1
|
Parrado JD, Savin R, Slafer GA. Photoperiod sensitivity of Ppd-H1 and ppd-H1 isogenic lines of a spring barley cultivar: exploring extreme photoperiods. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6608-6618. [PMID: 37658847 DOI: 10.1093/jxb/erad342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Barley is a long-day plant with a major gene (PPD-H1) that determines its photoperiod sensitivity. Under long days (i.e. 16 h), flowering occurs earlier in sensitive (Ppd-H1) than in insensitive (ppd-H1) genotypes, while under short days (i.e. 12 h) both flower late and more or less simultaneously. We hypothesized that (i) the sensitive line should flower later than the insensitive line under very short days (<12 h), and (ii) both the sensitive and insensitive lines should have similar phenology under very long days (>18 h). When comparing a pair of spring isogenic lines for sensitive and insensitive PPD-H1 alleles (introgressing the PPD-H1 allele into the barley cultivar 'WI4441'), we found responses fully in line with expectations for the commonly explored range from 12 to 16-18 h. When the responses were extended to very short days, sensitivity increased noticeably, and time to flowering of the sensitive line was longer than that of the insensitive one. Under very long days, the sensitive line did not respond further (it seemed to have reached its minimum time to flowering under a 16 h period), while the insensitive line continued shortening its time to flowering until c. 21 h. Consequently, both lines flowered similarly under very long days, which opens opportunities to easily test for differences in earliness per se, as in wheat.
Collapse
Affiliation(s)
- Jorge D Parrado
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida-AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Roxana Savin
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida-AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Gustavo A Slafer
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida-AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain
- ICREA, Catalonian Institution for Research and Advanced Studies, Spain
| |
Collapse
|
2
|
Ning S, Li S, Xu K, Liu D, Ma L, Ma C, Hao M, Zhang L, Chen W, Zhang B, Jiang Y, Huang L, Chen X, Jiang B, Yuan Z, Liu D. Development and Characterization of Near-Isogenic Lines Derived from Synthetic Wheat Revealing the 2 kb Insertion in the PPD-D1 Gene Responsible for Heading Delay and Grain Number Improvement. Int J Mol Sci 2023; 24:10834. [PMID: 37446014 DOI: 10.3390/ijms241310834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Spikelet number and grain number per spike are two crucial and correlated traits for grain yield in wheat. Photoperiod-1 (Ppd-1) is a key regulator of inflorescence architecture and spikelet formation in wheat. In this study, near-isogenic lines derived from the cross of a synthetic hexaploid wheat and commercial cultivars generated by double top-cross and two-phase selection were evaluated for the number of days to heading and other agronomic traits. The results showed that heading time segregation was conferred by a single incomplete dominant gene PPD-D1, and the 2 kb insertion in the promoter region was responsible for the delay in heading. Meanwhile, slightly delayed heading plants and later heading plants obviously have advantages in grain number and spikelet number of the main spike compared with early heading plants. Utilization of PPD-D1 photoperiod sensitivity phenotype as a potential means to increase wheat yield potential.
Collapse
Affiliation(s)
- Shunzong Ning
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengke Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Kai Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongmei Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunfang Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenjie Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Bo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Yun Jiang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Slafer GA, Casas AM, Igartua E. Sense in sensitivity: difference in the meaning of photoperiod-insensitivity between wheat and barley. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad128. [PMID: 37021554 DOI: 10.1093/jxb/erad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 06/19/2023]
Abstract
The description of long photoperiod sensitivity in wheat and barley is a cause of confusion for researchers working in these crops, usually accustomed to free exchange of physiological and genetic knowledge of such similar crops. Indeed, wheat and barley scientists customarily quote studies of either crop species when researching one of them. Among their numerous similarities the main gene controlling that response is the same in both crops (PPD1; PPD-H1 in barley and PPD-D1 in hexaploid wheat). However, the photoperiod responses are different: (i) the main dominant allele inducing shorter time to anthesis is the insensitive allele in wheat (Ppd-D1a) but the sensitive allele in barley (Ppd-H1) (i.e. sensitivity to photoperiod produces opposite effects on time to heading in wheat and barley), (ii) the main "insensitive" allele in wheat, Ppd-D1a, does confer insensitivity, whilst that of barley reduces the sensitivity but still responds to photoperiod. The different behaviour of PPD1 genes in wheat and barley is put in a common framework based on the similarities and differences of the molecular bases of their mutations, which include polymorphism at gene expression levels, copy number variation, and sequence of coding regions. This common perspective sheds light on a source on confusion for cereal researchers, and prompts us to recommend accounting for the photoperiod sensitivity status of the plant materials when doing research on genetic control of phenology. Finally, we provide advice to facilitate the management of natural PPD1 diversity in breeding programs and suggest targets for further modification through gene editing, based on mutual knowledge on the two crops.
Collapse
Affiliation(s)
- Gustavo A Slafer
- Department of Crop and Forest Sciences University of Lleida and AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain
- ICREA, Catalonian Institution for Research and Advanced Studies, Spain
| | - Ana M Casas
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD, CSIC, Avda. Montañana 1005, E-50059 Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Aula Dei Experimental Station, EEAD, CSIC, Avda. Montañana 1005, E-50059 Zaragoza, Spain
| |
Collapse
|
4
|
Lepekhov SB. Prospect for Incorporation of Ppd-D1a Allele in Russian Spring Bread Wheat Cultivars. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422010069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Wheat Developmental Traits as Affected by the Interaction between Eps-7D and Temperature under Contrasting Photoperiods with Insensitive Ppd-D1 Background. PLANTS 2021; 10:plants10030547. [PMID: 33805828 PMCID: PMC7999118 DOI: 10.3390/plants10030547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 01/14/2023]
Abstract
Earliness per se (Eps) genes are important to fine tune adaptation, and studying their probable pleiotropic effect on wheat yield traits is worthwhile. In addition, it has been shown that some Eps genes interact with temperature and therefore determining the likely Eps × temperature interaction is needed for each newly identified Eps gene. We studied two NILs differing in the newly identified Eps-7D (carrying insensitive Ppd-D1 in the background) under three temperature regimes (9, 15 and 18 °C) and two photoperiods (12 and 24 h). Eps-7D affected time to anthesis as expected and the Eps-7D-late allele extended both the period before and after terminal spikelet. The interaction effect of Eps-7D × temperature was significant but not cross-over: the magnitude and level of significance of the difference between NILs with the late or early allele was affected by the growing temperature (i.e., difference was least at 18 °C and largest at 9 °C), and the differences caused due to temperature sensitivity were influenced by photoperiod. The rate of leaf initiation was faster in NIL with Eps-7D-early than with the late allele which compensated for the shorter duration of leaf initiation resulting in similar final leaf number between two NILs. Eps-7D-late consistently increased spike fertility through improving floret primordia survival as a consequence of extending the late reproductive phase.
Collapse
|
6
|
Basavaraddi PA, Savin R, Bencivenga S, Griffiths S, Slafer GA. Phenology and Floret Development as Affected by the Interaction between Eps-7D and Ppd-D1. PLANTS 2021; 10:plants10030533. [PMID: 33809009 PMCID: PMC8001856 DOI: 10.3390/plants10030533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
Earliness per se (Eps) genes may play a critical role in further improving wheat adaptation and fine-tuning wheat development to cope with climate change. There are only few studies on the detailed effect of Eps on wheat development and fewer on the interaction of Eps with the environment and other genes determining time to anthesis. Furthermore, it seems relevant to study every newly discovered Eps gene and its probable interactions as the mechanisms and detailed effects of each Eps may be quite different. In the present study, we evaluated NILs differing in the recently identified Eps-7D as well as in Ppd-D1 at three temperature regimes (9, 15 and 18 °C) under short day. The effect of Eps-7D on time to anthesis as well as on its component phases varied both qualitatively and quantitatively depending on the allelic status of Ppd-D1 and temperature, being larger in a photoperiod-sensitive background. A more noticeable effect of Eps-7D (when combined with Ppd-D1b) was realised during the late reproductive phase. Consequently, the final leaf number was not clearly altered by Eps-7D, while floret development of the labile florets (florets 2 and 3 in this case, depending on the particular spikelet) was favoured by the action of the Eps-7D-late allele, increasing the likelihood of particular florets to become fertile, and consequently, improving spike fertility when combined with Ppd-D1b.
Collapse
Affiliation(s)
- Priyanka A. Basavaraddi
- Department of Crop and Forest Sciences-AGROTECNIO CERCA Center, University of Lleida, Av. R. Roure 191, 25198 Lleida, Spain; (P.A.B.); (R.S.)
| | - Roxana Savin
- Department of Crop and Forest Sciences-AGROTECNIO CERCA Center, University of Lleida, Av. R. Roure 191, 25198 Lleida, Spain; (P.A.B.); (R.S.)
| | - Stefano Bencivenga
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK; (S.B.); (S.G.)
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK; (S.B.); (S.G.)
| | - Gustavo A. Slafer
- Department of Crop and Forest Sciences-AGROTECNIO CERCA Center, University of Lleida, Av. R. Roure 191, 25198 Lleida, Spain; (P.A.B.); (R.S.)
- ICREA, Catalonian Institution for Research and Advanced Studies, 23, 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
7
|
Basavaraddi PA, Savin R, Wingen LU, Bencivenga S, Przewieslik-Allen AM, Griffiths S, Slafer GA. Interactions between two QTLs for time to anthesis on spike development and fertility in wheat. Sci Rep 2021; 11:2451. [PMID: 33510240 PMCID: PMC7843729 DOI: 10.1038/s41598-021-81857-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
Earliness per se (Eps) genes are reported to be important in fine-tuning flowering time in wheat independently of photoperiod (Ppd) and vernalisation (Vrn). Unlike Ppd and Vrn genes, Eps have relatively small effects and their physiological effect along with chromosomal position are not well defined. We evaluated eight lines derived from crossing two vernalisation insensitive lines, Paragon and Baj (late and early flowering respectively), to study the detailed effects of two newly identified QTLs, Eps-7D and Eps-2B and their interactions under field conditions. The effect of both QTLs was minor and was affected by the allelic status of the other. While the magnitude of effect of these QTLs on anthesis was similar, they are associated with very different profiles of pre-anthesis development which also depends on their interaction. Eps-7D affected both duration before and after terminal spikelet while not affecting final leaf number (FLN) so Eps-7D-early had a faster rate of leaf appearance. Eps-2B acted more specifically in the early reproductive phase and slightly altered FLN without affecting the leaf appearance rate. Both QTLs affected the spike fertility by altering the rate of floret development and mortality. The effect of Eps-2B was very small but consistent in that -late allele tended to produce more fertile florets.
Collapse
Affiliation(s)
- Priyanka A. Basavaraddi
- grid.15043.330000 0001 2163 1432Department of Crop and Forest Sciences, University of Lleida-AGROTECNIO Center, Av. R. Roure 191, 25198 Lleida, Spain
| | - Roxana Savin
- grid.15043.330000 0001 2163 1432Department of Crop and Forest Sciences, University of Lleida-AGROTECNIO Center, Av. R. Roure 191, 25198 Lleida, Spain
| | - Luzie U. Wingen
- grid.14830.3e0000 0001 2175 7246John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Stefano Bencivenga
- grid.14830.3e0000 0001 2175 7246John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | | | - Simon Griffiths
- grid.14830.3e0000 0001 2175 7246John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Gustavo A. Slafer
- grid.15043.330000 0001 2163 1432Department of Crop and Forest Sciences, University of Lleida-AGROTECNIO Center, Av. R. Roure 191, 25198 Lleida, Spain ,grid.425902.80000 0000 9601 989XICREA, Catalonian Institution for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
8
|
Prieto P, Ochagavía H, Griffiths S, Slafer GA. Earliness per se×temperature interaction: consequences on leaf, spikelet, and floret development in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1956-1968. [PMID: 31875911 PMCID: PMC7242086 DOI: 10.1093/jxb/erz568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/20/2019] [Indexed: 05/28/2023]
Abstract
Wheat adaptation can be fine-tuned by earliness per se (Eps) genes. Although the effects of Eps genes are often assumed to act independently of the environment, previous studies have shown that they exhibit temperature sensitivity. The number of leaves and phyllochron are considered determinants of flowering time and the numerical components of yield include spikelets per spike and fertile floret number within spikelets. We studied the dynamics of leaf, spikelet, and floret development in near isogenic lines with either late or early alleles of Eps-D1 under seven temperature regimes. Leaf appearance dynamics were modulated by temperature, and Eps alleles had a greater effect on the period from flag leaf to heading than phyllochron. In addition, the effects of the Eps alleles on spikelets per spike were minor, and more related to spikelet plastochron than the duration of the early reproductive phase. However, fertile floret number was affected by the interaction between Eps alleles and temperature. So, at 9 °C, Eps-early alleles had more fertile florets than Eps-late alleles, at intermediate temperatures there was no significant difference, and at 18 °C (the highest temperature) the effect was reversed, with lines carrying the late allele producing more fertile florets. These effects were mediated through changes in floret survival; there were no clear effects on the maximum number of floret primordia.
Collapse
Affiliation(s)
- Paula Prieto
- Department of Crop and Forest Sciences, University of Lleida - AGROTECNIO Center, Lleida, Spain
| | - Helga Ochagavía
- Department of Crop and Forest Sciences, University of Lleida - AGROTECNIO Center, Lleida, Spain
| | | | - Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida - AGROTECNIO Center, Lleida, Spain
- ICREA, Catalonian Institution for Research and Advanced Studies, Spain
| |
Collapse
|
9
|
Senapati N, Semenov MA. Large genetic yield potential and genetic yield gap estimated for wheat in Europe. GLOBAL FOOD SECURITY 2020; 24:100340. [PMID: 32190539 PMCID: PMC7063691 DOI: 10.1016/j.gfs.2019.100340] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 11/07/2022]
Abstract
Improving yield potential and closing the yield gap are important to achieve global food security. Europe is the largest wheat producer, delivering about 35% of wheat globally, but European wheat's yield potential from genetic improvements is as yet unknown. We estimated wheat 'genetic yield potential', i.e. the yield of optimal or ideal genotypes in a target environment, across major wheat growing regions in Europe by designing in silico ideotypes. These ideotypes were optimised for current climatic conditions and based on optimal physiology, constrained by available genetic variation in target traits. A 'genetic yield gap' in a location was estimated as the difference between the yield potential of the optimal ideotype compared with a current, well-adapted cultivar. A large mean genetic yield potential (11-13 t ha-1) and genetic yield gap (3.5-5.2 t ha-1) were estimated under rainfed conditions in Europe. In other words, despite intensive wheat breeding efforts, current local cultivars were found to be far from their optimum, meaning that a large genetic yield gap still exists in European wheat. Heat and drought tolerance around flowering, optimal canopy structure and phenology, improved root water uptake and reduced leaf senescence under drought were identified as key traits for improvement. Closing this unexploited genetic yield gap in Europe through crop improvements and genetic adaptations could contribute towards global food security.
Collapse
Affiliation(s)
| | - Mikhail A. Semenov
- Department of Plant Sciences, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| |
Collapse
|
10
|
Pérez-Gianmarco TI, Slafer GA, González FG. Photoperiod-sensitivity genes shape floret development in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1339-1348. [PMID: 30576503 PMCID: PMC6382326 DOI: 10.1093/jxb/ery449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/11/2018] [Indexed: 05/28/2023]
Abstract
Lengthening the pre-anthesis period of stem elongation (or late-reproductive phase, LRP) through altering photoperiod sensitivity has been suggested as a potential means to increase the number of fertile florets at anthesis (NFF) in wheat. However, little is known about the effects that the Ppd-1 genes modulating plant response to photoperiod may have on reproductive development. Here, five genotypes with either sensitive (b) or insensitive (a) alleles were grown in chambers under contrasting photoperiods (12 h or 16 h) to assess their effects. The genotypes consisted of the control cultivar Paragon (three Ppd-1b) and four near-isogenic lines of Paragon with Ppd-1a alleles introgressed from: Chinese Spring (Ppd-B1a), GS-100 (Ppd-A1a), Sonora 64 (Ppd-D1a), and Triple Insensitive (three Ppd-1a). Under a 12-h photoperiod, NFF in the genotypes followed the order three Ppd-1b > Ppd-B1a > Ppd-A1a > Ppd-D1a > three Ppd-1a. Under a 16-h photoperiod the differences were milder, but three Ppd-1b still had a greater NFF than the rest. As Ppd-1a alleles shortened the LRP, spikes were lighter and the NFF decreased. The results demonstrated for the first time that Ppd-1a decreases the maximum number of florets initiated through shortening the floret initiation phase, and this partially explained the variations in NFF. The most important impact of Ppd-1a alleles, however, was related to a reduction in survival of floret primordia, which resulted in the lower NFF. These findings reinforce the idea that an increased duration of the LRP, achieved through photoperiod sensitivity, would be useful for increasing wheat yield potential.
Collapse
Affiliation(s)
- Thomas I Pérez-Gianmarco
- Department of Crop and Forest Sciences, and AGROTECNIO (Center for Research in Agrotechnology), University of Lleida, Lleida, Spain
- CITNOBA, CONICET-UNNOBA. Pergamino, Buenos Aires, Argentina
| | - Gustavo A Slafer
- Department of Crop and Forest Sciences, and AGROTECNIO (Center for Research in Agrotechnology), University of Lleida, Lleida, Spain
- ICREA (Catalonian Institution for Research and Advanced Studies), Spain
| | - Fernanda G González
- CITNOBA, CONICET-UNNOBA. Pergamino, Buenos Aires, Argentina
- EEA Pergamino INTA. Pergamino, Buenos Aires, Argentina
| |
Collapse
|
11
|
Ochagavía H, Prieto P, Savin R, Griffiths S, Slafer G. Dynamics of leaf and spikelet primordia initiation in wheat as affected by Ppd-1a alleles under field conditions. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2621-2631. [PMID: 29562296 PMCID: PMC5920321 DOI: 10.1093/jxb/ery104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/10/2018] [Indexed: 05/20/2023]
Abstract
Wheat adaptation is affected by Ppd genes, but the role of these alleles in the rates of leaf and spikelet initiation has not been properly analysed. Twelve near isogenic lines (NILs) combining Ppd-1a alleles from different donors introgressed in A, B, and/or D genomes were tested under field conditions during two growing seasons together with the wild type, Paragon. Leaf initiation rate was unaffected by Ppd-1a alleles so the final leaf number (FLN) was reduced in parallel with reductions in the duration of the vegetative phase. Spikelet primordia initiation was accelerated and consequently the effect on spikelets per spike was less than proportional to the effect on the duration of spikelet initiation. The magnitude of these effects on spikelet plastochron depended on the doses of Ppd-1 homoeoalleles and the specific insensitivity alleles carried. Double ridge was consistently later than floral initiation, but the difference between them was not affected by Ppd-1a alleles. These findings have potential for selecting the best combinations from the Ppd-1 homoeoallelic series for manipulating adaptation taking into consideration particular effects on spikelet number.
Collapse
Affiliation(s)
- Helga Ochagavía
- Department of Crop and Forest Sciences and AGROTECNIO (Center for Research in Agrotechnology), University of Lleida, Av. Rovira Roure, Lleida, Spain
| | - Paula Prieto
- Department of Crop and Forest Sciences and AGROTECNIO (Center for Research in Agrotechnology), University of Lleida, Av. Rovira Roure, Lleida, Spain
| | - Roxana Savin
- Department of Crop and Forest Sciences and AGROTECNIO (Center for Research in Agrotechnology), University of Lleida, Av. Rovira Roure, Lleida, Spain
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | - GustavoA Slafer
- Department of Crop and Forest Sciences and AGROTECNIO (Center for Research in Agrotechnology), University of Lleida, Av. Rovira Roure, Lleida, Spain
- ICREA, Catalonian Institution for Research and Advanced Studies, Spain
| |
Collapse
|