207. [PMID: 31244566 PMCID: PMC6586189 DOI: 10.5423/ppj.oa.01.2019.0018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/16/2019] [Accepted: 03/31/2019] [Indexed: 05/25/2023]
Abstract
Fusarium head blight (FHB) is a devastating wheat disease with a significant economic impact. Fhb1 is the most important large effect and stable QTL for FHB resistance. A pore-forming toxin-like (PFT) gene was recently identified as an underlying gene for Fhb1 resistance. In this study, we developed and validated a PFT-based Kompetitive allele specific PCR (KASP) marker for Fhb1. The KASP marker, PFT_KASP, was used to screen 298 diverse wheat breeding lines and cultivars. The KASP clustering results were compared with gel-based gene specific markers and the widely used linked STS marker, UMN10. Eight disagreements were found between PFT_KASP and UMN10 assays among the tested lines. Based on the genotyping and sequencing of genes in the Fhb1 region, these genotypes were found to be common with a previously characterized susceptible haplotype. Therefore, our results indicate that PFT_KASP is a perfect diagnostic marker for Fhb1 and would be a valuable tool for introgression and pyramiding of FHB resistance in wheat cultivars.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742,
USA
| | - James A Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108,
USA
| | - Jianli Chen
- Department of Plant, Soil, and Entomological Sciences, University of Idaho, Aberdeen, ID 83210,
USA
| | - Bikram S Gill
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, Kansas, KS 66506,
USA
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742,
USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742,
USA
| |
Collapse
|
5
|
Schweiger W, Steiner B, Vautrin S, Nussbaumer T, Siegwart G, Zamini M, Jungreithmeier F, Gratl V, Lemmens M, Mayer KFX, Bérgès H, Adam G, Buerstmayr H. Suppressed recombination and unique candidate genes in the divergent haplotype encoding Fhb1, a major Fusarium head blight resistance locus in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1607-23. [PMID: 27174222 PMCID: PMC4943984 DOI: 10.1007/s00122-016-2727-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/03/2016] [Indexed: 05/09/2023]
Abstract
Fine mapping and sequencing revealed 28 genes in the non-recombining haplotype containing Fhb1 . Of these, only a GDSL lipase gene shows a pathogen-dependent expression pattern. Fhb1 is a prominent Fusarium head blight resistance locus of wheat, which has been successfully introgressed in adapted breeding material, where it confers a significant increase in overall resistance to the causal pathogen Fusarium graminearum and the fungal virulence factor and mycotoxin deoxynivalenol. The Fhb1 region has been resolved for the susceptible wheat reference genotype Chinese Spring, yet the causal gene itself has not been identified in resistant cultivars. Here, we report the establishment of a 1 Mb contig embracing Fhb1 in the donor line CM-82036. Sequencing revealed that the region of Fhb1 deviates from the Chinese Spring reference in DNA size and gene content, which explains the repressed recombination at the locus in the performed fine mapping. Differences in genes expression between near-isogenic lines segregating for Fhb1 challenged with F. graminearum or treated with mock were investigated in a time-course experiment by RNA sequencing. Several candidate genes were identified, including a pathogen-responsive GDSL lipase absent in susceptible lines. The sequence of the Fhb1 region, the resulting list of candidate genes, and near-diagnostic KASP markers for Fhb1 constitute a valuable resource for breeding and further studies aiming to identify the gene(s) responsible for F. graminearum and deoxynivalenol resistance.
Collapse
Affiliation(s)
- W Schweiger
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria.
| | - B Steiner
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - S Vautrin
- French Plant Genomic Resource Centre, INRA-CNRGV, Chemin de Borde Rouge, CS 52627, 31326, Castanet Tolosan, France
| | - T Nussbaumer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria
| | - G Siegwart
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 22, 3430, Tulln, Austria
| | - M Zamini
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - F Jungreithmeier
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - V Gratl
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - M Lemmens
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - K F X Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - H Bérgès
- French Plant Genomic Resource Centre, INRA-CNRGV, Chemin de Borde Rouge, CS 52627, 31326, Castanet Tolosan, France
| | - G Adam
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 22, 3430, Tulln, Austria
| | - H Buerstmayr
- Institute for Biotechnology in Plant Production (IFA-Tulln), BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| |
Collapse
|
6
|
Zheng Z, Kilian A, Yan G, Liu C. QTL conferring fusarium crown rot resistance in the elite bread wheat variety EGA Wylie. PLoS One 2014; 9:e96011. [PMID: 24776887 PMCID: PMC4002477 DOI: 10.1371/journal.pone.0096011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/01/2014] [Indexed: 11/19/2022] Open
Abstract
Fusarium crown rot (FCR) is one of the most damaging cereal diseases in semi-arid regions worldwide. The genetics of FCR resistance in the bread wheat (Triticum eastivum L.) variety EGA Wylie, the most resistant commercial variety available, was studied by QTL mapping. Three populations of recombinant inbred lines were developed with this elite variety as the resistant parent. Four QTL conferring FCR resistance were detected and resistance alleles of all of them were derived from the resistant parent EGA Wylie. One of these loci was located on the short arm of chromosome 5D (designated as Qcrs.cpi-5D). This QTL explains up to 31.1% of the phenotypic variance with an LOD value of 9.6. The second locus was located on the long arm of chromosome 2D (designated as Qcrs.cpi-2D) and explained up to 20.2% of the phenotypic variance with an LOD value of 4.5. Significant effects of both Qcrs.cpi-5D and Qcrs.cpi-2D were detected in each of the three populations assessed. Another two QTL (designated as Qcrs.cpi-4B.1 and Qcrs.cpi-4B.2, respectively) were located on the short arm of chromosome 4B. These two QTL explained up to 16.9% and 18.8% of phenotypic variance, respectively. However, significant effects of Qcrs.cpi-4B.1 and Qcrs.cpi-4B.2 were not detected when the effects of plant height was accounted for by covariance analysis. The elite characteristics of this commercial variety should facilitate the incorporation of the resistance loci it contains into breeding programs.
Collapse
Affiliation(s)
- Zhi Zheng
- Commenwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, St. Lucia, Queensland, Australia
- School of Plant Biology, Faculty of Science and UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
- National Foxtail Millet Improvement Centre, Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd, Yarralumla, Canberra, Australia
| | - Guijun Yan
- School of Plant Biology, Faculty of Science and UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| | - Chunji Liu
- Commenwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, St. Lucia, Queensland, Australia
- School of Plant Biology, Faculty of Science and UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| |
Collapse
|
7
|
Li HB, Xie GQ, Ma J, Liu GR, Wen SM, Ban T, Chakraborty S, Liu CJ. Genetic relationships between resistances to Fusarium head blight and crown rot in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:941-50. [PMID: 20535443 DOI: 10.1007/s00122-010-1363-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 05/12/2010] [Indexed: 05/24/2023]
Abstract
Fusarium head blight (FHB) and crown rot (CR) are two wheat diseases caused by the same Fusarium pathogens. Progress towards CR resistance could benefit from FHB-resistant germplasm if the same genes are involved in resistance to these two different diseases. Two independent studies were conducted to investigate the relationship between host resistances to these two diseases. In the first study 32 genotypes were assessed and no significant correlation between their reactions to FHB and CR was detected. The second study was based on a QTL analysis of a doubled haploid population derived from a variety with resistance to both diseases. Results from this study showed that loci conferring resistance to FHB and CR are located on different chromosomes. Together, these results suggest that, despite a common aetiology, different host genes are involved in the resistance against FHB and CR in wheat. Thus, although it is possible that genes affecting both diseases may exist in other germplasm or under different conditions, separate screening seems to be needed in identifying sources of CR resistance.
Collapse
Affiliation(s)
- Hao Bing Li
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, 4067, Australia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ma J, Li HB, Zhang CY, Yang XM, Liu YX, Yan GJ, Liu CJ. Identification and validation of a major QTL conferring crown rot resistance in hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1119-1128. [PMID: 20035314 DOI: 10.1007/s00122-009-1239-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 12/08/2009] [Indexed: 05/28/2023]
Abstract
Crown rot (CR), caused by various Fusarium species, is a chronic wheat disease in Australia. As part of our objective of improving the efficiency of breeding CR resistant wheat varieties, we have been searching for novel sources of resistance. This paper reports on the genetic control of one of these newly identified resistant genotypes, 'CSCR6'. A population derived from a cross between CSCR6 and an Australian variety 'Lang' was analyzed using two Fusarium isolates belonging to two different species, one Fusarium pseudograminearum and the other Fusarium graminearum. The two isolates detected QTL with the same chromosomal locations and comparable magnitudes, indicating that CR resistance is not species-specific. The resistant allele of one of the QTL was derived from 'CSCR6'. This QTL, designated as Qcrs.cpi-3B, was located on the long arm of chromosome 3B and explains up to 48.8% of the phenotypic variance based on interval mapping analysis. Another QTL, with resistant allele from the variety 'Lang', was located on chromosome 4B. This QTL explained up to 22.8% of the phenotypic variance. A strong interaction between Qcsr.cpi-3B and Qcsr.cpi-4B was detected, reducing the maximum effect of Qcrs.cpi-3B to 43.1%. The effects of Qcrs.cpi-3B were further validated in four additional populations and the presence of this single QTL reduced CR severity by up to 42.1%. The fact that significant effects of Qcrs.cpi-3B were detected across all trials with different genetic backgrounds and with the use of isolates belonging to two different Fusarium species make it an ideal target for breeding programs as well as for further characterization of the gene(s) involved in its resistance.
Collapse
Affiliation(s)
- J Ma
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | | | | | | | | | | | | |
Collapse
|
9
|
Buerstmayr H, Ban T, Anderson JA. QTL mapping and marker-assisted selection for Fusariumhead blight resistance in wheat: a review. PLANT BREEDING 2009. [PMID: 0 DOI: 10.1111/j.1439-0523.2008.01550.x] [Citation(s) in RCA: 336] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
|