1
|
Wang Q, Flesch TK, Bai M, Zhang M, Chen D. Seasonal ammonia emissions from an intensive beef cattle feedlot in Victoria Australia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119898. [PMID: 38160543 DOI: 10.1016/j.jenvman.2023.119898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Ammonia (NH3) emitted from concentrated animal feeding operations can cause environmental and health problems, and indirectly contribute to greenhouse gas emissions. Cattle feedlots are known to be large sources of NH3, but few studies have documented seasonal emissions from Australian feedlots. We conducted two field campaigns to measure NH3 emissions from an intensive beef cattle feedlot in southeast Australia, and these results were combined with previous measurements at the same feedlot to document seasonal variations in emissions and to derive annual feedlot emission factors (EFs). Emission rates were calculated with an inverse dispersion modelling (IDM) technique, based on NH3 concentrations measured at the feedlot with open-path lasers (OPLs). The average area emission rates in spring, summer, autumn and winter were 90.5, 167.4, 96.2 and 86.8 μg NH3 m-2 s-1 from the cattle pens, and 22.5, 18.1, 7.7 and 20.7 μg NH3 m-2 s-1 from the manure stockpile area, respectively. The total per-animal EFs ranged from 126.0 (autumn) to 190.2 g NH3 animal-1 d-1 (summer), representing a loss of 47.5-64.6% of the fed N. Seasonal variations in emissions were related to air temperature. Slight changes in crude protein content of the cattle diet may also have impacted seasonal variability. Taking seasonal variations into consideration, the average feedlot EF was 160.4 g NH3 animal-1 d-1, with 90% of the emissions coming from the cattle pens. Extrapolating the EF to all feedlot cattle in the country, the direct NH3 emissions from Australian feedlots amount to 65.2 Gg NH3 annually, or 3.7% of the national total. Our study benchmarks seasonal and annual EFs and N losses for Australian commercial feedlots, and provides a baseline for extrapolating the impacts of mitigation efforts.
Collapse
Affiliation(s)
- Qingmei Wang
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, VIC 3010, Australia.
| | - Thomas K Flesch
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mei Bai
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, VIC 3010, Australia
| | - Mengxuan Zhang
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, VIC 3010, Australia; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Deli Chen
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
2
|
Herman DI, Weerasekara C, Hutcherson LC, Giorgetta FR, Cossel KC, Waxman EM, Colacion GM, Newbury NR, Welch SM, DePaola BD, Coddington I, Santos EA, Washburn BR. Precise multispecies agricultural gas flux determined using broadband open-path dual-comb spectroscopy. SCIENCE ADVANCES 2021; 7:eabe9765. [PMID: 33789900 PMCID: PMC8011971 DOI: 10.1126/sciadv.abe9765] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Advances in spectroscopy have the potential to improve our understanding of agricultural processes and associated trace gas emissions. We implement field-deployed, open-path dual-comb spectroscopy (DCS) for precise multispecies emissions estimation from livestock. With broad atmospheric dual-comb spectra, we interrogate upwind and downwind paths from pens containing approximately 300 head of cattle, providing time-resolved concentration enhancements and fluxes of CH4, NH3, CO2, and H2O. The methane fluxes determined from DCS data and fluxes obtained with a colocated closed-path cavity ring-down spectroscopy gas analyzer agree to within 6%. The NH3 concentration retrievals have sensitivity of 10 parts per billion and yield corresponding NH3 fluxes with a statistical precision of 8% and low systematic uncertainty. Open-path DCS offers accurate multispecies agricultural gas flux quantification without external calibration and is easily extended to larger agricultural systems where point-sampling-based approaches are insufficient, presenting opportunities for field-scale biogeochemical studies and ecological monitoring.
Collapse
Affiliation(s)
- Daniel I Herman
- Applied Physics Division, National Institute of Standards and Technology, Boulder, CO 80305, USA.
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | | | - Fabrizio R Giorgetta
- Applied Physics Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kevin C Cossel
- Applied Physics Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Eleanor M Waxman
- Applied Physics Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Gabriel M Colacion
- Applied Physics Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Nathan R Newbury
- Applied Physics Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Stephen M Welch
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Brett D DePaola
- Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Ian Coddington
- Applied Physics Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Eduardo A Santos
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Brian R Washburn
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| |
Collapse
|
3
|
Redding MR, Lewis R, Shorten PR. Simultaneous measurements of ammonia volatilisation and deposition at a beef feedlot. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The nitrogen (N) excreted at intensive livestock operations is vulnerable to volatilisation, and, subsequently, may form a source of indirect nitrous oxide (N2O) emissions. The present study simultaneously investigated volatilisation and deposition of N at a beef feedlot, semi-continuously over a 129-day period. These data were examined relative to pen manure parameters, management statistics and emission-inventory calculation protocols. Volatilisation measurements were conducted using a single, heated air-sampling inlet, centrally located in a feedlot pen area, with real time concentration analysis via cavity ring-down spectroscopy and backward Lagrangian stochastic (bLS) modelling. Net deposited mineral-N was determined via two transects of soil-deposition traps, with samples collected and re-deployed every 2 weeks. Total volatilised ammonia amounted to 210 tonnes of NH3-N (127 g/animal.day), suggesting that the inventory volatilisation factor probably underestimated volatilisation in this case (inventory, 30% of excreted N; 65 g N volatilised/animal.day; a value of ~60% of excreted N is indicated). Temperature contrast between the manure and air was observed to play a significant role in the rate of emission (R2 = 0.38; 0.46 Kendall’s tau; P < 0.05). Net deposition within 600 m of the pen boundary represented only 1.7% to 3% of volatilised NH4+-N, between 3.6 and 6.7 tonnes N. Beyond this distance, deposition approached background rates (~0.4 kg N/ha.year).
Collapse
|
4
|
Bai M, Sun J, Denmead OT, Chen D. Comparing emissions from a cattle pen as measured by two micrometeorological techniques. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:584-588. [PMID: 28710976 DOI: 10.1016/j.envpol.2017.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Accurate measurement of ammonia (NH3) emissions from livestock pens is challenging. Two micrometeorological techniques, the integrated horizontal flux (IHF) and the backward Lagrangian stochastic (bLS) dispersion techniques were used to measure NH3 emissions from an isolated cattle pen (20 × 20 m) in Victoria, Australia. The bLS technique is simple and insensitive to the presence of animals, but typically gives discontinuous measurements due to the need for target wind directions and wind conditions above accepted thresholds. In contrast, the IHF technique as implemented here gives near-continuous measurements with no restriction on wind directions. However, IHF needs more complex field measurements, and there are ambiguities when applied to an animal pen due to the presence of animals. Over the 29 days of our experiment, we collected 124 coincidental bLS and IHF emission measurements from the pen (30-min each). We found no statistical difference in the bLS and IHF calculations when the IHF turbulent flux correction factor (TFcor) was set to 15%. Our results confirm that the IHF and bLS techniques, using independent sensors and having very different equipment layouts, gives nearly equivalent results. This suggests the choice of the two methods in future experiments can focus on their different strengths and weaknesses.
Collapse
Affiliation(s)
- Mei Bai
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3121, Australia.
| | - Jianlei Sun
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3121, Australia
| | - Owen T Denmead
- CSIRO Land and Water, GPO Box 1666, Canberra, ACT 2601, Australia
| | - Deli Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3121, Australia
| |
Collapse
|
5
|
Hegarty RS, Miller J, Oelbrandt N, Li L, Luijben JPM, Robinson DL, Nolan JV, Perdok HB. Feed intake, growth, and body and carcass attributes of feedlot steers supplemented with two levels of calcium nitrate or urea. J Anim Sci 2017; 94:5372-5381. [PMID: 28046156 DOI: 10.2527/jas.2015-0266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nitrate supplementation has been shown to be effective in reducing enteric methane emission from ruminants, but there have been few large-scale studies assessing the effects of level of nitrate supplementation on feed intake, animal growth, or carcass and meat quality attributes of beef cattle. A feedlot study was conducted to assess the effects of supplementing 0.25 or 0.45% NPN in dietary DM as either urea (Ur) or calcium nitrate (CaN) on DMI, ADG, G:F, and carcass attributes of feedlot steers ( = 383). The levels of NPN inclusion were selected as those at which nitrate has previously achieved measurable mitigation of enteric methane. The higher level of NPN inclusion reduced ADG as did replacement of Ur with CaN ( < 0.01). A combined analysis of DMI for 139 steers with individual animal intake data and pen-average intakes for 244 bunk-fed steers showed a significant interaction between NPN source and level ( = 0.02) with steers on the high-CaN diet eating less than those on the other 3 diets ( < 0.001). Neither level nor NPN source significantly affected cattle G:F. There was a tendency ( = 0.05) for nitrate-supplemented cattle to have a slower rate of eating (g DMI/min) than Ur-supplemented cattle. When adjusted for BW, neither NPN source nor inclusion level affected cross-sectional area of the LM or fatness measured on the live animal. Similarly, there were no significant main effects of treatments on dressing percentage or fat depth or muscling attributes of the carcass after adjustment for HCW ( > 0.05). Analysis of composited meat samples showed no detectable nitrates or nitrosamines in raw or cooked meat, and the level of nitrate detected in meat from nitrate-supplemented cattle was no higher than for Ur-fed cattle ( > 0.05). We conclude that increasing NPN inclusion from 0.25 to 0.45% NPN in dietary DM and replacing Ur with CaN decreased ADG in feedlot cattle without improving G:F.
Collapse
|
6
|
Patra AK. Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants. Front Vet Sci 2016; 3:39. [PMID: 27243027 PMCID: PMC4873495 DOI: 10.3389/fvets.2016.00039] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/02/2016] [Indexed: 11/13/2022] Open
Abstract
Methane (CH4) emission, which is mainly produced during normal fermentation of feeds by the rumen microorganisms, represents a major contributor to the greenhouse gas (GHG) emissions. Several enteric CH4 mitigation technologies have been explored recently. A number of new techniques have also been developed and existing techniques have been improved in order to evaluate CH4 mitigation technologies and prepare an inventory of GHG emissions precisely. The aim of this review is to discuss different CH4 measuring and mitigation technologies, which have been recently developed. Respiration chamber technique is still considered as a gold standard technique due to its greater precision and reproducibility in CH4 measurements. With the adoption of recent recommendations for improving the technique, the SF6 method can be used with a high level of precision similar to the chamber technique. Short-term measurement techniques of CH4 measurements generally invite considerable within- and between-animal variations. Among the short-term measuring techniques, Greenfeed and methane hood systems are likely more suitable for evaluation of CH4 mitigation studies, if measurements could be obtained at different times of the day relative to the diurnal cycle of the CH4 production. Carbon dioxide and CH4 ratio, sniffer, and other short-term breath analysis techniques are more suitable for on farm screening of large number of animals to generate the data of low CH4-producing animals for genetic selection purposes. Different indirect measuring techniques are also investigated in recent years. Several new dietary CH4 mitigation technologies have been explored, but only a few of them are practical and cost-effective. Future research should be directed toward both the medium- and long-term mitigation strategies, which could be utilized on farms to accomplish substantial reductions of CH4 emissions and to profitably reduce carbon footprint of livestock production systems. This review presents recent developments and critical analysis on different measurements and dietary mitigation of enteric CH4 emissions technologies.
Collapse
Affiliation(s)
- Amlan K. Patra
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| |
Collapse
|
7
|
Bai M, Griffith DWT, Phillips FA, Naylor T, Muir SK, McGinn SM, Chen D. Correlations of methane and carbon dioxide concentrations from feedlot cattle as a predictor of methane emissions. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an14550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Accurate measurements of methane (CH4) emissions from feedlot cattle are required for verifying greenhouse gas (GHG) accounting and mitigation strategies. We investigate a new method for estimating CH4 emissions by examining the correlation between CH4 and carbon dioxide (CO2) concentrations from two beef cattle feedlots in Australia representing southern temperate and northern subtropical locations. Concentrations of CH4 and CO2 were measured at the two feedlots during summer and winter, using open-path Fourier transform infrared spectroscopy. There was a strong correlation for the concentrations above background of CH4 and CO2 with concentration ratios of 0.008 to 0.044 ppm/ppm (R2 >0.90). The CH4/CO2 concentration ratio varied with animal diet and ambient temperature. The CH4/CO2 concentration ratio provides an alternative method to estimate CH4 emissions from feedlots when combined with CO2 production derived from metabolisable energy or heat production.
Collapse
|
8
|
Bai M, Sun J, Dassanayake KB, Benvenutti MA, Hill J, Denmead OT, Flesch T, Chen D. Non-interference measurement of CH4, N2O and NH3 emissions from cattle. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an14992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A technique combining open-path Fourier transform infrared spectroscopy with an inverse-dispersion model was used to quantify methane (CH4), nitrous oxide (N2O) and ammonia (NH3) emissions from an isolated cattle pen in south-eastern Australia. Twenty-eight Angus steers (1-year old, initial average liveweight 404 kg) were fed a 60% grain diet and kept in a pen (20 × 20 m) for 41 days. Gas concentrations were measured downwind of the pen using an open-path Fourier transform infrared spectroscopy with a path length of 100 m, having a detection sensitivity of 2, 0.3 and 0.4 ppb for CH4, N2O and NH3, respectively. Daily emission rates were 232, 14 and 192 g/cattle.day for CH4, N2O and NH3, respectively. The measured CH4 emissions were in agreement with predictions based on Australian National Inventory recommendations, however, measured N2O and NH3 emissions were much higher than the predicted values. Extrapolation of our measurements would mean that CH4 and N2O emissions from beef feedlot cattle contribute 3.1% and 5.9% of the Australian agricultural CH4 and N2O emissions, respectively.
Collapse
|
9
|
Pratt C, Redding M, Hill J, Jensen PD. Does manure management affect the latent greenhouse gas emitting potential of livestock manures? WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 46:568-576. [PMID: 26320816 DOI: 10.1016/j.wasman.2015.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/31/2015] [Accepted: 08/15/2015] [Indexed: 06/04/2023]
Abstract
With livestock manures being increasingly sought as alternatives to costly synthetic fertilisers, it is imperative that we understand and manage their associated greenhouse gas (GHG) emissions. Here we provide the first dedicated assessment into how the GHG emitting potential of various manures responds to the different stages of the manure management continuum (e.g., from feed pen surface vs stockpiled). The research is important from the perspective of manure application to agricultural soils. Manures studied included: manure from beef feedpen surfaces and stockpiles; poultry broiler litter (8-week batch); fresh and composted egg layer litter; and fresh and composted piggery litter. Gases assessed were methane (CH4) and nitrous oxide (N2O), the two principal agricultural GHGs. We employed proven protocols to determine the manures' ultimate CH4 producing potential. We also devised a novel incubation experiment to elucidate their N2O emitting potential; a measure for which no established methods exist. We found lower CH4 potentials in manures from later stages in their management sequence compared with earlier stages, but only by a factor of 0.65×. Moreover, for the beef manures this decrease was not significant (P<0.05). Nitrous oxide emission potential was significantly positively (P<0.05) correlated with C/N ratios yet showed no obvious relationship with manure management stage. Indeed, N2O emissions from the composted egg manure were considerably (13×) and significantly (P<0.05) higher than that of the fresh egg manure. Our study demonstrates that manures from all stages of the manure management continuum potentially entail significant GHG risk when applied to arable landscapes. Efforts to harness manure resources need to account for this.
Collapse
Affiliation(s)
- Chris Pratt
- Department of Agriculture and Fisheries, 203 Tor St, Toowoomba, Qld 4350, Australia(1).
| | - Matthew Redding
- Department of Agriculture and Fisheries, 203 Tor St, Toowoomba, Qld 4350, Australia(1)
| | - Jaye Hill
- Department of Agriculture and Fisheries, 203 Tor St, Toowoomba, Qld 4350, Australia(1)
| | - Paul D Jensen
- Advanced Water Management Centre, University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
10
|
Chen D, Sun J, Bai M, Dassanayake KB, Denmead OT, Hill J. A new cost-effective method to mitigate ammonia loss from intensive cattle feedlots: application of lignite. Sci Rep 2015; 5:16689. [PMID: 26584639 PMCID: PMC4653648 DOI: 10.1038/srep16689] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/19/2015] [Indexed: 11/09/2022] Open
Abstract
In open beef feedlot systems, more than 50% of dietary nitrogen (N) is lost as ammonia (NH3). Here we report an effective and economically-viable method to mitigate NH3 emissions by the application of lignite. We constructed two cattle pens (20 × 20 m) to determine the effectiveness of lignite in reducing NH3 emissions. Twenty-four steers were fed identical commercial rations in each pen. The treatment pen surface was dressed with 4.5 kg m−2 lignite dry mass while no lignite was applied in the control pen. We measured volatilised NH3 concentrations using Ecotech EC9842 NH3 analysers in conjunction with a mass balance method to calculate NH3 fluxes. Application of lignite decreased NH3 loss from the pen by approximately 66%. The cumulative NH3 losses were 6.26 and 2.13 kg N head−1 in the control and lignite treatment, respectively. In addition to the environmental benefits of reduced NH3 losses, the value of retained N nutrient in the lignite treated manure is more than $37 AUD head−1 yr−1, based on the current fertiliser cost and estimated cost of lignite application. We show that lignite application is a cost-effective method to reduce NH3 loss from cattle feedlots.
Collapse
Affiliation(s)
- Deli Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Jianlei Sun
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Mei Bai
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Kithsiri B Dassanayake
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Owen T Denmead
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Julian Hill
- Ternes Agricultural Consulting Pty Ltd, Upwey, Victoria 3158, Australia
| |
Collapse
|
11
|
Bai M, Flesch TK, McGinn SM, Chen D. A Snapshot of Greenhouse Gas Emissions from a Cattle Feedlot. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:1974-1978. [PMID: 26641350 DOI: 10.2134/jeq2015.06.0278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Beef cattle feedlots emit large amounts of the greenhouse gases (GHG) methane (CH) and nitrous oxide (NO), as well as ammonia (NH), which contributes to NO emission when NH is deposited to land. However, there is a lack of simultaneous, in situ, and nondisturbed measurements of the major GHG gas components from beef cattle feedlots, or measurements from different feedlot sources. A short-term campaign at a beef cattle feedlot in Victoria, Australia, quantified CH, NO, and NH emissions from the feedlot pens, manure stockpiles, and surface run-off pond. Open-path Fourier transform infrared (OP-FTIR) spectrometers and open-path lasers (OP-Laser) were used with an inverse-dispersion technique to estimate emissions. Daily average emissions of CH, NO, and NH were 132 (± 2.3 SE), 0, and 117 (± 4.5 SE) g animal d from the pens and 22 (± 0.7 SE), 2 (± 0.2 SE), and 9 (± 0.6 SE) g animal d from the manure stockpiles. Emissions of CH and NH from the run-off pond were less than 0.5 g animal d. Extrapolating these results to the feedlot population of cattle across Australia would mean that feedlots contribute approximately 2% of the agricultural GHG emissions and 2.7% of livestock sector emissions, lower than a previous estimate of 3.5%.
Collapse
|
12
|
Redding MR, Devereux J, Phillips F, Lewis R, Naylor T, Kearton T, Hill CJ, Weidemann S. Field measurement of beef pen manure methane and nitrous oxide reveals a surprise for inventory calculations. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:720-728. [PMID: 26024253 DOI: 10.2134/jeq2014.04.0159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Few data exist on direct greenhouse gas emissions from pen manure at beef feedlots. However, emission inventories attempt to account for these emissions. This study used a large chamber to isolate NO and CH emissions from pen manure at two Australian commercial beef feedlots (stocking densities, 13-27 m head) and related these emissions to a range of potential emission control factors, including masses and concentrations of volatile solids, NO, total N, NH, and organic C (OC), and additional factors such as total manure mass, cattle numbers, manure pack depth and density, temperature, and moisture content. Mean measured pen NO emissions were 0.428 kg ha d (95% confidence interval [CI], 0.252-0.691) and 0.00405 kg ha d (95% CI, 0.00114-0.0110) for the northern and southern feedlots, respectively. Mean measured CH emission was 0.236 kg ha d (95% CI, 0.163-0.332) for the northern feedlot and 3.93 kg ha d (95% CI, 2.58-5.81) for the southern feedlot. Nitrous oxide emission increased with density, pH, temperature, and manure mass, whereas negative relationships were evident with moisture and OC. Strong relationships were not evident between NO emission and masses or concentrations of NO or total N in the manure. This is significant because many standard inventory calculation protocols predict NO emissions using the mass of N excreted by the animal.
Collapse
|
13
|
Pratt C, Redding M, Hill J, Shilton A, Chung M, Guieysse B. Good science for improving policy: greenhouse gas emissions from agricultural manures. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an13504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Australia’s and New Zealand’s major agricultural manure management emission sources are reported to be, in descending order of magnitude: (1) methane (CH4) from dairy farms in both countries; (2) CH4 from pig farms in Australia; and nitrous oxide (N2O) from (3) beef feedlots and (4) poultry sheds in Australia. We used literature to critically review these inventory estimates. Alarmingly for dairy farm CH4 (1), our review revealed assumptions and omissions that when addressed could dramatically increase this emission estimate. The estimate of CH4 from Australian pig farms (2) appears to be accurate, according to industry data and field measurements. The N2O emission estimates for beef feedlots (3) and poultry sheds (4) are based on northern hemisphere default factors whose appropriateness for Australia is questionable and unverified. Therefore, most of Australasia’s key livestock manure management greenhouse gas (GHG) emission profiles are either questionable or are unsubstantiated by region-specific research. Encouragingly, GHG from dairy shed manure are relatively easy to mitigate because they are a point source which can be managed by several ‘close-to-market’ abatement solutions. Reducing these manure emissions therefore constitutes an opportunity for meaningful action sooner compared with the more difficult-to-implement and long-term strategies that currently dominate agricultural GHG mitigation research. At an international level, our review highlights the critical need to carefully reassess GHG emission profiles, particularly if such assessments have not been made since the compilation of original inventories. Failure to act in this regard presents the very real risk of missing the ‘low hanging fruit’ in the rush towards a meaningful response to climate change.
Collapse
|
14
|
Todd RW, Altman MB, Cole NA, Waldrip HM. Methane Emissions from a Beef Cattle Feedyard during Winter and Summer on the Southern High Plains of Texas. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:1125-1130. [PMID: 25603061 DOI: 10.2134/jeq2013.09.0386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Methane (CH) emissions from enteric fermentation by livestock account for about 2.1% of U.S. greenhouse gas emissions, with beef and dairy cattle being the most significant sources. A better understanding of CH emissions from beef cattle feedyards can help build more accurate emission inventories, improve predictive models, and meet potential regulatory requirements. Our objective was to quantify CH emissions during winter and summer at a typical beef cattle feedyard on the southern High Plains in Texas. Methane emissions were quantified over 32 d in winter and 44 d in summer using open-path lasers and inverse dispersion analysis. Methane per capita emission rate (PCER) ranged from 71 to 118 g animal d in winter and from 70 to 130 g animal d in summer. Mean CH PCER was similar in January, February, and May (average, 85.0 ± 0.95 g animal d) and increased to 93.4 g animal d during the June-July period. This increase coincided with increased dietary fiber. Methane loss ranged from 9.2 to 11.4 g CH kg dry matter intake, with lower values during winter. Gross energy intake (GEI) ranged from 135.2 to 164.5 MJ animal d, and CH energy loss ranged from 4.5 to 4.9 MJ animal d. Fraction of GEI lost as CH (Y) averaged 2.8% in winter, 3.2% in summer, and 3.0% overall. These values confirm the Y value currently recommended by the Intergovernmental Panel on Climate Change for Tier 2 estimates of enteric CH from feedlot fed cattle.
Collapse
|
15
|
|
16
|
Borhan MS, Gautam DP, Engel C, Anderson VL, Rahman S. Effects of pen bedding and feeding high crude protein diets on manure composition and greenhouse gas emissions from a feedlot pen surface. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2013; 63:1457-1468. [PMID: 24558708 DOI: 10.1080/10962247.2013.831384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Greenhouse gas (GHG) emissions from concentrated animal feeding operations vary by stage of production and management practices. The objective of this research was to study the effect of two dietary crude protein levels (12 and 16%) fed to beef steers in pens with or without corn stover bedding. Manure characteristics and GHG emissions were measured from feedlot pen surfaces. Sixteen equal-sized feedlot pens (19 x 23 m) were used. Eight were bedded approximately twice a week with corn stover and the remaining eight feedlot pens were not bedded. Angus steers (n = 138) were blocked by live weights (lighter and heavier) with 7 to 10 animals per pen. The trial was a 2 x 2 factorial design with factors of two protein levels and two bedding types (bedding vs. non bedding), with four replicates. The study was conducted from June through September and consisted of four -28-day periods. Manure from each pen was scrapped once every 28 days and composite manure samples from each pen were collected. Air samples from pen surfaces were sampled in Tedlar bags using a Vac-U-Chamber coupled with a portable wind tunnel and analyzed with a greenhouse gas gas chromatograph within 24 hr of sampling. The manure samples were analyzed for crude protein (CP), total nitrogen (TN), ammonia (NH3), total volatile fatty acid (TVFA), total carbon (TC), total phosphorus (TP), and potassium (K). The air samples were analyzed for methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) concentrations. The concentration of TN was significantly higher (p < 0.05) in manure from pens with cattle fed the high protein diets. The volatile fatty acids (VFAs) such as acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids concentrations were similar across both treatments. There were no significant differences in pen surface GHG emissions across manure management and dietary crude protein levels.
Collapse
Affiliation(s)
- M S Borhan
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota 58108, USA
| | - D P Gautam
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota 58108, USA
| | - C Engel
- Carrington Research Extension Center, North Dakota State University, Carrington, North Dakota, USA
| | - V L Anderson
- Carrington Research Extension Center, North Dakota State University, Carrington, North Dakota, USA
| | - S Rahman
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota 58108, USA
| |
Collapse
|
17
|
Montes F, Meinen R, Dell C, Rotz A, Hristov AN, Oh J, Waghorn G, Gerber PJ, Henderson B, Makkar HPS, Dijkstra J. SPECIAL TOPICS — Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options1. J Anim Sci 2013; 91:5070-94. [DOI: 10.2527/jas.2013-6584] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- F. Montes
- Plant Science Department, Pennsylvania State University, University Park 16802
| | - R. Meinen
- Animal Science Department, Pennsylvania State University, University Park 16802
| | - C. Dell
- USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA 16802
| | - A. Rotz
- USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA 16802
| | - A. N. Hristov
- Department of Animal Science, Pennsylvania State University, University Park 16802
| | - J. Oh
- Department of Animal Science, Pennsylvania State University, University Park 16802
| | | | - P. J. Gerber
- Agriculture and Consumer protection Department, Food and Agriculture Organization of the United Nations, 00153 Rome, Italy
| | - B. Henderson
- Agriculture and Consumer protection Department, Food and Agriculture Organization of the United Nations, 00153 Rome, Italy
| | - H. P. S. Makkar
- Agriculture and Consumer protection Department, Food and Agriculture Organization of the United Nations, 00153 Rome, Italy
| | - J. Dijkstra
- Wageningen University, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
18
|
Redding MR, Lewis R, Waller J, Phillips F, Griffith D. Large-chamber methane and nitrous oxide measurements are comparable to the backward lagrangian stochastic method. JOURNAL OF ENVIRONMENTAL QUALITY 2013; 42:1643-1651. [PMID: 25602405 DOI: 10.2134/jeq2013.05.0200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [NO] and methane [CH] via Fourier Transform Infrared Spectroscopy; 1 analysis min) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m s), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable NO and CH emission values (no significant difference at < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 μg CH s and 9.26 ± 20.6 μg NO s; large-chamber measurements, 99.6 ± 64.2 μg CH s and 8.18 ± 0.3 μg NO s). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions.
Collapse
|
19
|
Rahman S, Borhan MS, Swanson K. Greenhouse gas emissions from beef cattle pen surfaces in North Dakota. ENVIRONMENTAL TECHNOLOGY 2013; 34:1239-1246. [PMID: 24191457 DOI: 10.1080/09593330.2012.743598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There is a global interest to quantify and mitigate greenhouse gas (GHG) (e.g. methane-CH4, nitrous oxide-N2O and carbon dioxide-CO2) emissions in animal feeding operations. The goal of this study was to quantify GHG emissions from the feedlot pen surface under North Dakota climatic conditions. In this study gaseous flux from the pen surfaces was generated using a custom-made wind tunnel at different times of the year (summer, fall, winter and spring). Gaseous fluxes (air samples) were drawn in the Tedlar bags using a vacuum chamber and gas concentrations were measured using a gas chromatograph within 24 h of sampling. The CH4 concentrations and flux rates (FRs) or flux among the months were not significantly different. Overall CH4, CO2 and N2O concentrations over a 7-month period were 2.66, 452 and 0.67 ppm, respectively. Estimated overall CH4, CO and N2O FRs were 1.32, 602 and 0.90 g m(-2) d(-1), respectively. Estimated emission rates using the wind tunnel were 38 g hd(-1) d(-1), 17 kg hd(-1) d(-1) and 26 g hd(-1) d(-1) for CH4, CO2 and N2O, respectively. The emission factors for GHG estimated in the research for North Dakota climate were the first of its kind, and these emission estimates can be used as a basis for planning and implementing management practices to minimize GHG emissions.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Agricultural and Biosystems Engineering Dept., North Dakota State University, Fargo, USA.
| | | | | |
Collapse
|
20
|
Measurement and mitigation of methane emissions from beef cattle in tropical grazing systems: a perspective from Australia and Brazil. Animal 2013; 7 Suppl 2:363-72. [DOI: 10.1017/s1751731113000670] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
21
|
McGinn SM, Beauchemin KA. Dairy farm methane emissions using a dispersion model. JOURNAL OF ENVIRONMENTAL QUALITY 2012; 41:73-79. [PMID: 22218175 DOI: 10.2134/jeq2011.0266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
There is a need to know whole-farm methane (CH(4)) emissions since confined animal facilities such as beef cattle feedlots and dairy farms are emission "hot spots" in the landscape. However, measurements of whole-farm CH(4) emissions can differ between farms because of differences in contributing sources such as manure handling, number of lactating and nonlactating cows, and diet. Such differences may limit the usefulness of whole-farm emissions for national inventories and mitigation purposes unless the variance between farms is taken into account or a large number of farms can be examined. Our study describes the application of a dispersion model used in conjunction with field measurements of CH(4) concentration and stability of the air to calculate whole-farm emissions of CH(4) from three dairy farms in Alberta, Canada, during three sequential campaigns conducted in November 2004 and May and July 2005. The dairy farms ranged in herd size from 208 to 351 cows (102 to 196 lactating cows) and had different manure handling operations. The results indicate that the average CH(4) emission per cow (mixture of lactating and nonlactating) from the three dairy farms was 336 g d(-1), which was reduced to 271 g d(-1) when the emission (estimated) from the manure storage was removed. Further separation of source strength yielded an average CH(4) (enteric) emission of 363 g d(-1) for a lactating cow. The estimated CH(4) emission intensities were approximately 15 g CH(4) kg(-1) dry matter intake and 16.7 L CH(4) L(-1) of milk produced. The approach of understanding the farm-to-farm differences in CH(4) emissions as affected by diet, animal type, and manure management is essential when utilizing whole-farm emission measurements for mitigation and inventory applications.
Collapse
Affiliation(s)
- S M McGinn
- Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada.
| | | |
Collapse
|
22
|
Greenhouse Gas Emissions from Ground Level Area Sources in Dairy and Cattle Feedyard Operations. ATMOSPHERE 2011. [DOI: 10.3390/atmos2030303] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Tomkins N, McGinn S, Turner D, Charmley E. Comparison of open-circuit respiration chambers with a micrometeorological method for determining methane emissions from beef cattle grazing a tropical pasture. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Huang Y, Tao S. An Optical Fiber Sensor Probe Using a PMMA/CPR Coated Bent Optical Fiber as a Transducer for Monitoring Trace Ammonia. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jst.2011.12005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Cottle DJ, Nolan JV, Wiedemann SG. Ruminant enteric methane mitigation: a review. ANIMAL PRODUCTION SCIENCE 2011. [DOI: 10.1071/an10163] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In Australia, agriculture is responsible for ~17% of total greenhouse gas emissions with ruminants being the largest single source. However, agriculture is likely to be shielded from the full impact of any future price on carbon. In this review, strategies for reducing ruminant methane output are considered in relation to rumen ecology and biochemistry, animal breeding and management options at an animal, farm, or national level. Nutritional management strategies have the greatest short-term impact. Methanogenic microorganisms remove H2 produced during fermentation of organic matter in the rumen and hind gut. Cost-effective ways to change the microbial ecology to reduce H2 production, to re-partition H2 into products other than methane, or to promote methanotrophic microbes with the ability to oxidise methane still need to be found. Methods of inhibiting methanogens include: use of antibiotics; promoting viruses/bacteriophages; use of feed additives such as fats and oils, or nitrate salts, or dicarboxylic acids; defaunation; and vaccination against methanogens. Methods of enhancing alternative H2 using microbial species include: inoculating with acetogenic species; feeding highly digestible feed components favouring ‘propionate fermentations’; and modifying rumen conditions. Conditions that sustain acetogen populations in kangaroos and termites, for example, are poorly understood but might be extended to ruminants. Mitigation strategies are not in common use in extensive grazing systems but dietary management or use of growth promotants can reduce methane output per unit of product. New, natural compounds that reduce rumen methane output may yet be found. Smaller but more permanent benefits are possible using genetic approaches. The indirect selection criterion, residual feed intake, when measured on ad libitum grain diets, has limited relevance for grazing cattle. There are few published estimates of genetic parameters for feed intake and methane production. Methane-related single nucleotide polymorphisms have yet to be used commercially. As a breeding objective, the use of methane/kg product rather than methane/head is recommended. Indirect selection via feed intake may be more cost-effective than via direct measurement of methane emissions. Life cycle analyses indicate that intensification is likely to reduce total greenhouse gas output but emissions and sequestration from vegetation and soil need to be addressed. Bio-economic modelling suggests most mitigation options are currently not cost-effective.
Collapse
|
26
|
Denmead OT, Chen D, Griffith DWT, Loh ZM, Bai M, Naylor T. Emissions of the indirect greenhouse gases NH3 and NOx from Australian beef cattle feedlots. ACTA ACUST UNITED AC 2008. [DOI: 10.1071/ea07276] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Emissions of indirect greenhouse gases, notably the nitrogen gases ammonia (NH3) and the odd oxides of nitrogen (NOx), play important roles in the greenhouse story. Feedlots are intense, but poorly quantified, sources of atmospheric NH3 and although production of NOx is to be expected in feedlots, rates of NOx emission are virtually unknown. In the atmosphere, these gases are involved in several transformations, but eventually return to the earth in gaseous or liquid form and can then undergo further transformations involving the formation and emission of the direct greenhouse gas nitrous oxide (N2O). The IPCC Phase II guidelines estimate that indirect N2O emissions due to atmospheric deposition of N compounds formed from NH3 and NOx could be ~14% of the direct emissions from agricultural soils or from animal production systems. IPCC recommends that these indirect emissions be accounted for in making inventory estimates of N2O emission. This paper is a preliminary report of emissions of NH3 and NOx from two Australian feedlots determined with micrometeorological techniques. Emissions of nitrogen gases from both feedlots were dominated by emissions of NH3. The average NH3 emission rate over both feedlots in winter was 46 g N/animal.day, while that of NOx was less than 1% of that rate at 0.36 g N/animal.day. It was apparent that NH3 release was governed by the wetness of the surface. Rates of emission from the feedlot with the wetter surface were almost three times those from the other. The IPCC default emission factor for the combined emission of NH3 and NOx from livestock is 0.2 kg N/kg N excreted, but in our work, the emission factor was 0.59 kg N/kg N excreted. Potential emissions of N2O due to NH3 and NOx deposition were estimated to be of the same magnitude as the direct N2O emissions, the sum of direct and potential indirect amounting to ~3 g N2O-N/animal.day. If applied nationally, this would represent a contribution of N2O from Australian feedlots of 533Gg CO2-e or 2.2% of all Australian N2O emissions.
Collapse
|