1
|
Huang Y, Schnurbusch T. The Birth and Death of Floral Organs in Cereal Crops. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:427-458. [PMID: 38424062 DOI: 10.1146/annurev-arplant-060223-041716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Florets of cereal crops are the basic reproductive organs that produce grains for food or feed. The birth of a floret progresses through meristem initiation and floral organ identity specification and maintenance. During these processes, both endogenous and external cues can trigger a premature floral organ death, leading to reproductive failure. Recent advances in different cereal crops have identified both conserved and distinct regulators governing the birth of a floret. However, the molecular underpinnings of floral death are just beginning to be understood. In this review, we first provide a general overview of the current findings in the field of floral development in major cereals and outline different forms of floral deaths, particularly in the Triticeae crops. We then highlight the importance of vascular patterning and photosynthesis in floral development and reproductive success and argue for an expanded knowledge of floral birth-death balance in the context of agroecology.
Collapse
Affiliation(s)
- Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
2
|
Shanmugaraj N, Rajaraman J, Kale S, Kamal R, Huang Y, Thirulogachandar V, Garibay-Hernández A, Budhagatapalli N, Tandron Moya YA, Hajirezaei MR, Rutten T, Hensel G, Melzer M, Kumlehn J, von Wirén N, Mock HP, Schnurbusch T. Multilayered regulation of developmentally programmed pre-anthesis tip degeneration of the barley inflorescence. THE PLANT CELL 2023; 35:3973-4001. [PMID: 37282730 PMCID: PMC10615218 DOI: 10.1093/plcell/koad164] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/17/2023] [Accepted: 06/04/2023] [Indexed: 06/08/2023]
Abstract
Leaf and floral tissue degeneration is a common feature in plants. In cereal crops such as barley (Hordeum vulgare L.), pre-anthesis tip degeneration (PTD) starts with growth arrest of the inflorescence meristem dome, which is followed basipetally by the degeneration of floral primordia and the central axis. Due to its quantitative nature and environmental sensitivity, inflorescence PTD constitutes a complex, multilayered trait affecting final grain number. This trait appears to be highly predictable and heritable under standardized growth conditions, consistent with a developmentally programmed mechanism. To elucidate the molecular underpinnings of inflorescence PTD, we combined metabolomic, transcriptomic, and genetic approaches to show that barley inflorescence PTD is accompanied by sugar depletion, amino acid degradation, and abscisic acid responses involving transcriptional regulators of senescence, defense, and light signaling. Based on transcriptome analyses, we identified GRASSY TILLERS1 (HvGT1), encoding an HD-ZIP transcription factor, as an important modulator of inflorescence PTD. A gene-edited knockout mutant of HvGT1 delayed PTD and increased differentiated apical spikelets and final spikelet number, suggesting a possible strategy to increase grain number in cereals. We propose a molecular framework that leads to barley PTD, the manipulation of which may increase yield potential in barley and other related cereals.
Collapse
Affiliation(s)
- Nandhakumar Shanmugaraj
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Sandip Kale
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Venkatasubbu Thirulogachandar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Adriana Garibay-Hernández
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Nagaveni Budhagatapalli
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Yudelsy Antonia Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Mohammed R Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
- Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle 06120,Germany
| |
Collapse
|
3
|
Shen S, Ma S, Wu L, Zhou SL, Ruan YL. Winners take all: competition for carbon resource determines grain fate. TRENDS IN PLANT SCIENCE 2023; 28:893-901. [PMID: 37080837 DOI: 10.1016/j.tplants.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
As an evolutionary strategy, plants overproduce ovaries as a safety net for survival, with those losing in the competition for resources being aborted. Grain abortion is, however, highly detrimental agronomically. The molecular basis of selective abortion of grain siblings remains unknown. In this opinion article we assess the current understanding of the molecular players controlling carbon resource import into ovaries and young grains, followed by an evaluation of the spatial hierarchy of sink capacity among grain siblings, focusing on the roles exerted by sugar transporters and enzymes. We argue that, upon sequential pollination and fertilization, robust activation of the carbon import and sugar signaling system plays a key role in establishing the capacity of grain siblings to acquire enough carbon resources to survive and thrive.
Collapse
Affiliation(s)
- Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Si Ma
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Limin Wu
- Agriculture and Food, CSIRO, Canberra, ACT 2617, Australia
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, China; Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
4
|
Jiang C, Xu Z, Fan X, Zhou Q, Ji G, Chen L, Yu Q, Liao S, Zhao Y, Feng B, Wang T. Identification and validation of quantitative trait loci for fertile spikelet number per spike and grain number per fertile spikelet in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:69. [PMID: 36952062 DOI: 10.1007/s00122-023-04297-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/26/2022] [Indexed: 06/18/2023]
Abstract
A major and stable QTL for fertile spikelet number per spike and grain number per fertile spikelet identified in a 4.96-Mb interval on chromosome 2A was validated in different genetic backgrounds. Fertile spikelet number per spike (FSN) and grain number per fertile spikelet (GNFS) contribute greatly to wheat yield improvement. To detect quantitative trait loci (QTL) associated with FSN and GNFS, we used a recombinant inbred line population crossed by Zhongkemai 13F10 and Chuanmai 42 in eight environments. Two Genomic regions associated with FSN were detected on chromosomes 2A and 6A using bulked segregant exome sequencing analysis. After the genetic linkage maps were constructed, four QTL QFsn.cib-2A, QFsn.cib-6A, QGnfs.cib-2A and QGnfs.cib-6A were identified in three or more environments. Among them, two major QTL QFsn.cib-2A (LOD = 4.67-9.34, PVE = 6.66-13.05%) and QGnfs.cib-2A (LOD = 5.27-11.68, PVE = 7.95-16.71%) were detected in seven and six environments, respectively. They were co-located in the same region, namely QFsn/Gnfs.cib-2A. The developed linked Kompetitive Allele Specific PCR (KASP) markers further validated this QTL in a different genetic background. QFsn/Gnfs.cib-2A showed pleiotropic effects on grain number per spike (GNS) and spike compactness (SC), and had no effect on grain weight. Since QFsn/Gnfs.cib-2A might be a new locus, it and the developed KASP markers can be used in wheat breeding. According to haplotype analysis, QFsn/Gnfs.cib-2A was identified as a target of artificial selection during wheat improvement. Based on haplotype analysis, sequence differences, spatiotemporal expression patterns, and gene annotation, the potential candidate genes for QFsn/Gnfs.cib-2A were predicted. These results provide valuable information for fine mapping and cloning gene(s) underlying QFsn/Gnfs.cib-2A.
Collapse
Affiliation(s)
- Cheng Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Guangsi Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangen Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Zhao
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Slafer GA, Foulkes MJ, Reynolds MP, Murchie EH, Carmo-Silva E, Flavell R, Gwyn J, Sawkins M, Griffiths S. A 'wiring diagram' for sink strength traits impacting wheat yield potential. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:40-71. [PMID: 36334052 PMCID: PMC9786893 DOI: 10.1093/jxb/erac410] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/04/2022] [Indexed: 05/17/2023]
Abstract
Identifying traits for improving sink strength is a bottleneck to increasing wheat yield. The interacting processes determining sink strength and yield potential are reviewed and visualized in a set of 'wiring diagrams', covering critical phases of development (and summarizing known underlying genetics). Using this framework, we reviewed and assembled the main traits determining sink strength and identified research gaps and potential hypotheses to be tested for achieving gains in sink strength. In pre-anthesis, grain number could be increased through: (i) enhanced spike growth associated with optimized floret development and/or a reduction in specific stem-internode lengths and (ii) improved fruiting efficiency through an accelerated rate of floret development, improved partitioning between spikes, or optimized spike cytokinin levels. In post-anthesis, grain, sink strength could be augmented through manipulation of grain size potential via ovary size and/or endosperm cell division and expansion. Prospects for improving spike vascular architecture to support all rapidly growing florets, enabling the improved flow of assimilate, are also discussed. Finally, we considered the prospects for enhancing grain weight realization in relation to genetic variation in stay-green traits as well as stem carbohydrate remobilization. The wiring diagrams provide a potential workspace for breeders and crop scientists to achieve yield gains in wheat and other field crops.
Collapse
Affiliation(s)
- Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida–AGROTECNIO-CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain
- ICREA (Catalonian Institution for Research and Advanced Studies), Barcelona, Spain
| | - M John Foulkes
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Matthew P Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico, El Batan, Texcoco, Mexico
| | - Erik H Murchie
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | | | - Richard Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Jeff Gwyn
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Mark Sawkins
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK
| |
Collapse
|
6
|
Niu Y, Chen T, Zhao C, Guo C, Zhou M. Identification of QTL for Stem Traits in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:962253. [PMID: 35909739 PMCID: PMC9330363 DOI: 10.3389/fpls.2022.962253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Lodging in wheat (Triticum aestivum L.) is a complicated phenomenon that is influenced by physiological, genetics, and external factors. It causes a great yield loss and reduces grain quality and mechanical harvesting efficiency. Lodging resistance is contributed by various traits, including increased stem strength. The aim of this study was to map quantitative trait loci (QTL) controlling stem strength-related features (the number of big vascular bundles, stem diameter, stem wall thickness) using a doubled haploid (DH) population derived from a cross between Baiqimai and Neixiang 5. Field experiments were conducted during 2020-2022, and glasshouse experiments were conducted during 2021-2022. Significant genetic variations were observed for all measured traits, and they were all highly heritable. Fifteen QTL for stem strength-related traits were identified on chromosomes 2D, 3A, 3B, 3D, 4B, 5A, 6B, 7A, and 7D, respectively, and 7 QTL for grain yield-related traits were identified on chromosomes 2B, 2D, 3D, 4B, 7A, and 7B, respectively. The superior allele of the major QTL for the number of big vascular bundle (VB) was independent of plant height (PH), making it possible to improve stem strength without a trade-off of PH, thus improving lodging resistance. VB also showed positive correlations with some of the yield components. The result will be useful for molecular marker-assisted selection (MAS) for high stem strength and high yield potential.
Collapse
Affiliation(s)
- Yanan Niu
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Tianxiao Chen
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Ce Guo
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
7
|
Kamal R, Muqaddasi QH, Zhao Y, Schnurbusch T. Spikelet abortion in six-rowed barley is mainly influenced by final spikelet number, with potential spikelet number acting as a suppressor trait. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2005-2020. [PMID: 34864992 DOI: 10.1093/jxb/erab529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
The potential to increase barley grain yield lies in the indeterminate nature of its inflorescence meristem, which produces spikelets, the basic reproductive unit in grasses that are linked to reproductive success. During early reproductive growth, barley spikes pass through the maximum yield potential-a stage after which no new spikelet ridges are produced. Subsequently, spikelet abortion (SA), a phenomenon in which spikelets abort during spike growth, imposes a bottleneck for increasing the grain yield potential. Here, we studied the potential of main culm spikes by counting potential spikelet number (PSN) and final spikelet number (FSN), and computed the corresponding SA (%) in a panel of 417 six-rowed spring barleys. Our phenotypic data analyses showed a significantly large within- and across-years genotypic variation with high broad-sense heritability estimates for all the investigated traits, including SA. Asian accessions displayed the lowest SA, indicating the presence of favourable alleles that may be exploited in breeding programs. A significantly negative Pearson's product-moment correlation was observed between FSN and SA. Our path analysis revealed that PSN and FSN explain 93% of the observed phenotypic variability for SA, with PSN behaving as a suppressor trait that magnifies the effect of FSN. Based on a large set of diverse barley accessions, our results provide a deeper phenotypic understanding of the quantitative genetic nature of SA, its association with traits of high agronomic importance, and a resource for further genetic analyses.
Collapse
Affiliation(s)
- Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Quddoos H Muqaddasi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Stadt Seeland OT Gatersleben, Germany
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| |
Collapse
|