1
|
Watts S, Kaur I, Singh S, Jimenez B, Chavana J, Kariyat R. Desktop scanning electron microscopy in plant-insect interactions research: a fast and effective way to capture electron micrographs with minimal sample preparation. Biol Methods Protoc 2022; 7:bpab020. [PMID: 35036571 PMCID: PMC8754489 DOI: 10.1093/biomethods/bpab020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
The ability to visualize cell and tissue morphology at a high magnification using scanning electron microscopy (SEM) has revolutionized plant sciences research. In plant-insect interactions studies, SEM-based imaging has been of immense assistance to understand plant surface morphology including trichomes [plant hairs; physical defense structures against herbivores], spines, waxes, and insect morphological characteristics such as mouth parts, antennae, and legs, that they interact with. While SEM provides finer details of samples, and the imaging process is simpler now with advanced image acquisition and processing, sample preparation methodology has lagged. The need to undergo elaborate sample preparation with cryogenic freezing, multiple alcohol washes, and sputter coating makes SEM imaging expensive, time consuming, and warrants skilled professionals, making it inaccessible to majority of scientists. Here, using a desktop version of SEM (SNE- 4500 Plus Tabletop), we show that the "plug and play" method can efficiently produce SEM images with sufficient details for most morphological studies in plant-insect interactions. We used leaf trichomes of Solanum genus as our primary model, and oviposition by tobacco hornworm (Manduca sexta; Lepidoptera: Sphingidae) and fall armyworm (Spodoptera frugiperda; Lepidoptera: Noctuidae), and leaf surface wax imaging as additional examples to show the effectiveness of this instrument and present a detailed methodology to produce the best results with this instrument. While traditional sample preparation can still produce better resolved images with less distortion, we show that even at a higher magnification, the desktop SEM can deliver quality images. Overall, this study provides detailed methodology with a simpler "no sample preparation" technique for scanning fresh biological samples without the use of any additional chemicals and machinery.
Collapse
Affiliation(s)
- Sakshi Watts
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W. University Drive, Edinburg, TX 78539, USA
| | - Ishveen Kaur
- School of Earth, Environment and Marine Sciences, The University of Texas Rio Grande Valley, 1201 W. University Drive, Edinburg, TX 78539, USA
| | - Sukhman Singh
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W. University Drive, Edinburg, TX 78539, USA
| | - Bianca Jimenez
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W. University Drive, Edinburg, TX 78539, USA
| | - Jesus Chavana
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W. University Drive, Edinburg, TX 78539, USA
| | - Rupesh Kariyat
- Department of Biology, The University of Texas Rio Grande Valley, 1201 W. University Drive, Edinburg, TX 78539, USA.,School of Earth, Environment and Marine Sciences, The University of Texas Rio Grande Valley, 1201 W. University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
2
|
Albornoz FE, Hayes PE, Orchard S, Clode PL, Nazeri NK, Standish RJ, Bending GD, Hilton S, Ryan MH. First Cryo-Scanning Electron Microscopy Images and X-Ray Microanalyses of Mucoromycotinian Fine Root Endophytes in Vascular Plants. Front Microbiol 2020; 11:2018. [PMID: 33013744 PMCID: PMC7509483 DOI: 10.3389/fmicb.2020.02018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
AIMS Arbuscule-producing fine root endophytes (FRE) (previously incorrectly Glomus tenue) were recently placed within subphylum Mucoromycotina; the first report of arbuscules outside subphylum Glomeromycotina. Here, we aimed to estimate nutrient concentrations in plant and fungal structures of FRE and to test the utility of cryo-scanning electron microscopy (cryoSEM) for studying these fungi. METHODS We used replicated cryoSEM and X-ray microanalysis of heavily colonized roots of Trifolium subterraneum. RESULTS Intercellular hyphae and hyphae in developed arbuscules were consistently very thin; 1.35 ± 0.03 μm and 0.99 ± 0.03 μm in diameter, respectively (mean ± SE). Several intercellular hyphae were often adjacent to each other forming "hyphal ropes." Developed arbuscules showed higher phosphorus concentrations than senesced arbuscules and non-colonized structures. Senesced arbuscules showed greatly elevated concentrations of calcium and magnesium. CONCLUSION While uniformly thin hyphae and hyphal ropes are distinct features of FRE, the morphology of fully developed arbuscules, elevated phosphorus in fungal structures, and accumulation of calcium with loss of structural integrity in senesced arbuscules are similar to glomeromycotinian fungi. Thus, we provide evidence that FRE may respond to similar host-plant signals or that the host plant may employ a similar mechanism of association with FRE and AMF.
Collapse
Affiliation(s)
- Felipe E. Albornoz
- School of Agriculture and Environment, Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Patrick E. Hayes
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Suzanne Orchard
- School of Agriculture and Environment, Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Peta L. Clode
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Nazanin K. Nazeri
- School of Agriculture and Environment, Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Rachel J. Standish
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Environmental and Conservation Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Gary D. Bending
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Megan H. Ryan
- School of Agriculture and Environment, Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
3
|
Kitin P, Nakaba S, Hunt CG, Lim S, Funada R. Direct fluorescence imaging of lignocellulosic and suberized cell walls in roots and stems. AOB PLANTS 2020; 12:plaa032. [PMID: 32793329 PMCID: PMC7415075 DOI: 10.1093/aobpla/plaa032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/21/2020] [Indexed: 05/05/2023]
Abstract
Investigating plant structure is fundamental in botanical science and provides crucial knowledge for the theories of plant evolution, ecophysiology and for the biotechnological practices. Modern plant anatomy often targets the formation, localization and characterization of cellulosic, lignified or suberized cell walls. While classical methods developed in the 1960s are still popular, recent innovations in tissue preparation, fluorescence staining and microscopy equipment offer advantages to the traditional practices for investigation of the complex lignocellulosic walls. Our goal is to enhance the productivity and quality of microscopy work by focusing on quick and cost-effective preparation of thick sections or plant specimen surfaces and efficient use of direct fluorescent stains. We discuss popular histochemical microscopy techniques for visualization of cell walls, such as autofluorescence or staining with calcofluor, Congo red (CR), fluorol yellow (FY) and safranin, and provide detailed descriptions of our own approaches and protocols. Autofluorescence of lignin in combination with CR and FY staining can clearly differentiate between lignified, suberized and unlignified cell walls in root and stem tissues. Glycerol can serve as an effective clearing medium as well as the carrier of FY for staining of suberin and lipids allowing for observation of thick histological preparations. Three-dimensional (3D) imaging of all cell types together with chemical information by wide-field fluorescence or confocal laser scanning microscopy (CLSM) was achieved.
Collapse
Affiliation(s)
- Peter Kitin
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-Tokyo, Japan
| | - Satoshi Nakaba
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-Tokyo, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-Tokyo, Japan
| | | | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ryo Funada
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-Tokyo, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-Tokyo, Japan
| |
Collapse
|
4
|
Cryo-Scanning Electron Microscopy to Study the Freezing Behavior of Plant Tissues. Methods Mol Biol 2020. [PMID: 32607978 DOI: 10.1007/978-1-0716-0660-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
A cryo-scanning electron microscope (cryo-SEM) is a valuable tool for observing bulk frozen samples to monitor freezing responses of plant tissues and cells. Here, the essential processes of a cryo-SEM to observe freezing behaviors of plant tissue cells are described.
Collapse
|
5
|
Noble JM, Roberts LM, Vidavsky N, Chiou AE, Fischbach C, Paszek MJ, Estroff LA, Kourkoutis LF. Direct comparison of optical and electron microscopy methods for structural characterization of extracellular vesicles. J Struct Biol 2020; 210:107474. [PMID: 32032755 PMCID: PMC7067680 DOI: 10.1016/j.jsb.2020.107474] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/06/2019] [Accepted: 01/29/2020] [Indexed: 12/28/2022]
Abstract
As interest in the role of extracellular vesicles in cell-to-cell communication has increased, so has the use of microscopy and analytical techniques to assess their formation, release, and morphology. In this study, we evaluate scanning electron microscopy (SEM) and cryo-SEM for characterizing the formation and shedding of vesicles from human breast cell lines, parental and hyaluronan synthase 3-(HAS3)-overexpressing MCF10A cells, grown directly on transmission electron microscopy (TEM) grids. While cells imaged with conventional and cryo-SEM exhibit distinct morphologies due to the sample preparation process for each technique, tubular structures protruding from the cell surfaces were observed with both approaches. For HAS3-MCF10A cells, vesicles were present along the length of membrane protrusions. Once completely shed from the cells, extracellular vesicles were characterized using nanoparticle tracking analysis (NTA) and cryo-TEM. The size distributions obtained by each technique were different not only in the range of vesicles analyzed, but also in the relative proportion of smaller-to-larger vesicles. These differences are attributed to the presence of biological debris in the media, which is difficult to differentiate from vesicles in NTA. Furthermore, we demonstrate that cryo-TEM can be used to distinguish between vesicles based on their respective surface structures, thereby providing a path to differentiating vesicle subpopulations and identifying their size distributions. Our study emphasizes the necessity of pairing several techniques to characterize extracellular vesicles.
Collapse
Affiliation(s)
- Jade M Noble
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - LaDeidra Monét Roberts
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Netta Vidavsky
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Aaron E Chiou
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | - Matthew J Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Yuan J, Wang X, Zhou H, Li Y, Zhang J, Yu S, Wang M, Hao M, Zhao Q, Liu L, Li M, Li J. Comparison of Sample Preparation Techniques for Inspection of Leaf Epidermises Using Light Microscopy and Scanning Electronic Microscopy. FRONTIERS IN PLANT SCIENCE 2020; 11:133. [PMID: 32158456 PMCID: PMC7052180 DOI: 10.3389/fpls.2020.00133] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/28/2020] [Indexed: 05/17/2023]
Abstract
The micro-morphology of leaf epidermises is valuable for the study of leaf development and function, as well as the classification of plant species. There have been few studies comparing different preparation and imaging methods for visualizing the leaf epidermis. Here, four specimen preparation methods were used to investigate the leaf epidermis morphology of Arabidopsis, radish, cucumber, wheat, rice, and maize, under an inverted basic light microscope (LM), a laser scanning confocal microscope (LSCM), or a scanning electron microscope (SEM). Optical microscope specimens were obtained using either the direct isolation method or the chloral hydrate-based clearing method. SEM images were obtained using a standard stage for conventional dehydrated samples or a Coolstage for fresh tissue. Different parts of epidermis peels were well focused under the LM. Investigation of samples cleared by chloral hydrate is convenient and autofluorescence of cell walls can be detected in rice. The resolution of images of conventional SEM leaf samples was generally higher than the Coolstage images at the same magnification, whereas local collapse and shrinkage were observed in leaves with high water content when using the conventional method. However, stomatal apparatuses of Arabidopsis, cucumber, radish, and maize deformed and showed poor appearance when using the Coolstage. Moreover, we usually used glutaraldehyde as an SEM fixative when using t-butanol for freeze-drying, though methanol is considered a better fixative in recent studies. In addition, fresh samples were not stable on the Coolstage. Thus, we compared four different t-butanol freeze-drying methods and two Coolstage methods. The dimension and morphology of tissues were compared using the six different methods. The results indicate that methanol fixative obviously reduced shrinkage of SEM samples compared with glutaraldehyde and formaldehyde alcohol acetic acid (FAA) fixatives. The use of methanol and a graded series of steps improved the preservation of samples. Preparing samples with optimal cutting temperature compound and observing at -30°C helped to increase the stability of Coolstage samples. In summary, our results provide an overview of the shortcomings and merits of four different methods, and might provide some information about choosing an optimal method for visualizing epidermal morphology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mingjun Li
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Junhua Li
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs, College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
7
|
Chaudhary S, Gupta P, Srivastava S, Adholeya A. Understanding dynamics of Rhizophagus irregularis ontogenesis in axenically developed coculture through basic and advanced microscopic techniques. J Basic Microbiol 2019; 59:767-774. [PMID: 31074496 DOI: 10.1002/jobm.201900138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/21/2022]
Abstract
Detailed information on structural changes that occur during ontogenesis of Rhizophagus irregularis in axenically developed coculture is limited. Our study aims to investigate the series of events that occur during mycorrhizal ontogenesis under axenic condition through basic and advanced microscopic techniques followed by comparison among these to identify the suitable technique for rapid and detailed analysis of mycorrhizal structures. Three stages were identified in mycorrhizal ontogenesis from initiation (preinfection stage of hyphae; its branching, infection and appressoria formation; epidermal opening; and hyphal entry), progression (arbuscular development; hyphal coils and vesicles) to maturity (extraradical spores). Scanning electron microscopy was found to be an efficient tool for studying spatial three-dimensional progression. Adding to the advantages of advanced microscopy, potential of autofluorescence to explore the stages of symbiosis nondestructively was also established. We also report imaging of ultrathin sections by bright field microscopy to provide finer details at subcellular interface. Owing to the merits of nondestructive sampling, ease of sample preparation, autofluorescence (no dye required), no use of toxic chemicals, rapid analysis and in depth characterization confocal laser scanning microscopy was identified as the most preferred technique. The method thus developed can be used for detailed structural inquisition of mycorrhizal symbiosis both in in planta and in an in vitro system.
Collapse
Affiliation(s)
- Shikha Chaudhary
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute (TERI), Gwal Pahari, Gurugram, Haryana, India
| | - Priyanka Gupta
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute (TERI), Gwal Pahari, Gurugram, Haryana, India
| | - Shivani Srivastava
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute (TERI), Gwal Pahari, Gurugram, Haryana, India
| | - Alok Adholeya
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute (TERI), Gwal Pahari, Gurugram, Haryana, India
| |
Collapse
|
8
|
Kaneko Y, Tokunaga M, Tanaka K, Atsuzawa K, Nishimura M. Backscattered electron imaging and elemental analysis of rapidly frozen plant cells using variable accelerating voltage. Microscopy (Oxf) 2018; 67:125-128. [PMID: 29373748 DOI: 10.1093/jmicro/dfx133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/19/2017] [Indexed: 11/12/2022] Open
Abstract
Rapidly frozen rosemary leaves were observed at variable accelerating voltages in a low-vacuum scanning electron microscope equipped with a cryo transfer system. After water was sublimated from the fractured face of the leaf, distinct backscattered electron (BSE) images were obtained depending on the accelerating voltages applied. At 5 kV, surface cell wall structure was observed, whereas at 10 and 15 kV chloroplasts lining the inside of the cell wall and membrane were visualized. With energy dispersive X-ray microanalysis, elemental information corresponding to the BSE images was obtained. Besides visualization of the structures and elemental composition close to the living state, information on layers at different depths from the surface could be detected by varying the accelerating voltage in this system.
Collapse
Affiliation(s)
- Yasuko Kaneko
- Department of Natural Sciences, Faculty of Education, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Makoto Tokunaga
- Comprehensive Analysis Center for Science, Saitama University, Saitama 338-8570, Japan
| | - Kyoko Tanaka
- Comprehensive Analysis Center for Science, Saitama University, Saitama 338-8570, Japan
| | - Kimie Atsuzawa
- Comprehensive Analysis Center for Science, Saitama University, Saitama 338-8570, Japan
| | - Masako Nishimura
- Science & Medical System Service Div., Hitachi High-Tech Fielding Corporation, Kanagawa 213-0012, Japan
| |
Collapse
|
9
|
Lohrer MF, Hanna DM, Liu Y, Wang KH, Liu FT, Laurence TA, Liu GY. Applying Pattern Recognition to High-Resolution Images to Determine Cellular Signaling Status. IEEE Trans Nanobioscience 2017; 16:438-446. [PMID: 28644811 PMCID: PMC5633003 DOI: 10.1109/tnb.2017.2717871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two frequently used tools to acquire high- resolution images of cells are scanning electron microscopy (SEM) and atomic force microscopy (AFM). The former provides a nanometer resolution view of cellular features rapidly and with high throughput, while the latter enables visualizing hydrated and living cells. In current practice, these images are viewed by eye to determine cellular status, e.g., activated versus resting. Automatic and quantitative data analysis is lacking. This paper develops an algorithm of pattern recognition that works very effectively for AFM and SEM images. Using rat basophilic leukemia cells, our approach creates a support vector machine to automatically classify resting and activated cells. Ten-fold cross-validation with cells that are known to be activated or resting gives a good estimate of the generalized classification results. The pattern recognition of AFM images achieves 100% accuracy, while SEM reaches 95.4% for our images as well as images published in prior literature. This outcome suggests that our methodology could become an important and frequently used tool for researchers utilizing AFM and SEM for structural characterization as well as determining cellular signaling status and function.
Collapse
Affiliation(s)
- Michael F. Lohrer
- Department of Electrical and Computer Engineering, Oakland University, Rochester MI 48309, USA
| | - Darrin M. Hanna
- Department of Electrical and Computer Engineering, Oakland University, Rochester MI 48309, USA
| | - Yang Liu
- Department of chemistry, University of California, Davis, CA 95616 USA
| | - Kang-Hsin Wang
- Department of chemistry, University of California, Davis, CA 95616 USA
| | - Fu-Tong Liu
- Department of Dermatology, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Ted A. Laurence
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Gang-Yu Liu
- Department of chemistry, University of California, Davis, CA 95616 USA
| |
Collapse
|
10
|
Nguyen HT, Meir P, Wolfe J, Mencuccini M, Ball MC. Plumbing the depths: extracellular water storage in specialized leaf structures and its functional expression in a three-domain pressure -volume relationship. PLANT, CELL & ENVIRONMENT 2017; 40:1021-1038. [PMID: 27362496 DOI: 10.1111/pce.12788] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/25/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
A three-domain pressure-volume relationship (PV curve) was studied in relation to leaf anatomical structure during dehydration in the grey mangrove, Avicennia marina. In domain 1, relative water content (RWC) declined 13% with 0.85 MPa decrease in leaf water potential, reflecting a decrease in extracellular water stored primarily in trichomes and petiolar cisternae. In domain 2, RWC decreased by another 12% with a further reduction in leaf water potential to -5.1 MPa, the turgor loss point. Given the osmotic potential at full turgor (-4.2 MPa) and the effective modulus of elasticity (~40 MPa), domain 2 emphasized the role of cell wall elasticity in conserving cellular hydration during leaf water loss. Domain 3 was dominated by osmotic effects and characterized by plasmolysis in most tissues and cell types without cell wall collapse. Extracellular and cellular water storage could support an evaporation rate of 1 mmol m-2 s-1 for up to 54 and 50 min, respectively, before turgor loss was reached. This study emphasized the importance of leaf anatomy for the interpretation of PV curves, and identified extracellular water storage sites that enable transient water use without substantive turgor loss when other factors, such as high soil salinity, constrain rates of water transport.
Collapse
Affiliation(s)
- Hoa T Nguyen
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Patrick Meir
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
- School of GeoSciences, University of Edinburgh, Crew Building, West Mains Road, Edinburgh, EH9 3JN, UK
| | - Joe Wolfe
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Maurizio Mencuccini
- School of GeoSciences, University of Edinburgh, Crew Building, West Mains Road, Edinburgh, EH9 3JN, UK
- ICREA at CREAF, Universidad Autonoma de Barcelona, Cerdanyola del Valles, 08290, Barcelona, Spain
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
11
|
Use of CE to Analyze Solutes in Pico- and Nano-Liter Samples from Plant Cells and Rhizosphere. Methods Mol Biol 2016. [PMID: 27645738 DOI: 10.1007/978-1-4939-6403-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
This chapter describes the use of capillary electrophoresis (CE) in the accurate quantitative mapping of small molecules and ions in intact function tissues between individual cells at single cell resolution. It can also be used for the analysis of the heterogeneity of soil surrounding roots at similar spatial resolution, providing a link between plant and environment. No pretreatment or genetic manipulation of the plant is required. The application is an extension of the Single Cell Sampling and Analysis technique (SiCSA), in which glass micromanipulation of microcapillaries allows samples in the pl and nl volume range to be obtained and manipulated under paraffin oil (to prevent evaporation) before being introduced to the CE column. An advantage of this approach is that the entire sample can be brought to the detector (without the loading losses associated with other techniques). The power of SiCSA-CE is that the results can be directly related to a range of other single-cell resolution parameters ranging from mechanical and hydraulic properties to gene expression. Several protocols and (contrasting) applications are provided.
Collapse
|
12
|
Mattarozzi M, Visioli G, Sanangelantoni AM, Careri M. ESEM-EDS: In vivo characterization of the Ni hyperaccumulator Noccaea caerulescens. Micron 2015; 75:18-26. [DOI: 10.1016/j.micron.2015.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/30/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
|
13
|
Kanturski M, Karcz J, Wieczorek K. Morphology of the European species of the aphid genus Eulachnus (Hemiptera: Aphididae: Lachninae) - A SEM comparative and integrative study. Micron 2015; 76:23-36. [PMID: 26021259 DOI: 10.1016/j.micron.2015.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/14/2015] [Accepted: 05/05/2015] [Indexed: 11/25/2022]
Abstract
Scanning electron microscopy (SEM) methods were used for the first time to elucidate the external morphology of the European species of the genus Eulachnus (Hemiptera: Aphididae: Lachninae), a representative genus of the conifer-feeding aphids tribe Eulachnini. We examined and compared the external morphology of apterous and alate viviparous females from the parthenogenetic generation as well as oviparous females and alate males belonging to the sexual generation. FE-SEM images based on HMDS and cryo-SEM preparation techniques revealed better image quality than the CPD technique in regard to surface tension and morphological signs of cell deteriorations (i.e., existence of depressions, drying artifacts and membrane blebs). Three morphologically different species groups "agilis", "brevipilosus" and "cembrae" were proposed due to the differences in head, antennae, legs and dorsal chaetotaxy as well as dorsal sclerotization. The most characteristic features and differences of representatives of these groups are presented and discussed.
Collapse
Affiliation(s)
- Mariusz Kanturski
- Department of Zoology, Bankowa 9, 40-007 Katowice, Poland; Faculty for Biology and Environmental Protection, University of Silesia, Katowice, Poland.
| | - Jagna Karcz
- Scanning Electron Microscopy Laboratory, Jagiellońska 28, 40-032 Katowice, Poland; Faculty for Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Karina Wieczorek
- Department of Zoology, Bankowa 9, 40-007 Katowice, Poland; Faculty for Biology and Environmental Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
14
|
McCully M, Canny M, Baker A, Miller C. Some properties of the walls of metaxylem vessels of maize roots, including tests of the wettability of their lumenal wall surfaces. ANNALS OF BOTANY 2014; 113:977-89. [PMID: 24709790 PMCID: PMC3997638 DOI: 10.1093/aob/mcu020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/31/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND AIMS Since the proposal of the cohesion theory there has been a paradox that the lumenal surface of vessels is rich in hydrophobic lignin, while tension in the rising sap requires adhesion to a hydrophilic surface. This study sought to characterize the strength of that adhesion in maize (Zea mays), the wettability of the vessel surface, and to reconcile this with its histochemical and physical nature. METHODS Wettability was assessed by emptying the maize root vessels of sap, perfusing them with either water or oil, and examining the adhesion (as revealed by contact angles) of the two liquids to vessel walls by cryo-scanning electron microscopy. The phobicity of the lumenal surface was also assessed histochemically with hydrophilic and hydrophobic probes. KEY RESULTS Pit borders in the lumen-facing vessel wall surface were wetted by both sap/water and oil. The attraction for oil was weaker: water could replace oil but not vice versa. Pit apertures repelled oil and were strongly stained by hydrophilic probes. Pit chambers were probably hydrophilic. Oil never entered the pits. When vessels were emptied and cryo-fixed immediately, pit chambers facing away from the vessels were always sap-filled. Pit chambers facing vessel lumens were either sap- or gas-filled. Sap from adjoining tracheary elements entering empty vessels accumulated on the lumenal surface in hemispherical drops, which spread out with decreasing contact angles to fill the lumen. CONCLUSIONS The vessel lumenal surface has a dual nature, namely a mosaic of hydrophilic and hydrophobic patches at the micrometre scale, with hydrophilic predominating. A key role is shown, for the first time, of overarching borders of pits in determining the dual nature of the surface. In gas-filled (embolized) vessels they are hydrophobic. When wetted by sap (vessels refilling or full) they are hydrophilic. A hypothesis is proposed to explain the switch between the two states.
Collapse
Affiliation(s)
- Margaret McCully
- Division of Plant Industry, CSIRO, Canberra, ACT 2601, Australia
| | - Martin Canny
- Plant Science Division, Research School of Biology, RN Robertson Building, The Australian National University, Canberra, ACT 0200, Australia
| | - Adam Baker
- Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, Ontario K1Y 4E9, Canada
| | - Celia Miller
- Division of Plant Industry, CSIRO, Canberra, ACT 2601, Australia
| |
Collapse
|
15
|
Kim HK, Park J, Hwang I. Investigating water transport through the xylem network in vascular plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1895-904. [PMID: 24609652 DOI: 10.1093/jxb/eru075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Our understanding of physical and physiological mechanisms depends on the development of advanced technologies and tools to prove or re-evaluate established theories, and test new hypotheses. Water flow in land plants is a fascinating phenomenon, a vital component of the water cycle, and essential for life on Earth. The cohesion-tension theory (CTT), formulated more than a century ago and based on the physical properties of water, laid the foundation for our understanding of water transport in vascular plants. Numerous experimental tools have since been developed to evaluate various aspects of the CTT, such as the existence of negative hydrostatic pressure. This review focuses on the evolution of the experimental methods used to study water transport in plants, and summarizes the different ways to investigate the diversity of the xylem network structure and sap flow dynamics in various species. As water transport is documented at different scales, from the level of single conduits to entire plants, it is critical that new results be subjected to systematic cross-validation and that findings based on different organs be integrated at the whole-plant level. We also discuss the functional trade-offs between optimizing hydraulic efficiency and maintaining the safety of the entire transport system. Furthermore, we evaluate future directions in sap flow research and highlight the importance of integrating the combined effects of various levels of hydraulic regulation.
Collapse
Affiliation(s)
- Hae Koo Kim
- International Maize and Wheat Improvement Center, CIMMYT-Ethiopia, P.O. Box 5689, Addis Ababa, Ethiopia
| | | | | |
Collapse
|
16
|
He H, Kirilak Y. Application of SEM and EDX in studying biomineralization in plant tissues. Methods Mol Biol 2014; 1117:663-75. [PMID: 24357384 DOI: 10.1007/978-1-62703-776-1_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.
Collapse
Affiliation(s)
- Honghua He
- Institute of Soil and Water Conservation, Northwest A&F University, Shaanxi, China
| | | |
Collapse
|
17
|
Fujikawa S, Endoh K. Cryo-scanning electron microscopy to study the freezing behavior of plant tissues. Methods Mol Biol 2014; 1166:99-116. [PMID: 24852632 DOI: 10.1007/978-1-4939-0844-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A cryo-scanning electron microscope (cryo-SEM) is a valuable tool for observing bulk frozen samples to monitor freezing responses of plant tissues and cells. Here, essential processes of a cryo-SEM to observe freezing behaviors of plant tissue cells are described.
Collapse
Affiliation(s)
- Seizo Fujikawa
- Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan,
| | | |
Collapse
|
18
|
Talbot MJ, White RG. Cell surface and cell outline imaging in plant tissues using the backscattered electron detector in a variable pressure scanning electron microscope. PLANT METHODS 2013; 9:40. [PMID: 24135233 PMCID: PMC3853341 DOI: 10.1186/1746-4811-9-40] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/04/2013] [Indexed: 05/09/2023]
Abstract
BACKGROUND Scanning electron microscopy (SEM) has been used for high-resolution imaging of plant cell surfaces for many decades. Most SEM imaging employs the secondary electron detector under high vacuum to provide pseudo-3D images of plant organs and especially of surface structures such as trichomes and stomatal guard cells; these samples generally have to be metal-coated to avoid charging artefacts. Variable pressure-SEM allows examination of uncoated tissues, and provides a flexible range of options for imaging, either with a secondary electron detector or backscattered electron detector. In one application, we used the backscattered electron detector under low vacuum conditions to collect images of uncoated barley leaf tissue followed by simple quantification of cell areas. RESULTS Here, we outline methods for backscattered electron imaging of a variety of plant tissues with particular focus on collecting images for quantification of cell size and shape. We demonstrate the advantages of this technique over other methods to obtain high contrast cell outlines, and define a set of parameters for imaging Arabidopsis thaliana leaf epidermal cells together with a simple image analysis protocol. We also show how to vary parameters such as accelerating voltage and chamber pressure to optimise imaging in a range of other plant tissues. CONCLUSIONS Backscattered electron imaging of uncoated plant tissue allows acquisition of images showing details of plant morphology together with images of high contrast cell outlines suitable for semi-automated image analysis. The method is easily adaptable to many types of tissue and suitable for any laboratory with standard SEM preparation equipment and a variable-pressure-SEM or tabletop SEM.
Collapse
Affiliation(s)
- Mark J Talbot
- Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation, Canberra ACT 2601, Australia
| | - Rosemary G White
- Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation, Canberra ACT 2601, Australia
| |
Collapse
|
19
|
Talbot MJ, White RG. Methanol fixation of plant tissue for Scanning Electron Microscopy improves preservation of tissue morphology and dimensions. PLANT METHODS 2013; 9:36. [PMID: 24083940 PMCID: PMC3853006 DOI: 10.1186/1746-4811-9-36] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/30/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND It is well known that preparation of biological (plant and animal) tissues for Scanning Electron Microscopy (SEM) by chemical fixation and critical point drying results in shrinkage of tissues, often by up to 20-30%, depending on the tissue type and fixation protocol used. We sought to identify a protocol that would preserve tissue size and morphology better than standard chemical fixatives and dehydration regimes. We compared a range of processing techniques by quantifying changes in tissue size and recording details of surface morphology using leaf tissues from three commonly studied species; Arabidopsis thaliana, barley and cotton. RESULTS All processing protocols altered tissue dimensions. Methanol fixation and dehydration, followed by a further short (1 h) dehydration step in ethanol and critical point drying (which was based on a previously published method), preserved tissue dimensions most consistently of all protocols tested, although it did cause 8% shrinkage in all three species. This protocol was also best for preservation of surface morphology in all three species. We outline a recommended protocol and advise that the method is best trialled for different tissues, especially thicker or larger samples. CONCLUSIONS This study shows that simultaneous fixation and dehydration in methanol followed by ethanol results in better preservation of dimensions and morphology of critical point dried plant tissues than other fixation and dehydration procedures. It is a quick and simple method, and requires standard SEM preparation equipment.
Collapse
Affiliation(s)
- Mark J Talbot
- Commonwealth Scientific and Industrial Research Organisation, Division of Plant Industry, Canberra, ACT 2601, Australia
| | - Rosemary G White
- Commonwealth Scientific and Industrial Research Organisation, Division of Plant Industry, Canberra, ACT 2601, Australia
| |
Collapse
|
20
|
Welzel PB, Grimmer M, Renneberg C, Naujox L, Zschoche S, Freudenberg U, Werner C. Macroporous StarPEG-Heparin Cryogels. Biomacromolecules 2012; 13:2349-58. [DOI: 10.1021/bm300605s] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Petra B. Welzel
- Leibniz
Institute of Polymer Research Dresden
(IPF), Max Bergmann Center of Biomaterials Dresden (MBC) and Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden (CRTD), Hohe Str.
6, 01069 Dresden, Germany
| | - Milauscha Grimmer
- Leibniz
Institute of Polymer Research Dresden
(IPF), Max Bergmann Center of Biomaterials Dresden (MBC) and Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden (CRTD), Hohe Str.
6, 01069 Dresden, Germany
| | - Claudia Renneberg
- Leibniz
Institute of Polymer Research Dresden
(IPF), Max Bergmann Center of Biomaterials Dresden (MBC) and Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden (CRTD), Hohe Str.
6, 01069 Dresden, Germany
| | - Lisa Naujox
- Leibniz
Institute of Polymer Research Dresden
(IPF), Max Bergmann Center of Biomaterials Dresden (MBC) and Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden (CRTD), Hohe Str.
6, 01069 Dresden, Germany
| | - Stefan Zschoche
- Leibniz
Institute of Polymer Research Dresden
(IPF), Max Bergmann Center of Biomaterials Dresden (MBC) and Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden (CRTD), Hohe Str.
6, 01069 Dresden, Germany
| | - Uwe Freudenberg
- Leibniz
Institute of Polymer Research Dresden
(IPF), Max Bergmann Center of Biomaterials Dresden (MBC) and Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden (CRTD), Hohe Str.
6, 01069 Dresden, Germany
| | - Carsten Werner
- Leibniz
Institute of Polymer Research Dresden
(IPF), Max Bergmann Center of Biomaterials Dresden (MBC) and Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden (CRTD), Hohe Str.
6, 01069 Dresden, Germany
| |
Collapse
|
21
|
Canny M. Water loss from leaf mesophyll stripped of the epidermis. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:421-434. [PMID: 32480794 DOI: 10.1071/fp11265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/22/2012] [Indexed: 06/11/2023]
Abstract
Water vapour flux (rate of water loss) from the mesophyll of isolated Agapanthus praecox Willd. leaf pieces without an epidermis was investigated by loss of mass into unstirred air at relative humidities (RHs) of 0.993-0.850, compared with the rate from a water atmometer (rate of evaporation). The point at which relative evaporation (RE, the rate of water loss divided by the rate of evaporation) reaches <1 inadequately identifies the onset of mesophyll regulation because values >1 were found. For RHs of 0.993-0.967, RE varied in daily cycles from 0.6 to ~3, with a period of ~24h, maxima at mid-afternoon, minima at or near dawn. For RH<0.950, the cycles were suppressed. An initial rate of RE ≈1.2, RE declined towards zero. In leaf pieces supplied with water via vascular strands (rate of transpiration), the daily cycle persisted down to RH 0.850, where maximal RE ≈ 2. Transpiration from one surface of field leaves gave the rate of transpiration in the same range. These data require the maximum RE for each vapour pressure deficit as the value identifying the onset of mesophyll regulation (possibly by aquaporins), which produces cyclic changes in the rates of water loss and transpiration. At RH<0.95, the decline of RE below 1 is probably regulated by cell wall water status. Possible functions of the two types of regulation are discussed.
Collapse
Affiliation(s)
- Martin Canny
- Plant Science Division, Research School of Biology, RN Robertson Building, The Australian National University, Canberra, ACT 0200, Australia. Email
| |
Collapse
|
22
|
Canny M, Wong SC, Huang C, Miller C. Differential shrinkage of mesophyll cells in transpiring cotton leaves: implications for static and dynamic pools of water, and for water transport pathways. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:91-102. [PMID: 32480764 DOI: 10.1071/fp11172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/15/2011] [Indexed: 06/11/2023]
Abstract
Shrinkage of palisade cells during transpiration, previously measured for sclerophyllous leaves of Eucalyptus where cells shrank equally, was compared with shrinkage in thin mesophytic leaves of cotton (Gossypium hirsutum L.). Selected vapour pressure differences (Δe) from 0.6 to 2.7kPa were imposed during steady-state photosynthesis and transpiration. Leaves were then cryo-fixed and cryo-planed paradermally, and images obtained with a cryo-scanning electron microscope (CSEM). Diameters of palisade 'cavity cells' within sub-stomatal cavities, and surrounding palisade 'matrix cells' were measured on CSEM images. Cavity and spongy mesophyll cells shrank progressively down to Δe=2.7kPa, while matrix cells remained at the same diameter at all Δe. Diameters were also measured of cavity and matrix cells quasi-equilibrated with relative humidities (RHs) from 100% to 86%. In leaves quasi-equilibrated with 95% RH, the cavity cells shrank so much as to be almost unmeasurable, while matrix cells shrank by only 6%. These data suggest that there are two distinct pools of water in cotton leaves: cavity plus spongy mesophyll cells (two-thirds of leaf volume) which easily lose water; and matrix cells (one-third of leaf volume), which retain turgor down to relative water loss=0.4, providing structural rigidity to prevent wilting. This phenomenon is probably widespread among mesophytic leaves.
Collapse
Affiliation(s)
- Martin Canny
- Plant Science Division, Research School of Biology, RN Robertson Building, The Australian National University, Canberra, ACT 0200, Australia
| | - Suan Chin Wong
- Plant Science Division, Research School of Biology, RN Robertson Building, The Australian National University, Canberra, ACT 0200, Australia
| | - Cheng Huang
- Centre for Advanced Microscopy, The Australian National University, Canberra, ACT 0200, Australia
| | - Celia Miller
- Division of Plant Industry, CSIRO, Canberra, ACT 2601, Australia
| |
Collapse
|
23
|
McCully M, Canny M. Quantitative cryo-analytical scanning electron microscopy (CEDX): an important technique useful for cell-specific localization of salt. Methods Mol Biol 2012; 913:137-48. [PMID: 22895756 DOI: 10.1007/978-1-61779-986-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Advances in the techniques required for the X-ray microanalysis of cryo-fixed, naturally hydrated plant tissues in the cryo-scanning electron microscope have reached the stage that accurate, cell-specific localization and quantification of the nutrient and toxic elements can be achieved. Advances are described in the successive processes of cryo-fixation, cryo-planing to produce flat surfaces, monitored minimal etching to reveal cell outlines, coating with aluminum, spectrum collection, and quantification by comparison with comparable frozen standard solutions of the elements.
Collapse
|
24
|
Kim HK, Lee SJ. Synchrotron X-ray imaging for nondestructive monitoring of sap flow dynamics through xylem vessel elements in rice leaves. THE NEW PHYTOLOGIST 2010; 188:1085-98. [PMID: 20735745 DOI: 10.1111/j.1469-8137.2010.03424.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A comprehensive understanding of the sap flow dynamics and xylem hydraulic properties is essential to unravel the functional features of water transport from roots to shoots in vascular plants. To evaluate quantitatively the safety and efficiency of this system, nondestructive methods to assess the interactions between sap ascent kinetics and xylem structure are required. In this study, synchrotron X-ray microscopy was employed to observe anatomical structures and sap flow dynamics in rice (Oryza sativa) xylem simultaneously. The phase-contrast imaging technique allowed nondestructive observation of the xylem structural characteristics and the air-water interfaces generated by dehydration-rehydration cycles in excised leaves. This X-ray microimaging method provided a unique tool to characterize the perforated end walls of vessel elements and to evaluate their influence on hydraulic resistance during the refilling of embolized vessels. The real-time monitoring of the axial and radial sap flow under various environmental conditions highlighted the important role of perforation plates. In summary, we report a new methodology to study the sap flow dynamics and xylem hydraulic properties with μm spatial and ms temporal resolution using X-ray microscopy. The experimental procedure described herein provides a useful handle to understand key sap transport phenomena in xylem.
Collapse
Affiliation(s)
- Hae Koo Kim
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja Dong, Nam-Gu, Pohang, Gyeongbuk, 790-784, Korea
| | | |
Collapse
|
25
|
Allan-Wojtas P, Hildebrand PD, Braun PG, Smith-King HL, Carbyn S, Renderos WE. Low temperature and anhydrous electron microscopy techniques to observe the infection process of the bacterial pathogen Xanthomonas fragariae on strawberry leaves. J Microsc 2010; 239:249-58. [PMID: 20701664 DOI: 10.1111/j.1365-2818.2010.03373.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Preserving the structural arrangement of the components of a bacterial infection process within a plant for microscopy study is a technical challenge because of the different requirements of each component for optimal preservation and visualization. We used low temperature scanning electron microscopy (cryo-SEM), anhydrous fixation at ambient temperature and freeze-substitution for transmission electron microscopy to examine fractured and sectioned strawberry leaves infected with Xanthomonas fragariae. Cryo-SEM images of fractured samples showed the bacterial colonization of mesophyll air spaces in the leaf, limited by the vascular bundles and the orientation and packing of bacteria in extracellular polysaccharide. Transmission electron microscopy of samples fixed using osmium tetroxide dissolved in FC-72 solvent at ambient temperature showed that the entire plant/bacteria/extracellular polysaccharide system was preserved in situ, and showed plasmolysis of mesophyll cells and disruption of organelles. In freeze-substitution samples, osmium tetroxide in FC-72 solvent gave superior preservation of the extracellular polysaccharide as compared to a conventional cocktail. In addition, strands believed to be xanthan were preferentially contrasted to show their density and orientation around the bacterial cells. We conclude that anhydrous fixation using osmium tetroxide in FC-72 at ambient temperature gave the best preservation of the entire system, and freeze-substitution using this same fixative enhanced the visualization of strands in the biofilm.
Collapse
Affiliation(s)
- P Allan-Wojtas
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, Kentville, Nova Scotia, Canada B4N 1J5.
| | | | | | | | | | | |
Collapse
|
26
|
Metzner R, Thorpe MR, Breuer U, Blümler P, Schurr U, Schneider HU, Schroeder WH. Contrasting dynamics of water and mineral nutrients in stems shown by stable isotope tracers and cryo-SIMS. PLANT, CELL & ENVIRONMENT 2010; 33:1393-1407. [PMID: 20444220 DOI: 10.1111/j.1365-3040.2010.02157.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Lateral exchange of water and nutrients between xylem and surrounding tissues helps to de-couple uptake from utilization in all parts of a plant. We studied the dynamics of these exchanges, using stable isotope tracers for water (H(2)(18)O), magnesium ((26)Mg), potassium ((41)K) and calcium ((44)Ca) delivered via a cut stem for various periods to the transpiration stream of bean shoots (Phaseolus vulgaris cv. Fardenlosa Shiny). Tracers were subsequently mapped in stem cross-sections with cryo-secondary ion mass spectrometry. The water tracer equilibrated within minutes across the entire cross-section. In contrast, the nutrient tracers showed a very heterogeneous exchange between xylem vessels and the different stem tissues, even after 4 h. Dynamics of nutrients in the tissues revealed a fast and extensive exchange of nutrients in the xylem parenchyma, with, for example, calcium being completely replaced by tracer in less than 5 min. Dilution of potassium tracer during its 30 s transit in xylem sap through the stem showed that potassium concentration was up-regulated over many hours, to the extent that some of it was probably supplied by phloem recirculation from the shoot.
Collapse
Affiliation(s)
- Ralf Metzner
- Central Division of Analytical Chemistry, Forschungszentrum Jülich, Leo Brandt Strasse, 52425 Jülich, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Ishida A, Harayama H, Yazaki K, Ladpala P, Sasrisang A, Kaewpakasit K, Panuthai S, Staporn D, Maeda T, Gamo M, Diloksumpun S, Puangchit L, Ishizuka M. Seasonal variations of gas exchange and water relations in deciduous and evergreen trees in monsoonal dry forests of Thailand. TREE PHYSIOLOGY 2010; 30:935-45. [PMID: 20581012 DOI: 10.1093/treephys/tpq025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This study compared leaf gas exchange, leaf hydraulic conductance, twig hydraulic conductivity and leaf osmotic potential at full turgor between two drought-deciduous trees, Vitex peduncularis Wall. and Xylia xylocarpa (Roxb.) W. Theob., and two evergreen trees, Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels, at the uppermost canopies in tropical dry forests in Thailand. The aims were to examine (i) whether leaf and twig hydraulic properties differ in relation to leaf phenology and (ii) whether xylem cavitation is a determinant of leaf shedding during the dry season. The variations in almost all hydraulic traits were more dependent on species than on leaf phenology. Evergreen Hopea exhibited the lowest leaf-area-specific twig hydraulic conductivity (leaf-area-specific K(twig)), lamina hydraulic conductance (K(lamina)) and leaf osmotic potential at full turgor (Ψ(o)) among species, whereas evergreen Syzygium exhibited the highest leaf-area-specific K(twig), K(lamina) and Ψ(o). Deciduous Xylia had the highest sapwood-area-specific K(twig), along with the lowest Huber value (sapwood area/leaf area). More negative osmotic Ψ(o) and leaf osmotic adjustment during the dry season were found in deciduous Vitex and evergreen Hopea, accompanied by low sapwood-area-specific K(twig). Regarding seasonal changes in hydraulics, no remarkable decrease in K(lamina) and K(twig) was found during the dry season in any species. Results suggest that leaf shedding during the dry season is not always associated with extensive xylem cavitation.
Collapse
Affiliation(s)
- Atsushi Ishida
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki 305-8687, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shane MW, McCully ME, Canny MJ, Pate JS, Huang C, Ngo H, Lambers H. Seasonal water relations of Lyginia barbata (Southern rush) in relation to root xylem development and summer dormancy of root apices. THE NEW PHYTOLOGIST 2010; 185:1025-1037. [PMID: 20085620 DOI: 10.1111/j.1469-8137.2009.03143.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
*Periods of dormancy in shallow roots allow perennial monocotyledons to establish deep root systems, but we know little about patterns of xylem maturation, water-transport capacities and associated economies in water use of growing and dormant roots. *Xylem development, anatomy, conductance and in situ cellular [K] and [Cl] were investigated in roots of field-grown Lyginia barbata (Restionaceae) in Mediterranean southwestern Australia. Parallel studies of gas exchange, culm relative water loss and soil water content were conducted. *Stomatal conductance and photosynthesis decreased during summer drought as soil profiles dried, but rates recovered when dormant roots became active with the onset of wetter conditions. Anatomical studies identified sites of close juxtaposition of phloem and xylem in dormant and growing roots. Ion data and dye tracing showed mature late metaxylem of growing roots was located >or= 100 mm from the tip, but at only <or= 10 mm for dormant roots. Dormant roots remained hydrated in dry soils (0.001-0.005 g g(-1)). *Effective regulation of growth and water-conserving/obtaining properties permits the survival of shallow roots of L. barbata during summer drought and may represent important strategies for establishing deeper perennial root systems in other monocotyledonous plants adapted to seasonally dry habitats.
Collapse
Affiliation(s)
- Michael W Shane
- School of Plant Biology, The University of Western Australia, Crawley, WA, Australia.
| | | | | | | | | | | | | |
Collapse
|
29
|
Rhizosphere Signals for Plant–Microbe Interactions: Implications for Field-Grown Plants. PROGRESS IN BOTANY 72 2010. [DOI: 10.1007/978-3-642-13145-5_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Ensikat HJ, Schulte AJ, Koch K, Barthlott W. Droplets on superhydrophobic surfaces: visualization of the contact area by cryo-scanning electron microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:13077-83. [PMID: 19899819 DOI: 10.1021/la9017536] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The contact area between liquids and solid surfaces plays the crucial role in the wetting and self-cleaning properties of surfaces. In this study, we have developed a cryo-preparation method to visualize the contact area between liquids and superhydrophobic biological surfaces by scanning electron microscopy. Aqueous liquids that do not crystallize during freezing, such as glycerol and phosphoric acid, were used. First, the samples in contact with the liquid droplets were cooled with liquid nitrogen. After this, the droplets were separated and the contact areas on the frozen droplets were visualized by scanning electron microscopy. The contact areas of droplets on various biological and artificial surfaces with microstructure, nanostructure, and hierarchical structures are shown in detail. It could be shown that spaces between nanostructures were not penetrated by the droplet, which rested only on top of the structures. Measurements of the contact areas showed the largest reduction in the solid-liquid contact area on hierarchically structured leaf surfaces. On these surfaces, the droplets are in the "Cassie state" at both levels of surface structuring. On plant surfaces, the varying height of the epidermal cells and the surface relief caused considerable variations in the contact between droplet and surface. The examples demonstrate that this new approach provides detailed insights into the wetting behavior of surfaces in the Cassie state with partial contact with the liquid.
Collapse
Affiliation(s)
- Hans J Ensikat
- Rheinische Friedrich-Wilhelms University of Bonn, Nees Institute for Biodiversity of Plants, Meckenheimer Allee 170, 53115 Bonn, Germany.
| | | | | | | |
Collapse
|
31
|
Salleo S, Trifilò P, Esposito S, Nardini A, Lo Gullo MA. Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: a component of the signal pathway for embolism repair? FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:815-825. [PMID: 32688691 DOI: 10.1071/fp09103] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 07/19/2009] [Indexed: 06/11/2023]
Abstract
The ability of stems of Laurus nobilis (L.) to refill embolised xylem conduits was studied in plants both at optimal water supply (W) and under conditions of soil drought inducing xylem pressures (Px) of -1.54 (S1) and -2.35 MPa (S2). Starch depolymerisation in wood parenchyma was measured as percentage of cells 'with high starch content' (HSC-cells) counted under a microscope. HSC-cells decreased during embolism and increased again in refilled stems. A direct relationship was found between percentage of HSC-cells and Px, with HSC-cells between 65 and 75% of the total at Px ≥ -0.6 MPa, at which recovery from PLC was recorded. At low transpiration, starch re-appeared in wood parenchyma cells but only in plants that showed diurnal stomatal opening (W- and S1-plants). In S2-plants showing diurnal stomatal closure and nocturnal opening with Px between -1.2 to -2.4 MPa, HSC-cells were only 25% and plants did not recover from PLC. This finding suggests that (i) the Px threshold for embolism repair was ≥ -0.6 MPa, and (ii) impeded phloem loading limits starch content in wood parenchyma and embolism repair. We conclude that starch depolymerisation acts as a signal to phloem unloading sugars to embolised conduits thus generating the necessary osmotic gradients driving refilling.
Collapse
Affiliation(s)
- Sebastiano Salleo
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italia
| | - Patrizia Trifilò
- Dipartimento di Scienze della Vita, 'M. Malpighi' sezione Botanica, Università di Messina, Salita Sperone 31, 98166 Messina, S. Agata, Italia
| | - Sara Esposito
- Dipartimento di Scienze della Vita, 'M. Malpighi' sezione Botanica, Università di Messina, Salita Sperone 31, 98166 Messina, S. Agata, Italia
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italia
| | - Maria A Lo Gullo
- Dipartimento di Scienze della Vita, 'M. Malpighi' sezione Botanica, Università di Messina, Salita Sperone 31, 98166 Messina, S. Agata, Italia
| |
Collapse
|