1
|
Guo D, Chen L, Liu S, Jiang W, Ye Q, Wu Z, Wang X, Hu X, Zhang Z, He H, Hu L. Curling Leaf 1, Encoding a MYB-Domain Protein, Regulates Leaf Morphology and Affects Plant Yield in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3127. [PMID: 37687373 PMCID: PMC10490398 DOI: 10.3390/plants12173127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
The leaf is the main site of photosynthesis and is an important component in shaping the ideal rice plant architecture. Research on leaf morphology and development will lay the foundation for high-yield rice breeding. In this study, we isolated and identified a novel curling leaf mutant, designated curling leaf 1 (cl1). The cl1 mutant exhibited an inward curling phenotype because of the defective development of sclerenchymatous cells on the abaxial side. Meanwhile, the cl1 mutant showed significant reductions in grain yield and thousand-grain weight due to abnormal leaf development. Through map-based cloning, we identified the CL1 gene, which encodes a MYB transcription factor that is highly expressed in leaves. Subcellular localization studies confirmed its typical nuclear localization. Transcriptome analysis revealed a significant differential expression of the genes involved in photosynthesis, leaf morphology, yield formation, and hormone metabolism in the cl1 mutant. Yeast two-hybrid assays demonstrated that CL1 interacts with alpha-tubulin protein SRS5 and AP2/ERF protein MFS. These findings provide theoretical foundations for further elucidating the mechanisms of CL1 in regulating leaf morphology and offer genetic resources for practical applications in high-yield rice breeding.
Collapse
Affiliation(s)
- Dandan Guo
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Lianghai Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shiqiang Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenxiang Jiang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Qing Ye
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Zheng Wu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Xiaoqing Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Xiafei Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Zelin Zhang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Lifang Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
| |
Collapse
|
2
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
3
|
Dhaka N, Krishnan K, Kandpal M, Vashisht I, Pal M, Sharma MK, Sharma R. Transcriptional trajectories of anther development provide candidates for engineering male fertility in sorghum. Sci Rep 2020; 10:897. [PMID: 31964983 PMCID: PMC6972786 DOI: 10.1038/s41598-020-57717-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/06/2020] [Indexed: 01/22/2023] Open
Abstract
Sorghum is a self-pollinated crop with multiple economic uses as cereal, forage, and biofuel feedstock. Hybrid breeding is a cornerstone for sorghum improvement strategies that currently relies on cytoplasmic male sterile lines. To engineer genic male sterility, it is imperative to examine the genetic components regulating anther/pollen development in sorghum. To this end, we have performed transcriptomic analysis from three temporal stages of developing anthers that correspond to meiotic, microspore and mature pollen stages. A total of 5286 genes were differentially regulated among the three anther stages with 890 of them exhibiting anther-preferential expression. Differentially expressed genes could be clubbed into seven distinct developmental trajectories using K-means clustering. Pathway mapping revealed that genes involved in cell cycle, DNA repair, regulation of transcription, brassinosteroid and auxin biosynthesis/signalling exhibit peak expression in meiotic anthers, while those regulating abiotic stress, carbohydrate metabolism, and transport were enriched in microspore stage. Conversely, genes associated with protein degradation, post-translational modifications, cell wall biosynthesis/modifications, abscisic acid, ethylene, cytokinin and jasmonic acid biosynthesis/signalling were highly expressed in mature pollen stage. High concurrence in transcriptional dynamics and cis-regulatory elements of differentially expressed genes in rice and sorghum confirmed conserved developmental pathways regulating anther development across species. Comprehensive literature survey in conjunction with orthology analysis and anther-preferential accumulation enabled shortlisting of 21 prospective candidates for in-depth characterization and engineering male fertility in sorghum.
Collapse
Affiliation(s)
- Namrata Dhaka
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Kushagra Krishnan
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Manu Kandpal
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Ira Vashisht
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Manoj Kumar Sharma
- Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Rita Sharma
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
4
|
Zhang Q, Xu B, Pan J, Liu D, Lv R, Yan D. Expression and active testing of VP7 from GCRV (Grass carp reovirus) fused with cholera toxin B subunit in rice calli. Protein Expr Purif 2019; 158:1-8. [PMID: 30753891 DOI: 10.1016/j.pep.2019.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 12/16/2018] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
Grass carp reovirus (GCRV) is one of the most serious pathogens threatening grass carp (Ctenopharyngodon idellus) production and results in high mortality in China. VP7 from GCRV is involved in viral infection and could be suitable for developing vaccines for the control of GCRV infection. To obtain a genetically engineered vaccine and a plant-based oral vaccine and to evaluate their immune efficacy as an oral vaccine against GCRV, cholera toxin B subunit (CTB) of Vibrio cholerae fused to VP7 (CTB-VP7) was transformed into BL21(DE3) for expression. SDS-PAGE and Western blotting showed that the purified CTB-VP7 fusion protein (rCTB-VP7) was approximately 49.0 kDa. Meanwhile, CTB-VP7 was transformed into rice callus cells by Agrobacterium tumefaciens-mediated gene transformation. CTB-VP7 was integrated into the nuclear genome by PCR, and mRNA transcripts of CTB-VP7 were detected. ELISA and Western blot analyses revealed that the CTB-VP7 fusion protein (CTB-VP7) could be expressed in rice callus lines. The level of expression was determined to be 1.54% ± 0.43 of the total soluble protein. CTB-VP7 showed a binding affinity for monosialoganglioside(GM1), a receptor for CTB. CTB-VP7 showed a higher affinity towards GM1 compared to rCTB-VP7. CTB-VP7 bonded to GM1 with different affinities under different temperatures. Maximum binding of CTB-VP7 to GM1 was reported to occur within 2 h at 37 °C, and approximately half of the binding affinity remained at 25 °C. Our results suggest that CTB-VP7 could be produced in rice calli, increasing the possibility that edible plants can be employed in mucosal vaccines for protection against GCRV in aquaculture.
Collapse
Affiliation(s)
- Qiusheng Zhang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Binglian Xu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jiajia Pan
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Danyang Liu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Ruoxian Lv
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Dongchun Yan
- School of Agriculture, Ludong University, Yantai, 264025, China
| |
Collapse
|
5
|
Shin SB, Golovkin M, Reddy ASN. A pollen-specific calmodulin-binding protein, NPG1, interacts with putative pectate lyases. Sci Rep 2014; 4:5263. [PMID: 24919580 PMCID: PMC4053719 DOI: 10.1038/srep05263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/17/2014] [Indexed: 12/18/2022] Open
Abstract
Previous genetic studies have revealed that a pollen-specific calmodulin-binding protein, No Pollen Germination 1 (NPG1), is required for pollen germination. However, its mode of action is unknown. Here we report direct interaction of NPG1 with pectate lyase-like proteins (PLLs). A truncated form of AtNPG1 lacking the N-terminal tetratricopeptide repeat 1 (TPR1) failed to interact with PLLs, suggesting that it is essential for NPG1 interaction with PLLs. Localization studies with AtNPG1 fused to a fluorescent reporter driven by its native promoter revealed its presence in the cytosol and cell wall of the pollen grain and the growing pollen tube of plasmolyzed pollen. Together, our data suggest that the function of NPG1 in regulating pollen germination is mediated through its interaction with PLLs, which may modify the pollen cell wall and regulate pollen tube emergence and growth.
Collapse
Affiliation(s)
- Sung-Bong Shin
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Current Address: United States Department of Agriculture – Tree Fruit Research Laboratory, Wenatchee, WA 98801, USA
| | - Maxim Golovkin
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Current Address: Foundation for Advancement of Science, Technology and Research, Biotechnology Center, PA 18902, USA
| | - Anireddy S. N. Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|