1
|
Plett KL, Bithell SL, Dando A, Plett JM. Chickpea shows genotype-specific nodulation responses across soil nitrogen environment and root disease resistance categories. BMC PLANT BIOLOGY 2021; 21:310. [PMID: 34210277 PMCID: PMC8247157 DOI: 10.1186/s12870-021-03102-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/20/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND The ability of chickpea to obtain sufficient nitrogen via its symbiotic relationship with Mesorhizobium ciceri is of critical importance in supporting growth and grain production. A number of factors can affect this symbiotic relationship including abiotic conditions, plant genotype, and disruptions to host signalling/perception networks. In order to support improved nodule formation in chickpea, we investigated how plant genotype and soil nutrient availability affect chickpea nodule formation and nitrogen fixation. Further, using transcriptomic profiling, we sought to identify gene expression patterns that characterize highly nodulated genotypes. RESULTS A study involving six chickpea varieties demonstrated large genotype by soil nitrogen interaction effects on nodulation and further identified agronomic traits of genotypes (such as shoot weight) associated with high nodulation. We broadened our scope to consider 29 varieties and breeding lines to examine the relationship between soilborne disease resistance and the number of nodules developed and real-time nitrogen fixation. Results of this larger study supported the earlier genotype specific findings, however, disease resistance did not explain differences in nodulation across genotypes. Transcriptional profiling of six chickpea genotypes indicates that genes associated with signalling, N transport and cellular localization, as opposed to genes associated with the classical nodulation pathway, are more likely to predict whether a given genotype will exhibit high levels of nodule formation. CONCLUSIONS This research identified a number of key abiotic and genetic factors affecting chickpea nodule development and nitrogen fixation. These findings indicate that an improved understanding of genotype-specific factors affecting chickpea nodule induction and function are key research areas necessary to improving the benefits of rhizobial symbiosis in chickpea.
Collapse
Affiliation(s)
- Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Sean L Bithell
- New South Wales Department of Primary Industries, Tamworth, NSW, Australia
| | - Adrian Dando
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.
| |
Collapse
|
2
|
Cockerton HM, Li B, Stavridou E, Johnson A, Karlström A, Armitage AD, Martinez-Crucis A, Galiano-Arjona L, Harrison N, Barber-Pérez N, Cobo-Medina M, Harrison RJ. Genetic and phenotypic associations between root architecture, arbuscular mycorrhizal fungi colonisation and low phosphate tolerance in strawberry (Fragaria × ananassa). BMC PLANT BIOLOGY 2020; 20:154. [PMID: 32272878 PMCID: PMC7146916 DOI: 10.1186/s12870-020-02347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/20/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Phosphate is an essential plant macronutrient required to achieve maximum crop yield. Roots are able to uptake soil phosphate from the immediate root area, thus creating a nutrient depletion zone. Many plants are able to exploit phosphate from beyond this root nutrient depletion zone through symbiotic association with Arbuscular Mycorrhizal Fungi (AMF). Here we characterise the relationship between root architecture, AMF association and low phosphate tolerance in strawberries. The contrasting root architecture in the parental strawberry cultivars 'Redgauntlet' and 'Hapil' was studied through a mapping population of 168 progeny. Low phosphate tolerance and AMF association was quantified for each genotype to allow assessment of the phenotypic and genotypic relationships between traits. RESULTS A "phosphate scavenging" root phenotype where individuals exhibit a high proportion of surface lateral roots was associated with a reduction in root system size across genotypes. A genetic correlation between "root system size" traits was observed with a network of pleiotropic QTL found to represent five "root system size" traits. By contrast, average root diameter and the distribution of roots appeared to be under two discrete methods of genetic control. A total of 18 QTL were associated with plant traits, 4 of which were associated with solidity that explained 46% of the observed variation. Investigations into the relationship between AMF association and root architecture found that a higher root density was associated with greater AMF colonisation across genotypes. However, no phenotypic correlation or genotypic association was found between low phosphate tolerance and the propensity for AMF association, nor root architectural traits when plants are grown under optimal nutrient conditions. CONCLUSIONS Understanding the genetic relationships underpinning phosphate capture can inform the breeding of strawberry varieties with better nutrient use efficiency. Solid root systems were associated with greater AMF colonisation. However, low P-tolerance was not phenotypically or genotypically associated with root architecture traits in strawberry plants. Furthermore, a trade-off was observed between root system size and root architecture type, highlighting the energetic costs associated with a "phosphate scavenging" root architecture.
Collapse
Affiliation(s)
| | - Bo Li
- NIAB EMR, New Road, East Malling, Kent, ME19 6BJ UK
- University of the West of England, Bristol, UK
| | | | | | | | | | | | | | - Nicola Harrison
- NIAB EMR, New Road, East Malling, Kent, ME19 6BJ UK
- AHDB, Agriculture and Horticulture Development Board, Stoneleigh Park, Kenilworth, Warwickshire CV8 2TL UK
| | | | | | | |
Collapse
|