1
|
Hafeez A, Ali B, Javed MA, Saleem A, Fatima M, Fathi A, Afridi MS, Aydin V, Oral MA, Soudy FA. Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics-assisted breeding. PLANTA 2023; 258:97. [PMID: 37823963 DOI: 10.1007/s00425-023-04252-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023]
Abstract
MAIN CONCLUSION Genomics-assisted breeding represents a crucial frontier in enhancing the balance between sustainable agriculture, environmental preservation, and global food security. Its precision and efficiency hold the promise of developing resilient crops, reducing resource utilization, and safeguarding biodiversity, ultimately fostering a more sustainable and secure food production system. Agriculture has been seriously threatened over the last 40 years by climate changes that menace global nutrition and food security. Changes in environmental factors like drought, salt concentration, heavy rainfalls, and extremely low or high temperatures can have a detrimental effects on plant development, growth, and yield. Extreme poverty and increasing food demand necessitate the need to break the existing production barriers in several crops. The first decade of twenty-first century marks the rapid development in the discovery of new plant breeding technologies. In contrast, in the second decade, the focus turned to extracting information from massive genomic frameworks, speculating gene-to-phenotype associations, and producing resilient crops. In this review, we will encompass the causes, effects of abiotic stresses and how they can be addressed using plant breeding technologies. Both conventional and modern breeding technologies will be highlighted. Moreover, the challenges like the commercialization of biotechnological products faced by proponents and developers will also be accentuated. The crux of this review is to mention the available breeding technologies that can deliver crops with high nutrition and climate resilience for sustainable agriculture.
Collapse
Affiliation(s)
- Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Aroona Saleem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Amin Fathi
- Department of Agronomy, Ayatollah Amoli Branch, Islamic Azad University, Amol, 46151, Iran
| | - Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras, MG, 37200-900, Brazil
| | - Veysel Aydin
- Sason Vocational School, Department of Plant and Animal Production, Batman University, Batman, 72060, Turkey
| | - Mükerrem Atalay Oral
- Elmalı Vocational School of Higher Education, Akdeniz University, Antalya, 07058, Turkey
| | - Fathia A Soudy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| |
Collapse
|
2
|
Muhammad I, Shalmani A, Ali M, Yang QH, Ahmad H, Li FB. Mechanisms Regulating the Dynamics of Photosynthesis Under Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 11:615942. [PMID: 33584756 PMCID: PMC7876081 DOI: 10.3389/fpls.2020.615942] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/28/2020] [Indexed: 05/02/2023]
Abstract
Photosynthesis sustains plant life on earth and is indispensable for plant growth and development. Factors such as unfavorable environmental conditions, stress regulatory networks, and plant biochemical processes limits the photosynthetic efficiency of plants and thereby threaten food security worldwide. Although numerous physiological approaches have been used to assess the performance of key photosynthetic components and their stress responses, though, these approaches are not extensive enough and do not favor strategic improvement of photosynthesis under abiotic stresses. The decline in photosynthetic capacity of plants due to these stresses is directly associated with reduction in yield. Therefore, a detailed information of the plant responses and better understanding of the photosynthetic machinery could help in developing new crop plants with higher yield even under stressed environments. Interestingly, cracking of signaling and metabolic pathways, identification of some key regulatory elements, characterization of potential genes, and phytohormone responses to abiotic factors have advanced our knowledge related to photosynthesis. However, our understanding of dynamic modulation of photosynthesis under dramatically fluctuating natural environments remains limited. Here, we provide a detailed overview of the research conducted on photosynthesis to date, and highlight the abiotic stress factors (heat, salinity, drought, high light, and heavy metal) that limit the performance of the photosynthetic machinery. Further, we reviewed the role of transcription factor genes and various enzymes involved in the process of photosynthesis under abiotic stresses. Finally, we discussed the recent progress in the field of biodegradable compounds, such as chitosan and humic acid, and the effect of melatonin (bio-stimulant) on photosynthetic activity. Based on our gathered researched data set, the logical concept of photosynthetic regulation under abiotic stresses along with improvement strategies will expand and surely accelerate the development of stress tolerance mechanisms, wider adaptability, higher survival rate, and yield potential of plant species.
Collapse
Affiliation(s)
- Izhar Muhammad
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Muhammad Ali
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Qing-Hua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Husain Ahmad
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Feng Bai Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Benkov MA, Yatsenko AM, Tikhonov AN. Light acclimation of shade-tolerant and sun-resistant Tradescantia species: photochemical activity of PSII and its sensitivity to heat treatment. PHOTOSYNTHESIS RESEARCH 2019; 139:203-214. [PMID: 29926255 DOI: 10.1007/s11120-018-0535-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
In this work, we have compared photosynthetic characteristics of photosystem II (PSII) in Tradescantia leaves of two contrasting ecotypes grown under the low light (LL) and high light (HL) regimes during their entire growth period. Plants of the same genus, T. fluminensis (shade-tolerant) and T. sillamontana (sun-resistant), were cultivated at 50-125 µmol photons m-2 s-1 (LL) or at 875-1000 µmol photons m-2 s-1 (HL). Analyses of intrinsic PSII efficiency was based on measurements of fast chlorophyll (Chl) a fluorescence kinetics (the OJIP test). The fluorescence parameters Fv/Fm (variable fluorescence) and F0 (the initial level of fluorescence) in dark-adapted leaves were used to quantify the photochemical properties of PSII. Plants of different ecotypes showed different sustainability with respect to changes in the environmental light intensity and temperature treatment. The sun-resistant species T. sillamontana revealed the tolerance to variations in irradiation intensity, demonstrating constancy of maximum quantum efficiency of PSII upon variations of the growth light. In contrast to T. sillamontana, facultative shade species T. fluminensis demonstrated variability of PSII photochemical activity, depending on the growth light intensity. The susceptibility of T. fluminensis to solar stress was documented by a decrease in Fv/Fm and a rise of F0 during the long-term exposition of T. fluminensis to HL, indicating the loss of photochemical activity of PSII. The short-term (10 min) heat treatment of leaf cuttings caused inactivation of PSII. The temperature-dependent heating effects were different in T. fluminensis and T. sillamontana. Sun-resistant plants T. sillamontana acclimated to LL and HL displayed the same plots of Fv/Fm versus the treatment temperature (t), demonstrating a decrease in Fv/Fm at t ≥ 45 °C. The leaves of shadow-tolerant species T. fluminensis grown under the LL and HL conditions revealed different sensitivities to heat treatment. Plants grown under the solar stress conditions (HL) demonstrated a gradual decline of Fv/Fm at lower heating temperatures (t ≥ 25 °C), indicating the "fragility" of their PSII as compared to T. fluminensis grown at LL. Different responses of sun and shadow species of Tradescantia to growth light and heat treatment are discussed in the context of their biochemical and ecophysiological properties.
Collapse
Affiliation(s)
- Michael A Benkov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Anton M Yatsenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexander N Tikhonov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
4
|
Jansen MAK, Bilger W, Hideg É, Strid Å, Urban O. Editorial: Interactive effects of UV-B radiation in a complex environment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 134:1-8. [PMID: 30385007 DOI: 10.1016/j.plaphy.2018.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Marcel A K Jansen
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland; Global Change Research Institute CAS, Bělidla 986/4a, CZ-603 00, Brno, Czech Republic
| | - Wolfgang Bilger
- Botanisches Institut, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Éva Hideg
- Institute of Biology, University of Pécs, Ifjusag u. 6, H-7624, Pécs, Hungary
| | - Åke Strid
- School of Science & Technology, Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden
| | - Otmar Urban
- Global Change Research Institute CAS, Bělidla 986/4a, CZ-603 00, Brno, Czech Republic.
| |
Collapse
|
5
|
Bornman JF, Barnes PW, Robson TM, Robinson SA, Jansen MAK, Ballaré CL, Flint SD. Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochem Photobiol Sci 2019; 18:681-716. [DOI: 10.1039/c8pp90061b] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linkages between stratospheric ozone, UV radiation and climate change: terrestrial ecosystems.
Collapse
Affiliation(s)
- Janet F. Bornman
- College of Science
- Health
- Engineering and Education
- Murdoch University
- Perth
| | - Paul W. Barnes
- Department of Biological Sciences and Environment Program
- Loyola University
- USA
| | - T. Matthew Robson
- Research Programme in Organismal and Evolutionary Biology
- Viikki Plant Science Centre
- University of Helsinki
- Finland
| | - Sharon A. Robinson
- Centre for Sustainable Ecosystem Solutions
- School of Earth
- Atmosphere and Life Sciences and Global Challenges Program
- University of Wollongong
- Wollongong
| | - Marcel A. K. Jansen
- Plant Ecophysiology Group
- School of Biological
- Earth and Environmental Sciences
- UCC
- Cork
| | - Carlos L. Ballaré
- University of Buenos Aires
- Faculty of Agronomy and IFEVA-CONICET, and IIB
- National University of San Martin
- Buenos Aires
- Argentina
| | - Stephan D. Flint
- Department of Forest
- Rangeland and Fire Sciences
- University of Idaho
- Moscow
- USA
| |
Collapse
|
6
|
Huang W, Zhang SB, Liu T. Moderate Photoinhibition of Photosystem II Significantly Affects Linear Electron Flow in the Shade-Demanding Plant Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2018; 9:637. [PMID: 29868090 PMCID: PMC5962726 DOI: 10.3389/fpls.2018.00637] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/25/2018] [Indexed: 05/17/2023]
Abstract
Although photoinhibition of photosystem II (PSII) frequently occurs under natural growing conditions, knowledge about the effect of moderate photoinhibition on linear electron flow (LEF) remains controversial. Furthermore, mechanisms underlying the decrease in LEF upon PSII photoinhibition are not well clarified. We examined how selective PSII photoinhibition influenced LEF in the attached leaves of shade-demanding plant Panax notoginseng. After leaves were exposed to a high level of light (2258 μmol photons m-2 s-1) for 30 and 60 min, the maximum quantum yield of PSII (Fv/Fm) decreased by 17 and 23%, respectively, whereas the maximum photo-oxidizable P700 (Pm) remained stable. Therefore, this species displayed selective PSII photodamage under strong illumination. After these treatments, LEF was significantly decreased under all light levels but acidification of the thylakoid lumen changed only slightly. Furthermore, the decrease in LEF under low light was positively correlated with the extent of PSII photoinhibition. Thus, the decline in LEF was not caused by the enhancement of lumenal acidification, but was induced by a decrease in PSII activity. These results indicate that residual PSII activity is an important determinant of LEF in this shade-adapted species, and they provide new insight into how strong illumination affects the growth of shade-demanding plants.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Tao Liu
- National Local Joint Engineering Research Center on Germplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Huang W, Yang YJ, Zhang SB, Liu T. Cyclic Electron Flow around Photosystem I Promotes ATP Synthesis Possibly Helping the Rapid Repair of Photodamaged Photosystem II at Low Light. FRONTIERS IN PLANT SCIENCE 2018; 9:239. [PMID: 29535751 PMCID: PMC5834426 DOI: 10.3389/fpls.2018.00239] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/09/2018] [Indexed: 05/03/2023]
Abstract
In higher plants, moderate photoinhibition of photosystem II (PSII) leads to a stimulation of cyclic electron flow (CEF) at low light, which is accompanied by an increase in the P700 oxidation ratio. However, the specific role of CEF stimulation at low light is not well known. Furthermore, the mechanism underlying this increase in P700 oxidation ratio at low light is unclear. To address these questions, intact leaves of the shade-adapted plant Panax notoginseng were treated at 2258 μmol photons m-2 s-1 for 30 min to induce PSII photoinhibition. Before and after this high-light treatment, PSI and PSII activity, the energy quenching in PSII, the redox state of PSI and proton motive force (pmf) at a low light of 54 μmol photons m-2 s-1 were determined at the steady state. After high-light treatment, electron flow through PSII (ETRII) significantly decreased but CEF was remarkably stimulated. The P700 oxidation ratio significantly increased but non-photochemical quenching changed negligibly. Concomitantly, the total pmf decreased significantly and the proton gradient (ΔpH) across the thylakoid membrane remained stable. Furthermore, the P700 oxidation ratio was negatively correlated with the value of ETRII. These results suggest that upon PSII photoinhibition, CEF is stimulated to increase the ATP synthesis, facilitating the rapid repair of photodamaged PSII. The increase in P700 oxidation ratio at low light cannot be explained by the change in pmf, but is primarily controlled by electron transfer from PSII.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ying-Jie Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Tao Liu
- National-Local Joint Engineering Research Center on Germplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
8
|
Huang W, Yang YJ, Zhang JL, Hu H, Zhang SB. Superoxide generated in the chloroplast stroma causes photoinhibition of photosystem I in the shade-establishing tree species Psychotria henryi. PHOTOSYNTHESIS RESEARCH 2017; 132:293-303. [PMID: 28432538 DOI: 10.1007/s11120-017-0389-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/15/2017] [Indexed: 05/07/2023]
Abstract
Our previous studies indicated that high light induced significant photoinhibition of photosystem I (PSI) in the shade-establishing tree species Psychotria henryi. However, the underlying mechanism has not been fully clarified. In the present study, in order to investigate the mechanism of PSI photoinhibition in P. henryi, we treated detached leaves with constant high light in the presence of methyl viologen (MV) or a soluble α-tocopherol analog, 2,2,5,7,8-pentamethyl-6-chromanol (PMC). We found that MV significantly depressed photochemical quantum yields in PSI and PSII when compared to PMC. On condition that no PSI photoinhibition happened, although cyclic electron flow (CEF) was abolished in the MV-treated samples, P700 oxidation ratio was maintain at higher levels than the PMC-treated samples. In the presence of PMC, PSI photoinhibition little changed but PSII photoinhibition was significantly alleviated. Importantly, PSI photoinhibition was largely accelerated in the presence of MV, which stimulates the production of superoxide and subsequently other reactive oxygen species at the chloroplast stroma by accepting electrons from PSI. Furthermore, MV largely aggravated PSII photoinhibition when compared to control. These results suggest that high P700 oxidation ratio cannot prevent PSI photoinhibition in P. henryi. Furthermore, the superoxide produced in the chloroplast stroma is critical for PSI photoinhibition in the higher plant P. henryi, which is opposite to the mechanism underlying PSI photoinhibition in Arabidopsis thaliana and spinach. These findings highlight a new mechanism of PSI photoinhibition in higher plants.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Ying-Jie Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jiao-Lin Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Hong Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
9
|
Barnes PW, Flint SD, Tobler MA, Ryel RJ. Diurnal adjustment in ultraviolet sunscreen protection is widespread among higher plants. Oecologia 2016; 181:55-63. [PMID: 26809621 DOI: 10.1007/s00442-016-3558-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/12/2016] [Indexed: 01/26/2023]
Abstract
The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) in the epidermis of higher plants reduces the penetration of solar UV radiation to underlying tissues and is a primary mechanism of acclimation to changing UV conditions resulting from ozone depletion and climate change. Previously we reported that several herbaceous plant species were capable of rapid, diurnal adjustments in epidermal UV transmittance (T UV), but how widespread this phenomenon is among plants has been unknown. In the present study, we tested the generality of this response by screening 37 species of various cultivated and wild plants growing in four locations spanning a gradient of ambient solar UV and climate (Hawaii, Utah, Idaho and Louisiana). Non-destructive measurements of adaxial T UV indicated that statistically significant midday decreases in T UV occurred in 49 % of the species tested, including both herbaceous and woody growth forms, and there was substantial interspecific variation in the magnitude of these changes. In general, plants in Louisiana exhibited larger diurnal changes in T UV than those in the other locations. Moreover, across all taxa, the magnitude of these changes was positively correlated with minimum daily air temperatures but not daily UV irradiances. Results indicate that diurnal changes in UV shielding are widespread among higher plants, vary both within and among species and tend to be greatest in herbaceous plants growing in warm environments. These findings suggest that plant species differ in their UV protection "strategies" though the functional and ecological significance of this variation in UV sunscreen protection remains unclear at present.
Collapse
Affiliation(s)
- Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA, 70118, USA.
| | - Stephan D Flint
- Department of Forest, Rangeland and Fire Sciences, UIPO 441135, University of Idaho, Moscow, ID, 83844-1135, USA
| | - Mark A Tobler
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA, 70118, USA
| | - Ronald J Ryel
- Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT, 84322-5230, USA
| |
Collapse
|
10
|
Huang W, Zhang SB, Zhang JL, Hu H. Photoinhibition of photosystem I under high light in the shade-established tropical tree species Psychotria rubra. FRONTIERS IN PLANT SCIENCE 2015; 6:801. [PMID: 26483816 PMCID: PMC4586421 DOI: 10.3389/fpls.2015.00801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/14/2015] [Indexed: 05/07/2023]
Abstract
The photosynthetic sensitivity to high light differs among understory plants of shade- and sun- established tree species. Shade-established tree species are sensitive to high light but the underlying photosynthetic mechanism has not been fully resolved. In the present study, we examined the responses of photosystem I (PSI) and photosystem II (PSII) to high light in shade leaves of a shade-established tree species Psychotria rubra and a sun-established tree species Pometia tomentosa. After exposure to 2000 μmol photons m(-2) s(-1) for 2 h, the maximum photo-oxidizable P700 (Pm ) decreased by 40 and 9% in P. rubra and P. tomentosa, respectively. These results indicate that the shade-established species P. rubra is incapable of protecting PSI under high light. Strong photoinhibition of PSII under high light led to large depression of electron transfer from PSII to PSI and then prevented further photodamage to PSI. During the high light treatment of 2000 μmol photons m(-2) s(-1), PSI photoinhibition in P. rubra was accompanied with high levels of cyclic electron flow (CEF) and P700 oxidation ratio. Therefore, we propose that PSI photoinhibition under high light in P. rubra is dependent on electron transfer from PSII to PSI, and CEF is unlikely to play a major role in photoprotection for PSI in P. rubra. These findings suggest that photoinhibition of PSI is another important mechanism underlying why shade-established species cannot survive under high light.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jiao-Lin Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Hong Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
11
|
Barnes PW, Flint SD, Ryel RJ, Tobler MA, Barkley AE, Wargent JJ. Rediscovering leaf optical properties: New insights into plant acclimation to solar UV radiation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 93:94-100. [PMID: 25465528 DOI: 10.1016/j.plaphy.2014.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/17/2014] [Indexed: 05/13/2023]
Abstract
The accumulation of UV-absorbing compounds (flavonoids and other phenylpropanoid derivatives) and resultant decrease in the UV transmittance of the epidermis in leaves (TUV), is a primary protective mechanism against the potentially deleterious effects of UV radiation and is a critical component of the overall acclimation response of plants to changing UV environments. Traditional measurements of TUV were laborious, time-consuming and destructive or invasive, thus limiting their ability to efficiently make multiple measurements of the optical properties of plants in the field. The development of rapid, nondestructive optical methods of determining TUV has permitted the examination of UV optical properties of leaves with increased replication, on a finer time scale, and enabled repeated sampling of the same leaf over time. This technology has therefore allowed for studies examining acclimation responses to UV in plants in ways not previously possible. Here we provide a brief review of these earlier studies examining leaf UV optical properties and some of their important contributions, describe the principles by which the newer non-invasive measurements of epidermal UV transmittance are made, and highlight several case studies that reveal how this technique is providing new insights into this UV acclimation response in plants, which is far more plastic and dynamic than previously thought.
Collapse
Affiliation(s)
- Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA 70118, USA.
| | - Stephan D Flint
- Department of Forest, Rangeland and Fire Sciences, UIPO 441135, University of Idaho, Moscow, ID 83844-1135, USA
| | - Ronald J Ryel
- Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT 84322-5230, USA
| | - Mark A Tobler
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Anne E Barkley
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, 6363 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Jason J Wargent
- Institute of Agriculture & Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
12
|
Houter NC, Pons TL. Gap effects on leaf traits of tropical rainforest trees differing in juvenile light requirement. Oecologia 2014; 175:37-50. [DOI: 10.1007/s00442-014-2887-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 01/11/2014] [Indexed: 11/24/2022]
|
13
|
Adams WW, Demmig-Adams B. Lessons from Nature: A Personal Perspective. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Barnes PW, Kersting AR, Flint SD, Beyschlag W, Ryel RJ. Adjustments in epidermal UV-transmittance of leaves in sun-shade transitions. PHYSIOLOGIA PLANTARUM 2013; 149:200-13. [PMID: 23330642 DOI: 10.1111/ppl.12025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 05/07/2023]
Abstract
Epidermal UV transmittance (TUV ) and UV-absorbing compounds were measured in sun and shade leaves of Populus tremuloides and Vicia faba exposed to contrasting light environments under field conditions to evaluate UV acclimation potentials and regulatory roles of photosynthetically active radiation (PAR) and UV in UV-shielding. Within a natural canopy of P. tremuloides, TUV ranged from 4 to 98% and showed a strong nonlinear relationship with mid-day horizontal fluxes of PAR [photon flux density (PFD) = 6-1830 µmol m⁻² s⁻¹]; similar patterns were found for V. faba leaves that developed under a comparable PFD range. A series of field transfer experiments using neutral-density shade cloth and UV blocking/transmitting films indicated that PAR influenced TUV during leaf development to a greater degree than UV, and shade leaves of both species increased their UV-shielding when exposed to full sun; however, this required the presence of UV, with both UV-A and UV-B required for full acclimation. TUV of sun leaves of both species was largely unresponsive to shade either with or without UV. In most, but not all cases, changes in TUV were associated with alterations in the concentration of whole-leaf UV-absorbing compounds. These results suggest that, (1) moderate-to-high levels of PAR alone during leaf development can induce substantial UV-protection in field-grown plants, (2) mature shade leaves have the potential to adjust their UV-shielding which may reduce the detrimental effects of UV that could occur following sudden exposures to high light and (3) under field conditions, PAR and UV play different roles in regulating UV-shielding during and after leaf development.
Collapse
Affiliation(s)
- Paul W Barnes
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, LA, 70118, USA
| | | | | | | | | |
Collapse
|
15
|
Lv MZ, Chao DY, Shan JX, Zhu MZ, Shi M, Gao JP, Lin HX. Rice carotenoid β-ring hydroxylase CYP97A4 is involved in lutein biosynthesis. PLANT & CELL PHYSIOLOGY 2012; 53:987-1002. [PMID: 22470056 DOI: 10.1093/pcp/pcs041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Lutein is the most abundant plant carotenoid and plays essential roles in photosystem assembly and stabilization, as well as protection against photostress. To date, only a few lutein biosynthesis genes have been identified in crop plants. In this study, the rice Cyt P450 gene CYP97A4 encoding a carotenoid β-ring hydroxylase was shown to be involved in lutein biosynthesis. The results revealed that CYP97A4 was preferentially expressed in leaf compared with spikelet, sheath, stalk and root, and encoded a protein localized at the subcellular level to the chloroplasts. Compared with the wild type, the three allelic mutants of CYP97A4 displayed lutein reductions of 12-24% with substantially increased α-carotene, while Chl a/b levels were unaltered. The increased α-carotene in the mutants led to greater sensitivity under high light stress. Similarly, reactive oxygen species (ROS) imaging of leaves treated with intense light showed that the mutants generally accumulated greater levels of ROS compared with wild-type plants, which probably caused detrimental effects to the plant photosystem. In conclusion, this study demonstrated the important role of CYP97A4 in α-carotene hydroxylation in rice, and knock-out of the gene reduced lutein and increased α-carotene, contributing to sensitivity to intense light.
Collapse
Affiliation(s)
- Ming-Zhu Lv
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
Bai L, Kim EH, DellaPenna D, Brutnell TP. Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:588-99. [PMID: 19392686 DOI: 10.1111/j.1365-313x.2009.03899.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue-specific accumulation is largely mediated through differential expression of genes encoding lycopene beta-cyclase and lycopene epsilon-cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including delta-carotene, epsilon-carotene and lactucaxanthin (epsilon,epsilon-carotene-3,3'-diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene-accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site-directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed.
Collapse
Affiliation(s)
- Ling Bai
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
17
|
Kim J, Smith JJ, Tian L, DellaPenna D. The Evolution and Function of Carotenoid Hydroxylases in Arabidopsis. ACTA ACUST UNITED AC 2009; 50:463-79. [DOI: 10.1093/pcp/pcp005] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Matsubara S, Krause GH, Aranda J, Virgo A, Beisel KG, Jahns P, Winter K. Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:20-36. [PMID: 32688624 DOI: 10.1071/fp08214] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 11/10/2008] [Indexed: 05/21/2023]
Abstract
A survey of photosynthetic pigments, including 86 species from 64 families, was conducted for leaves of neotropical vascular plants to study sun-shade patterns in carotenoid biosynthesis and occurrence of α-carotene (α-Car) and lutein epoxide (Lx). Under low light, leaves invested less in structural components and more in light harvesting, as manifested by low leaf dry mass per area (LMA) and enhanced mass-based accumulation of chlorophyll (Chl) and carotenoids, especially lutein and neoxanthin. Under high irradiance, LMA was greater and β-carotene (β-Car) and violaxanthin-cycle pool increased on a leaf area or Chl basis. The majority of plants contained α-Car in leaves, but the α- to β-Car ratio was always low in the sun, suggesting preference for β-Car in strong light. Shade and sun leaves had similar β,ε-carotenoid contents per unit Chl, whereas sun leaves had more β,β-carotenoids than shade leaves. Accumulation of Lx in leaves was found to be widely distributed among taxa: >5 mmol mol Chl-1 in 20% of all species examined and >10 mmol mol Chl-1 in 10% of woody species. In Virola elongata (Benth.) Warb, having substantial Lx in both leaf types, the Lx cycle was operating on a daily basis although Lx restoration in the dark was delayed compared with violaxanthin restoration.
Collapse
Affiliation(s)
- Shizue Matsubara
- Institut für Phytosphäre (ICG-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - G Heinrich Krause
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jorge Aranda
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama, Republic of Panama
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama, Republic of Panama
| | - Kim G Beisel
- Institut für Phytosphäre (ICG-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Peter Jahns
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama, Republic of Panama
| |
Collapse
|
19
|
Matsubara S, Krause GH, Seltmann M, Virgo A, Kursar TA, Jahns P, Winter K. Lutein epoxide cycle, light harvesting and photoprotection in species of the tropical tree genus Inga. PLANT, CELL & ENVIRONMENT 2008; 31:548-561. [PMID: 18208510 DOI: 10.1111/j.1365-3040.2008.01788.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Dynamics and possible function of the lutein epoxide (Lx) cycle, that is, the reversible conversion of Lx to lutein (L) in the light-harvesting antennae, were investigated in leaves of tropical tree species. Photosynthetic pigments were quantified in nine Inga species and species from three other genera. In Inga, Lx levels were high in shade leaves (mostly above 20 mmol mol(-1) chlorophyll) and low in sun leaves. In Virola surinamensis, both sun and shade leaves exhibited very high Lx contents (about 60 mmol mol(-1) chlorophyll). In Inga marginata grown under high irradiance, Lx slowly accumulated within several days upon transfer to deep shade. When shade leaves of I. marginata were briefly exposed to the sunlight, both violaxanthin and Lx were quickly de-epoxidized. Subsequently, overnight recovery occurred only for violaxanthin, not for Lx. In such leaves, containing reduced levels of Lx and increased levels of L, chlorophyll fluorescence induction showed significantly slower reduction of the photosystem II electron acceptor, Q(A), and faster formation as well as a higher level of non-photochemical quenching. The results indicate that slow Lx accumulation in Inga leaves may improve light harvesting under limiting light, while quick de-epoxidation of Lx to L in response to excess light may enhance photoprotection.
Collapse
Affiliation(s)
- Shizue Matsubara
- Phytosphere Institute (ICG-3), Research Centre Jülich, 52425 Jülich, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Dall'Osto L, Fiore A, Cazzaniga S, Giuliano G, Bassi R. Different Roles of α- and β-Branch Xanthophylls in Photosystem Assembly and Photoprotection. J Biol Chem 2007; 282:35056-68. [PMID: 17913714 DOI: 10.1074/jbc.m704729200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Xanthophylls (oxygenated carotenoids) are essential components of the plant photosynthetic apparatus, where they act in photosystem assembly, light harvesting, and photoprotection. Nevertheless, the specific function of individual xanthophyll species awaits complete elucidation. In this work, we analyze the photosynthetic phenotypes of two newly isolated Arabidopsis mutants in carotenoid biosynthesis containing exclusively alpha-branch (chy1chy2lut5) or beta-branch (chy1chy2lut2) xanthophylls. Both mutants show complete lack of qE, the rapidly reversible component of nonphotochemical quenching, and high levels of photoinhibition and lipid peroxidation under photooxidative stress. Both mutants are much more photosensitive than npq1lut2, which contains high levels of viola- and neoxanthin and a higher stoichiometry of light-harvesting proteins with respect to photosystem II core complexes, suggesting that the content in light-harvesting complexes plays an important role in photoprotection. In addition, chy1chy2lut5, which has lutein as the only xanthophyll, shows unprecedented photosensitivity even in low light conditions, reduced electron transport rate, enhanced photobleaching of isolated LHCII complexes, and a selective loss of CP26 with respect to chy1chy2lut2, highlighting a specific role of beta-branch xanthophylls in photoprotection and in qE mechanism. The stronger photosystem II photoinhibition of both mutants correlates with the higher rate of singlet oxygen production from thylakoids and isolated light-harvesting complexes, whereas carotenoid composition of photosystem II core complex was not influential. In depth analysis of the mutant phenotypes suggests that alpha-branch (lutein) and beta-branch (zeaxanthin, violaxanthin, and neoxanthin) xanthophylls have distinct and complementary roles in antenna protein assembly and in the mechanisms of photoprotection.
Collapse
Affiliation(s)
- Luca Dall'Osto
- Dipartimento Scientifico e Tecnologico, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
21
|
Krause GH, Jahns P, Virgo A, García M, Aranda J, Wellmann E, Winter K. Photoprotection, photosynthesis and growth of tropical tree seedlings under near-ambient and strongly reduced solar ultraviolet-B radiation. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1311-22. [PMID: 17074417 DOI: 10.1016/j.jplph.2006.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/30/2006] [Accepted: 09/01/2006] [Indexed: 05/12/2023]
Abstract
Seedlings of two late-successional tropical rainforest tree species, Tetragastris panamensis (Engler) O. Kuntze and Calophyllum longifolium (Willd.), were field grown for 3-4 months at an open site near Panama City (9 degrees N), Panama, under plastic films that either transmitted or excluded most solar UV-B radiation. Experiments were designed to test whether leaves developing under bright sunlight with strongly reduced UV-B are capable of acclimating to near-ambient UV-B conditions. Leaves of T. panamensis that developed under near-ambient UV-B contained higher amounts of UV-absorbing substances than leaves of seedlings grown under reduced UV-B. Photosynthetic pigment composition, content of alpha-tocopherol, CO(2) assimilation, potential photosystem II (PSII) efficiency (evaluated by F(v)/F(m) ratios) and growth of T. panamensis and C. longifolium did not differ between seedlings developed under near-ambient and reduced solar UV-B. When seedlings were transferred from the reduced UV-B treatment to the near-ambient UV-B treatment, a pronounced inhibition of photosynthetic capacity was observed initially in both species. UV-B-mediated inhibition of photosynthetic capacity nearly fully recovered within 1 week of the transfer in C. longifolium, whereas in T. panamensis an about 35% reduced capacity of CO(2) uptake was maintained. A marked increase in UV-absorbing substances was observed in foliage of transferred T. panamensis seedlings. Both species exhibited enhanced mid-day photoinhibition of PSII immediately after being transferred from the reduced UV-B to the near-ambient UV-B treatment. This effect was fully reversible within 1d in T. panamensis and within a few days in C. longifolium. The data show that leaves of these tropical tree seedlings, when developing in full-spectrum sunlight, are effectively protected against high solar UV-B radiation. In contrast, leaves developing under conditions of low UV-B lacked sufficient UV protection. They experienced a decline in photosynthetic competence when suddenly exposed to near-ambient UV-B levels, but exhibited pronounced acclimative responses.
Collapse
Affiliation(s)
- G Heinrich Krause
- Smithsonian Tropical Research Institute, P.O. Box 0843-03092 Panama, Republic of Panama.
| | | | | | | | | | | | | |
Collapse
|
22
|
Matsubara S, Morosinotto T, Osmond CB, Bassi R. Short- and long-term operation of the lutein-epoxide cycle in light-harvesting antenna complexes. PLANT PHYSIOLOGY 2007; 144:926-41. [PMID: 17384157 PMCID: PMC1914152 DOI: 10.1104/pp.107.099077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 03/16/2007] [Indexed: 05/14/2023]
Abstract
The lutein-5,6-epoxide (Lx) cycle operates in some plants between lutein (L) and its monoepoxide, Lx. Whereas recent studies have established the photoprotective roles of the analogous violaxanthin cycle, physiological functions of the Lx cycle are still unknown. In this article, we investigated the operation of the Lx cycle in light-harvesting antenna complexes (Lhcs) of Inga sapindoides Willd, a tropical tree legume accumulating substantial Lx in shade leaves, to identify the xanthophyll-binding sites involved in short- and long-term responses of the Lx cycle and to analyze the effects on light-harvesting efficiency. In shade leaves, Lx was converted into L upon light exposure, which then replaced Lx in the peripheral V1 site in trimeric Lhcs and the internal L2 site in both monomeric and trimeric Lhcs, leading to xanthophyll composition resembling sun-type Lhcs. Similar to the violaxanthin cycle, the Lx cycle was operating in both photosystems, yet the light-induced Lx --> L conversion was not reversible overnight. Interestingly, the experiments using recombinant Lhcb5 reconstituted with different Lx and/or L levels showed that reconstitution with Lx results in a significantly higher fluorescence yield due to higher energy transfer efficiencies among chlorophyll (Chl) a molecules, as well as from xanthophylls to Chl a. Furthermore, the spectroscopic analyses of photosystem I-LHCI from I. sapindoides revealed prominent red-most Chl forms, having the lowest energy level thus far reported for higher plants, along with reduced energy transfer efficiency from antenna pigments to Chl a. These results are discussed in the context of photoacclimation and shade adaptation.
Collapse
Affiliation(s)
- Shizue Matsubara
- Phytosphäre Institut (Institut für Chemie und Dynamik der Geosphäre-3), Forschungszentrum Jülich, 52425 Juelich, Germany.
| | | | | | | |
Collapse
|
23
|
Oguchi R, Hikosaka K, Hiura T, Hirose T. Leaf anatomy and light acclimation in woody seedlings after gap formation in a cool-temperate deciduous forest. Oecologia 2006; 149:571-82. [PMID: 16832649 DOI: 10.1007/s00442-006-0485-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
The photosynthetic light acclimation of fully expanded leaves of tree seedlings in response to gap formation was studied with respect to anatomical and photosynthetic characteristics in a natural cool-temperate deciduous forest. Eight woody species of different functional groups were used; two species each from mid-successional canopy species (Kalopanax pictus and Magnolia obovata), from late-successional canopy species (Quercus crispula and Acer mono), from sub-canopy species (Acer japonicum and Fraxinus lanuginosa) and from vine species (Schizophragma hydrangeoides and Hydrangea petiolaris). The light-saturated rate of photosynthesis (Pmax) increased significantly after gap formation in six species other than vine species. Shade leaves of K. pictus, M. obovata and Q. crispula had vacant spaces along cell walls in mesophyll cells, where chloroplasts were absent. The vacant space was filled after the gap formation by increased chloroplast volume, which in turn increased Pmax. In two Acer species, an increase in the area of mesophyll cells facing the intercellular space enabled the leaves to increase Pmax after maturation. The two vine species did not significantly change their anatomical traits. Although the response and the mechanism of acclimation to light improvement varied from species to species, the increase in the area of chloroplast surface facing the intercellular space per unit leaf area accounted for most of the increase in Pmax, demonstrating the importance of leaf anatomy in increasing Pmax.
Collapse
Affiliation(s)
- R Oguchi
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan.
| | | | | | | |
Collapse
|
24
|
Schmidt S, Tracey DP. Adaptations of strangler figs to life in the rainforest canopy. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:465-475. [PMID: 32689253 DOI: 10.1071/fp06014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 03/24/2006] [Indexed: 06/11/2023]
Abstract
Figs are rainforest keystone species. Non-strangler figs establish on the forest floor; strangler figs establish epiphytically, followed by a dramatic transition from epiphyte to free-standing tree that kills its hosts. Free-standing figs display vigorous growth and resource demand suggesting that epiphytic strangler figs require special adaptations to deal with resource limitations imposed by the epiphytic environment. We studied epiphytic and free-standing strangler figs, and non-strangler figs in tropical rainforest and in cultivation, as well as strangler figs in controlled conditions. We investigated whether the transition from epiphyte to free-standing tree is characterised by morphological and physiological plasticity. Epiphyte substrate had higher levels of plant-available ammonium and phosphate, and similar levels of nitrate compared with rainforest soil, suggesting that N and P are initially not limiting resources. A relationship was found between taxonomic groups and plant N physiology; strangler figs, all members of subgenus Urostigma, had mostly low foliar nitrate assimilation rates whereas non-strangler figs, in subgenera Pharmacocycea, Sycidium, Sycomorus or Synoecia, had moderate to high rates. Nitrate is an energetically expensive N source, and low nitrate use may be an adaptation of strangler figs for conserving energy during epiphytic growth. Interestingly, significant amounts of nitrate were stored in fleshy taproot tubers of epiphytic stranglers. Supporting the concept of plasticity, leaves of epiphytic Ficus benjamina L. had lower N and C content per unit leaf area, lower stomatal density and 80% greater specific leaf area than leaves of conspecific free-standing trees. Similarly, glasshouse-grown stranglers strongly increased biomass allocation to roots under water limitation. Epiphytic and free-standing F. benjamina had similar average foliar δ13C, but epiphytes had more extreme values; this indicates that both groups of plants use the C3 pathway of CO2 fixation but that water availability is highly variable for epiphytes. We hypothesise that epiphytic figs use fleshy stem tubers to avoid water stress, and that nitrate acts as an osmotic compound in tubers. We conclude that strangler figs are a unique experimental system for studying the transition from rainforest epiphyte to tree, and the genetic and environmental triggers involved.
Collapse
Affiliation(s)
- Susanne Schmidt
- School of Integrative Biology, The University of Queensland, Brisbane, Qld 4071, Australia
| | - Dieter P Tracey
- Department of Environment, 168 St Georges Terrace, Perth, WA 6000, Australia
| |
Collapse
|
25
|
Porcar-Castell A, Bäck J, Juurola E, Hari P. Dynamics of the energy flow through photosystem II under changing light conditions: a model approach. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:229-239. [PMID: 32689230 DOI: 10.1071/fp05133] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 10/19/2005] [Indexed: 05/25/2023]
Abstract
Several biochemical models of photosynthesis exist that consider the effects of the dynamic adjustment of enzymatic and stomatal processes on carbon assimilation under fluctuating light. However, the rate of electron transport through the light reactions is commonly modelled by means of an empirical equation, parameterised with data obtained at the steady state. A steady-state approach cannot capture the dynamic nature of the adjustment of the light reactions under fluctuating light. Here we present a dynamic model approach for photosystem II that considers the adjustments in the regulative non-photochemical processes. The model is initially derived to account for changes occurring at the seconds-to-minutes time-scale under field conditions, and is parameterised and tested with chlorophyll fluorescence data. Results derived from this model show good agreement with experimentally obtained photochemical and non-photochemical quantum yields, providing evidence for the effect that the dark reactions exert in the adjustment of the energy flows at the light reactions. Finally, we compare the traditional steady-state approach with our dynamic approach and find that the steady-state approach produces an underestimation of the modelled electron transport rate (ETR) under rapidly fluctuating light (1 s or less), whereas it produces overestimations under slower fluctuations of light (5 s or more).
Collapse
Affiliation(s)
- Albert Porcar-Castell
- Department of Forest Ecology, University of Helsinki, Latokartanonkaari 7, PO Box 27, 00014 Helsinki, Finland
| | - Jaana Bäck
- Department of Forest Ecology, University of Helsinki, Latokartanonkaari 7, PO Box 27, 00014 Helsinki, Finland
| | - Eija Juurola
- Department of Forest Ecology, University of Helsinki, Latokartanonkaari 7, PO Box 27, 00014 Helsinki, Finland
| | - Pertti Hari
- Department of Forest Ecology, University of Helsinki, Latokartanonkaari 7, PO Box 27, 00014 Helsinki, Finland
| |
Collapse
|
26
|
Kim J, DellaPenna D. Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3. Proc Natl Acad Sci U S A 2006; 103:3474-9. [PMID: 16492736 PMCID: PMC1413914 DOI: 10.1073/pnas.0511207103] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Indexed: 11/18/2022] Open
Abstract
Lutein, a dihydroxy derivative of alpha-carotene (beta,epsilon-carotene), is the most abundant carotenoid in photosynthetic plant tissues where it plays important roles in light-harvesting complex-II structure and function. The synthesis of lutein from lycopene requires at least four distinct enzymatic reactions: beta- and epsilon-ring cyclizations and hydroxylation of each ring at the C-3 position. Three carotenoid hydroxylases have already been identified in Arabidopsis, two nonheme diiron beta-ring monooxygenases (the B1 and B2 loci) that primarily catalyze hydroxylation of the beta-ring of beta,beta-carotenoids and one heme-containing monooxygenase (CYP97C1, the LUT1 locus) that catalyzes hydroxylation of the epsilon-ring of beta,epsilon-carotenoids. In this study, we demonstrate that Arabidopsis CYP97A3 (the LUT5 locus) encodes a fourth carotenoid hydroxylase with major in vivo activity toward the beta-ring of alpha-carotene (beta,epsilon-carotene) and minor activity on the beta-rings of beta-carotene (beta,beta-carotene). A cyp97a3-null allele, lut5-1, causes an accumulation of alpha-carotene at a level equivalent to beta-carotene in wild type, which is stably incorporated into photosystems, and a 35% reduction in beta-carotene-derived xanthophylls. That lut5-1 still produces 80% of wild-type lutein levels, indicating at least one of the other carotene hydroxylases, can partially compensate for the loss of CYP97A3 activity. From these data, we propose a model for the preferred pathway for lutein synthesis in plants: ring cyclizations to form alpha-carotene, beta-ring hydroxylation of alpha-carotene by CYP97A3 to produce zeinoxanthin, followed by epsilon-ring hydroxylation of zeinoxanthin by CYP97C1 to produce lutein.
Collapse
Affiliation(s)
- Joonyul Kim
- *Department of Biochemistry and Molecular Biology and
- Michigan State University–Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1319
| | | |
Collapse
|
27
|
Krause GH, Gallé A, Virgo A, García M, Bucic P, Jahns P, Winter K. High-light stress does not impair biomass accumulation of sun-acclimated tropical tree seedlings (Calophyllum longifolium Willd. and Tectona grandis L. f.). PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:31-41. [PMID: 16435267 DOI: 10.1055/s-2005-872901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Studies with seedlings of tropical rainforest trees ( Calophyllum longifolium Willd.; Tectona grandis L. f.) were designed to test whether high-light stress affects photosynthetic performance and growth. Seedlings were cultivated in pots at a field site in Central Panama (9 degrees N) and separated into two groups: (1) plants exposed to full solar radiation; (2) plants subjected to automatic neutral shading (48 %) whenever visible irradiance surpassed 1000, 1200, or 1600 micromol photons m-2 s-1. After 2-4 months, chlorophyll fluorescence (Fv/Fm ratio), photosynthetic net CO2 uptake, pigment composition, alpha-tocopherol content of leaves, and plant biomass accumulation were measured. Fully sun-exposed, compared to periodically shaded plants, experienced substantial high-light stress around midday, indicated by photoinhibition of photosystem II and depressed net CO2 uptake. Higher contents of xanthophyll cycle pigments, lutein, and alpha-tocopherol showed an enhancement of photoprotection in fully sun-exposed plants. However, in all experiments, the maximum capacity of net CO2 uptake and plant dry mass did not differ significantly between the two treatments. Thus, in these experiments, high-light stress did not impair productivity of the seedlings studied. Obviously, the continuously sun-exposed plants were capable of fully compensating for any potential costs associated with photoinhibition and repair of photosystem II, reduced CO2 assimilation, and processes of high-light acclimation.
Collapse
Affiliation(s)
- G H Krause
- Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Ancon, Panama.
| | | | | | | | | | | | | |
Collapse
|