1
|
Wanapat M, Dagaew G, Sommai S, Matra M, Suriyapha C, Prachumchai R, Muslykhah U, Phupaboon S. The application of omics technologies for understanding tropical plants-based bioactive compounds in ruminants: a review. J Anim Sci Biotechnol 2024; 15:58. [PMID: 38689368 PMCID: PMC11062008 DOI: 10.1186/s40104-024-01017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024] Open
Abstract
Finding out how diet impacts health and metabolism while concentrating on the functional qualities and bioactive components of food is the crucial scientific objective of nutritional research. The complex relationship between metabolism and nutrition could be investigated with cutting-edge "omics" and bioinformatics techniques. This review paper provides an overview of the use of omics technologies in nutritional research, with a particular emphasis on the new applications of transcriptomics, proteomics, metabolomics, and genomes in functional and biological activity research on ruminant livestock and products in the tropical regions. A wealth of knowledge has been uncovered regarding the regulation and use of numerous physiological and pathological processes by gene, mRNA, protein, and metabolite expressions under various physiological situations and guidelines. In particular, the components of meat and milk were assessed using omics research utilizing the various methods of transcriptomics, proteomics, metabolomics, and genomes. The goal of this review is to use omics technologies-which have been steadily gaining popularity as technological tools-to develop new nutritional, genetic, and leadership strategies to improve animal products and their quality control. We also present an overview of the new applications of omics technologies in cattle production and employ nutriomics and foodomics technologies to investigate the microbes in the rumen ecology. Thus, the application of state-of-the-art omics technology may aid in our understanding of how species and/or breeds adapt, and the sustainability of tropical animal production, in the long run, is becoming increasingly important as a means of mitigating the consequences of climate change.
Collapse
Affiliation(s)
- Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Gamonmas Dagaew
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukruthai Sommai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaichana Suriyapha
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rittikeard Prachumchai
- Department of Animal Science, Faculty of Agricultural Technology, University of Technology Thanyaburi, Rajamangala Pathum Thani, 12130, Thailand
| | - Uswatun Muslykhah
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Srisan Phupaboon
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Asselstine V, Lam S, Miglior F, Brito LF, Sweett H, Guan L, Waters SM, Plastow G, Cánovas A. The potential for mitigation of methane emissions in ruminants through the application of metagenomics, metabolomics, and other -OMICS technologies. J Anim Sci 2021; 99:6377879. [PMID: 34586400 PMCID: PMC8480417 DOI: 10.1093/jas/skab193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ruminant supply chains contribute 5.7 gigatons of CO2-eq per annum, which represents approximately 80% of the livestock sector emissions. One of the largest sources of emission in the ruminant sector is methane (CH4), accounting for approximately 40% of the sectors total emissions. With climate change being a growing concern, emphasis is being put on reducing greenhouse gas emissions, including those from ruminant production. Various genetic and environmental factors influence cattle CH4 production, such as breed, genetic makeup, diet, management practices, and physiological status of the host. The influence of genetic variability on CH4 yield in ruminants indicates that genomic selection for reduced CH4 emissions is possible. Although the microbiology of CH4 production has been studied, further research is needed to identify key differences in the host and microbiome genomes and how they interact with one another. The advancement of “-omics” technologies, such as metabolomics and metagenomics, may provide valuable information in this regard. Improved understanding of genetic mechanisms associated with CH4 production and the interaction between the microbiome profile and host genetics will increase the rate of genetic progress for reduced CH4 emissions. Through a systems biology approach, various “-omics” technologies can be combined to unravel genomic regions and genetic markers associated with CH4 production, which can then be used in selective breeding programs. This comprehensive review discusses current challenges in applying genomic selection for reduced CH4 emissions, and the potential for “-omics” technologies, especially metabolomics and metagenomics, to minimize such challenges. The integration and evaluation of different levels of biological information using a systems biology approach is also discussed, which can assist in understanding the underlying genetic mechanisms and biology of CH4 production traits in ruminants and aid in reducing agriculture’s overall environmental footprint.
Collapse
Affiliation(s)
- Victoria Asselstine
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Stephanie Lam
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Luiz F Brito
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Hannah Sweett
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Leluo Guan
- Livestock Gentec, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, T6G 2C8, Canada
| | - Sinead M Waters
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, T6G 2C8, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
3
|
Ungerfeld EM, Leigh MB, Forster RJ, Barboza PS. Influence of Season and Diet on Fiber Digestion and Bacterial Community Structure in the Rumen of Muskoxen ( Ovibos moschatus). Microorganisms 2018; 6:microorganisms6030089. [PMID: 30127327 PMCID: PMC6165511 DOI: 10.3390/microorganisms6030089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/27/2022] Open
Abstract
We studied the relationship between fiber digestion and the composition of the bacterial community in the rumen of muskoxen at the start and the end of the annual window of plant growth from spring to fall. Eight ruminally cannulated castrated males were fed brome hay or triticale straw (69.6% vs. 84.6% neutral detergent fiber, respectively) that were similar in fiber content to the sedges consumed by wild muskoxen (64.5 to 71.7% neutral detergent fiber). Muskoxen digested fiber from both forages faster and to a greater extent when straw rather than hay was consumed. Fiber digestion was therefore inducible by diet 4 in each season. We used 16S rRNA sequences from ruminal contents to study how season and diet affected the bacterial community and how the latter related to fiber digestion. We found that Bacteroidetes and Firmicutes accounted for 90% of the sequences at the level of Phylum, which is typical for the mammal gut microbiome. Using partial least square regressions, it was found that between 48% and 72% of the variation in fiber digestion was associated with 36–43 genera of bacteria. The main fibrolytic bacteria typical of domestic ruminants were generally not among the most important bacteria associated with fiber digestion in muskoxen. This reveals that muskoxen rely upon on a large suite of bacterial genera that are largely distinct from those used by other ruminants to digest the cell walls of plants that vary widely in both abundance and nutritional quality through the year.
Collapse
Affiliation(s)
- Emilio M Ungerfeld
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403 1st Ave S, Lethbridge, AB T1J 4B1, Canada.
| | - Mary Beth Leigh
- Department of Biology and Wildlife, Institute of Arctic Biology, Fairbanks, AK 99775-7000, USA.
- Department of Biology and Wildlife, University of Alaska, Fairbanks, AK 99775-7000, USA.
| | - Robert J Forster
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403 1st Ave S, Lethbridge, AB T1J 4B1, Canada.
| | - Perry S Barboza
- Department of Biology and Wildlife, Institute of Arctic Biology, Fairbanks, AK 99775-7000, USA.
- Department of Biology and Wildlife, University of Alaska, Fairbanks, AK 99775-7000, USA.
| |
Collapse
|
4
|
Abstract
Knowledge gained from early and recent studies that define the functions of microbial populations within the rumen microbiome is essential to allow for directed rumen manipulation strategies. A large number of omic studies have focused on carbohydrate active enzymes either for improved fiber digestion within the animal or for use in industries such as biofuels. Studies of the rumen microbiome with respect to methane production and abatement strategies have led to initiatives for defining the microbiome of low- and high-methane-emitting animals while ensuring optimal feed conversion. With advances in omic technologies, the ability to link host genetics and the rumen microbiome by studying all the biological components (holobiont) through the use of hologenomics has begun. However, a program to culture and isolate microbial species for the purpose of standard microbial characterization to aid in assigning function to genomic data remains critical, especially for genes of unknown function.
Collapse
Affiliation(s)
- Stuart E Denman
- The Commonwealth Scientific and Industrial Research Organisation, St. Lucia, Brisbane, Queensland, 4067 Australia; ,
| | | |
Collapse
|
5
|
Cheng F, Sheng J, Cai T, Jin J, Liu W, Lin Y, Du Y, Zhang M, Shen L. A protease-insensitive feruloyl esterase from China Holstein cow rumen metagenomic library: expression, characterization, and utilization in ferulic acid release from wheat straw. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2546-2553. [PMID: 22352374 DOI: 10.1021/jf204556u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A metagenomic library of China Holstein cow rumen microbes was constructed and screened for novel gene cluster. A novel feruloyl esterase (FAE) gene was identified with a length of 789 bp and encoded a protein displaying 56% identity to known esterase sequences. The gene was functionally expressed in Escherichia coli BL21 (DE3), and the total molecular weight of the recombined protein was 32.4 kDa. The purified enzyme showed a broad specificity against the four methyl esters of hydroxycinnamic acids and high activity (259.5 U/mg) to methyl ferulate at optimum conditions (pH 8.0, 40 °C). High thermal and pH stability were also observed. Moreover, the enzyme showed broad resistance to proteases. FAE-SH1 can enhance the release of ferulic acid from wheat straw with cellulase, β-1,4-endoxylanase, β-1,3-glucanase, and pectase. These features suggest FAE-SH1 as a good candidate to enhance biomass degradation and improve the health effects of food and forage.
Collapse
Affiliation(s)
- Fansheng Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Barboza PS, Bennett A, Lignot JH, Mackie RI, McWhorter TJ, Secor SM, Skovgaard N, Sundset MA, Wang T. Digestive challenges for vertebrate animals: microbial diversity, cardiorespiratory coupling, and dietary specialization. Physiol Biochem Zool 2010; 83:764-74. [PMID: 20578844 DOI: 10.1086/650472] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The digestive system is the interface between the supply of food for an animal and the demand for energy and nutrients to maintain the body, to grow, and to reproduce. Digestive systems are not morphologically static but rather dynamically respond to changes in the physical and chemical characteristics of the diet and the level of food intake. In this article, we discuss three themes that affect the ability of an animal to alter digestive function in relation to novel substrates and changing food supply: (1) the fermentative digestion in herbivores, (2) the integration of cardiopulmonary and digestive functions, and (3) the evolution of dietary specialization. Herbivores consume, digest, and detoxify complex diets by using a wide variety of enzymes expressed by bacteria, predominantly in the phyla Firmicutes and Bacteroidetes. Carnivores, such as snakes that feed intermittently, sometimes process very large meals that require compensatory adjustments in blood flow, acid secretion, and regulation of acid-base homeostasis. Snakes and birds that specialize in simple diets of prey or nectar retain their ability to digest a wider selection of prey. The digestive system continues to be of interest to comparative physiologists because of its plasticity, both phenotypic and evolutionary, and because of its widespread integration with other physiological systems, including thermoregulation, circulation, ventilation, homeostasis, immunity, and reproduction.
Collapse
Affiliation(s)
- P S Barboza
- Department of Biology and Wildlife, University of Alaska, Fairbanks, AK 99775, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bretschger O, Osterstock JB, Pinchak WE, Ishii S, Nelson KE. Microbial fuel cells and microbial ecology: applications in ruminant health and production research. MICROBIAL ECOLOGY 2010; 59:415-27. [PMID: 20024685 PMCID: PMC2855437 DOI: 10.1007/s00248-009-9623-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 11/27/2009] [Indexed: 05/28/2023]
Abstract
Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H(2)) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H(2)in the rumen. Given the crucial role that H(2) plays in ruminant digestion, it is desirable to understand the microbial relationships that control H(2) partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research.
Collapse
Affiliation(s)
- Orianna Bretschger
- J. Craig Venter Institute, 10355 Science Center Dr., San Diego, CA 92121 USA
| | | | | | - Shun’ichi Ishii
- J. Craig Venter Institute, 10355 Science Center Dr., San Diego, CA 92121 USA
| | | |
Collapse
|
8
|
Ghazanfar S, Azim A. Metagenomics and its Application in Rumen Ecosystem: Potential Biotechnological Prospects. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/pjn.2009.1309.1315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|