1
|
Losada JM, Holbrook NM. Scaling of phloem hydraulic resistance in stems and leaves of the understory angiosperm shrub Illicium parviflorum. AMERICAN JOURNAL OF BOTANY 2019; 106:244-259. [PMID: 30793276 DOI: 10.1002/ajb2.1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Recent studies in canopy-dominant trees revealed axial scaling of phloem structure. However, whether this pattern is found in woody plants of the understory, the environment of most angiosperms from the ANA grade (Amborellales-Nymphaeales-Austrobaileyales), is unknown. METHODS We used seedlings and adult plants of the understory tropical shrub Illicium parviflorum, a member of the lineage Austrobaileyales, to explore the anatomy and physiology of the phloem in their aerial parts, including changes through ontogeny. KEY RESULTS Adult plants maintain a similar proportion of phloem tissue across stem diameters, but larger conduit dimensions and number cause the hydraulic resistance of the phloem to decrease toward the base of the plant. Small sieve plate pores resulted in an overall higher sieve tube hydraulic resistance than has been reported in other woody angiosperms. Sieve elements increase in size from minor to major leaf veins, but were shorter and narrower in petioles. The low carbon assimilation rates of seedlings and mature plants contrasted with a 3-fold higher phloem sap velocity in seedlings, suggesting that phloem transport velocity is modulated through ontogeny. CONCLUSIONS The overall architecture of the phloem tissue in this understory angiosperm shrub scales in a manner consistent with taller trees that make up the forest canopy. Thus, the evolution of larger sieve plate pores in canopy-dominant trees may have played a key role in allowing woody angiosperms to extend beyond their understory origins.
Collapse
Affiliation(s)
- Juan M Losada
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
- Arnold Arboretum of Harvard University, 1300 Centre St., Boston, MA, 02130, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
- Arnold Arboretum of Harvard University, 1300 Centre St., Boston, MA, 02130, USA
| |
Collapse
|
2
|
Dietrich D, Pang L, Kobayashi A, Fozard JA, Boudolf V, Bhosale R, Antoni R, Nguyen T, Hiratsuka S, Fujii N, Miyazawa Y, Bae TW, Wells DM, Owen MR, Band LR, Dyson RJ, Jensen OE, King JR, Tracy SR, Sturrock CJ, Mooney SJ, Roberts JA, Bhalerao RP, Dinneny JR, Rodriguez PL, Nagatani A, Hosokawa Y, Baskin TI, Pridmore TP, De Veylder L, Takahashi H, Bennett MJ. Root hydrotropism is controlled via a cortex-specific growth mechanism. NATURE PLANTS 2017; 3:965-972. [PMID: 28481327 DOI: 10.1038/s41477-017-0064-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/27/2017] [Indexed: 05/24/2023]
Abstract
Plants can acclimate by using tropisms to link the direction of growth to environmental conditions. Hydrotropism allows roots to forage for water, a process known to depend on abscisic acid (ABA) but whose molecular and cellular basis remains unclear. Here we show that hydrotropism still occurs in roots after laser ablation removed the meristem and root cap. Additionally, targeted expression studies reveal that hydrotropism depends on the ABA signalling kinase SnRK2.2 and the hydrotropism-specific MIZ1, both acting specifically in elongation zone cortical cells. Conversely, hydrotropism, but not gravitropism, is inhibited by preventing differential cell-length increases in the cortex, but not in other cell types. We conclude that root tropic responses to gravity and water are driven by distinct tissue-based mechanisms. In addition, unlike its role in root gravitropism, the elongation zone performs a dual function during a hydrotropic response, both sensing a water potential gradient and subsequently undergoing differential growth.
Collapse
Affiliation(s)
- Daniela Dietrich
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant &Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Lei Pang
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Akie Kobayashi
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - John A Fozard
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
| | - Véronique Boudolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 927), 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052 Ghent, Belgium
| | - Rahul Bhosale
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant &Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 927), 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052 Ghent, Belgium
| | - Regina Antoni
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
| | - Tuan Nguyen
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
| | - Sotaro Hiratsuka
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yutaka Miyazawa
- Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
| | - Tae-Woong Bae
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Darren M Wells
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant &Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Markus R Owen
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Centre for Mathematical Medicine &Biology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Leah R Band
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Centre for Mathematical Medicine &Biology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Rosemary J Dyson
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
| | - Oliver E Jensen
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - John R King
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Centre for Mathematical Medicine &Biology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Saoirse R Tracy
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Craig J Sturrock
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Sacha J Mooney
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Jeremy A Roberts
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant &Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, SLU, S-901 83 Umea, Sweden
- College of Science, KSU, Riyadh, Saudi Arabia
| | - José R Dinneny
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Akira Nagatani
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoichiroh Hosokawa
- Graduate School of Materials Science, Nara Institute of Science &Technology, Ikoma 630-0101, Japan
| | - Tobias I Baskin
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003-9297, USA
| | - Tony P Pridmore
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 927), 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052 Ghent, Belgium
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant &Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| |
Collapse
|
3
|
Thornley JHM, Parsons AJ. Allocation of new growth between shoot, root and mycorrhiza in relation to carbon, nitrogen and phosphate supply: teleonomy with maximum growth rate. J Theor Biol 2013; 342:1-14. [PMID: 24140786 DOI: 10.1016/j.jtbi.2013.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/27/2013] [Accepted: 10/07/2013] [Indexed: 11/27/2022]
Abstract
Treating resource allocation within plants, and between plants and associated organisms, is essential for plant, crop and ecosystem modelling. However, it is still an unresolved issue. It is also important to consider quantitatively when it is efficient and to what extent a plant can invest profitably in a mycorrhizal association. A teleonomic model is used to address these issues. A six state-variable model giving exponential growth is constructed. This represents carbon (C), nitrogen (N) and phosphorus (P) substrates with structure in shoot, root and mycorrhiza. The shoot is responsible for uptake of substrate C, the root for substrates N and P, and the mycorrhiza also for substrates N and P. A teleonomic goal, maximizing proportional growth rate, is solved analytically for the allocation fractions. Expressions allocating new dry matter to shoot, root and mycorrhiza are derived which maximize growth rate. These demonstrate several key intuitive phenomena concerning resource sharing between plant components and associated mycorrhizae. For instance, if root uptake rate for phosphorus is equal to that achievable by mycorrhiza and without detriment to root uptake rate for nitrogen, then this gives a faster growing mycorrhizal-free plant. However, if root phosphorus uptake is below that achievable by mycorrhiza, then a mycorrhizal association may be a preferred strategy. The approach offers a methodology for introducing resource sharing between species into ecosystem models. Applying teleonomy may provide a valuable short-term means of modelling allocation, avoiding the circularity of empirical models, and circumventing the complexities and uncertainties inherent in mechanistic approaches. However it is subjective and brings certain irreducible difficulties with it.
Collapse
Affiliation(s)
- John H M Thornley
- Centre for Nutrition Modelling, Department of Animal & Poultry Science, University of Guelph, Guelph, Ont., Canada N1G 2W1.
| | - Anthony J Parsons
- Institute of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|