1
|
Montiel J, Dubrovsky JG. Amino acids biosynthesis in root hair development: a mini-review. Biochem Soc Trans 2024; 52:1873-1883. [PMID: 38984866 PMCID: PMC11668294 DOI: 10.1042/bst20231558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Metabolic factors are essential for developmental biology of an organism. In plants, roots fulfill important functions, in part due to the development of specific epidermal cells, called hair cells that form root hairs (RHs) responsible for water and mineral uptake. RH development consists in (a) patterning processes involved in formation of hair and non-hair cells developed from trichoblasts and atrichoblasts; (b) RH initiation; and (c) apical (tip) growth of the RH. Here we review how these processes depend on pools of different amino acids and what is known about RH phenotypes of mutants disrupted in amino acid biosynthesis. This analysis shows that some amino acids, particularly aromatic ones, are required for RH apical (tip) growth, and that not much is known about the role of amino acids at earlier stages of RH formation. We also address the role of amino acids in rhizosphere, inhibitory and stimulating effects of amino acids on RH growth, amino acids as N source in plant nutrition, and amino acid transporters and their expression in the RHs. Amino acids form conjugates with auxin, a hormone essential for RH growth, and respective genes are overviewed. Finally, we outline missing links and envision some perspectives in the field.
Collapse
Affiliation(s)
- Jesús Montiel
- Departamento de Genómica Funcional de Eucariotas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Joseph G. Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| |
Collapse
|
2
|
Sousa BT, Carvalho LB, Preisler AC, Saraiva-Santos T, Oliveira JL, Verri WA, Dalazen G, Fraceto LF, Oliveira H. Chitosan Coating as a Strategy to Increase Postemergent Herbicidal Efficiency and Alter the Interaction of Nanoatrazine with Bidens pilosa Plants. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38995313 DOI: 10.1021/acsami.4c03800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The atrazine nanodelivery system, composed of poly(ε-caprolactone) (PCL+ATZ) nanocapsules (NCs), has demonstrated efficient delivery of the active ingredient to target plants in previous studies, leading to greater herbicide effectiveness than conventional formulations. Established nanosystems can be enhanced or modified to generate new biological activity patterns. Therefore, this study aimed to evaluate the effect of chitosan coating of PCL+ATZ NCs on herbicidal activity and interaction mechanisms with Bidens pilosa plants. Chitosan-coated NCs (PCL/CS+ATZ) were synthesized and characterized for size, zeta potential, polydispersity, and encapsulation efficiency. Herbicidal efficiency was assessed in postemergence greenhouse trials, comparing the effects of PCL/CS+ATZ NCs (coated), PCL+ATZ NCs (uncoated), and conventional atrazine (ATZ) on photosystem II (PSII) activity and weed control. Using a hydroponic system, we evaluated the root absorption and shoot translocation of fluorescently labeled NCs. PCL/CS+ATZ presented a positive zeta potential (25 mV), a size of 200 nm, and an efficiency of atrazine encapsulation higher than 90%. The postemergent herbicidal activity assay showed an efficiency gain of PSII activity inhibition of up to 58% compared to ATZ and PCL+ATZ at 96 h postapplication. The evaluation of weed control 14 days after application ratified the positive effect of chitosan coating on herbicidal activity, as the application of PCL/CS+ATZ at 1000 g of a.i. ha-1 resulted in better control than ATZ at 2000 g of a.i. ha-1 and PCL+ATZ at 1000 g of a.i. ha-1. In the hydroponic experiment, chitosan-coated NCs labeled with a fluorescent probe accumulated in the root cortex, with a small quantity reaching the vascular cylinder and leaves up to 72 h after exposure. This behavior resulted in lower leaf atrazine levels and PSII inhibition than ATZ. In summary, chitosan coating of nanoatrazine improved the herbicidal activity against B. pilosa plants when applied to the leaves but negatively affected the root-to-shoot translocation of the herbicide. This study opens avenues for further investigations to improve and modify established nanosystems, paving the way for developing novel biological activity patterns.
Collapse
Affiliation(s)
- Bruno T Sousa
- Department of Agronomy, State University of Londrina (UEL), 86057-970 Londrina, Paraná, Brazil
- Department of Animal and Plant Biology and Department of Agronomy, State University of Londrina (UEL), 86057-970 Londrina, Paraná, Brazil
| | - Lucas B Carvalho
- Institute of Science and Technology, São Paulo State University (UNESP), 18087-180 Sorocaba, São Paulo, Brazil
| | - Ana C Preisler
- Department of Agronomy, State University of Londrina (UEL), 86057-970 Londrina, Paraná, Brazil
- Department of Animal and Plant Biology and Department of Agronomy, State University of Londrina (UEL), 86057-970 Londrina, Paraná, Brazil
| | - Telma Saraiva-Santos
- Department of Pathology, State University of Londrina (UEL), 86057-970 Londrina, Paraná, Brazil
| | - Jhones L Oliveira
- Institute of Science and Technology, São Paulo State University (UNESP), 18087-180 Sorocaba, São Paulo, Brazil
| | - Waldiceu A Verri
- Department of Pathology, State University of Londrina (UEL), 86057-970 Londrina, Paraná, Brazil
| | - Giliardi Dalazen
- Department of Agronomy, State University of Londrina (UEL), 86057-970 Londrina, Paraná, Brazil
| | - Leonardo F Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), 18087-180 Sorocaba, São Paulo, Brazil
| | - Halley Oliveira
- Department of Animal and Plant Biology and Department of Agronomy, State University of Londrina (UEL), 86057-970 Londrina, Paraná, Brazil
| |
Collapse
|
3
|
Roy S, Hazarika K, Sen A, Dasgupta S, Bhattacharya S. Understanding phloem's role in long-distance transport and accumulation of arsenic (As) in rice: toward low-As-accumulating grain development. PLANTA 2024; 259:141. [PMID: 38695915 DOI: 10.1007/s00425-024-04422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
MAIN CONCLUSION This review highlights the roles of phloem in the long-distance transport and accumulation of As in rice plants, facilitating the formulation of new strategies to reduce the grain As content. Rice is a staple diet for a significant proportion of the global population. As toxicity is a major issue affecting the rice productivity and quality worldwide. Phloem tissues of rice plants play vital roles in As speciation, long-distance transport, and unloading, thereby controlling the As accumulation in rice grains. Phloem transport accounts for a significant proportion of As transport to grains, ranging from 54 to 100% depending on the species [inorganic arsenate (As(V)), arsenite (As(III)), or organic dimethylarsinic acid (DMA(V)]. However, the specific mechanism of As transport through phloem leading to its accumulation in grains remains unknown. Therefore, understanding the molecular mechanism of phloem-mediated As transport is necessary to determine the roles of phloem in long-distance As transport and subsequently reduce the grain As content via biotechnological interventions. This review discusses the roles of phloem tissues in the long-distance transport and accumulation of As in rice grains. This review also highlights the biotechnological approaches using critical genetic factors involved in nodal accumulation, vacuolar sequestration, and cellular efflux of As in phloem- or phloem-associated tissues. Furthermore, the limitations of existing transgenic techniques are outlined to facilitate the formulation of novel strategies for the development of rice with reduced grain As content.
Collapse
Affiliation(s)
- Sanket Roy
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 and 38, Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Kabyashree Hazarika
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 and 38, Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Anuska Sen
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 and 38, Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | | | - Surajit Bhattacharya
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 and 38, Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
4
|
Vignesh A, Amal TC, Sivalingam R, Selvakumar S, Vasanth K. Unraveling the impact of nanopollution on plant metabolism and ecosystem dynamics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108598. [PMID: 38608503 DOI: 10.1016/j.plaphy.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Nanopollution (NPOs), a burgeoning consequence of the widespread use of nanoparticles (NPs) across diverse industrial and consumer domains, has emerged as a critical environmental issue. While extensive research has scrutinized the repercussions of NPs pollution on ecosystems and human health, scant attention has been directed towards unraveling its implications for plant life. This comprehensive review aims to bridge this gap by delving into the nuanced interplay between NPOs and plant metabolism, encompassing both primary and secondary processes. Our exploration encompasses an in-depth analysis of the intricate mechanisms governing the interaction between plants and NPs. This involves a thorough examination of how physicochemical properties such as size, shape, and surface characteristics influence the uptake and translocation of NPs within plant tissues. The impact of NPOs on primary metabolic processes, including photosynthesis, respiration, nutrient uptake, and water transport. Additionally, this study explored the multifaceted alterations in secondary metabolism, shedding light on the synthesis and modulation of secondary metabolites in response to NPs exposure. In assessing the consequences of NPOs for plant life, we scrutinize the potential implications for plant growth, development, and environmental interactions. The intricate relationships revealed in this review underscore the need for a holistic understanding of the plant-NPs dynamics. As NPs become increasingly prevalent in ecosystems, this investigation establishes a fundamental guide that underscores the importance of additional research to shape sustainable environmental management strategies and address the extensive effects of NPs on the development of plant life and environmental interactions.
Collapse
Affiliation(s)
- Arumugam Vignesh
- Department of Botany, Nallamuthu Gounder Mahalingam College (Autonomous), Bharathiar University (Affiliated), Pollachi, 642 001, Tamil Nadu, India
| | - Thomas Cheeran Amal
- ICAR - Central Institute for Cotton Research, RS, Coimbatore, 641 003, Tamil Nadu, India
| | | | - Subramaniam Selvakumar
- Department of Biochemistry, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Krishnan Vasanth
- Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
5
|
Xin P, Schier J, Šefrnová Y, Kulich I, Dubrovsky JG, Vielle-Calzada JP, Soukup A. The Arabidopsis TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE (TTL) family members are involved in root system formation via their interaction with cytoskeleton and cell wall remodeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:946-965. [PMID: 36270031 DOI: 10.1111/tpj.15980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 05/21/2023]
Abstract
Lateral roots (LR) are essential components of the plant edaphic interface; contributing to water and nutrient uptake, biotic and abiotic interactions, stress survival, and plant anchorage. We have identified the TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE 3 (TTL3) gene as being related to LR emergence and later development. Loss of function of TTL3 leads to a reduced number of emerged LR due to delayed development of lateral root primordia (LRP). This trait is further enhanced in the triple mutant ttl1ttl3ttl4. TTL3 interacts with microtubules and endomembranes, and is known to participate in the brassinosteroid (BR) signaling pathway. Both ttl3 and ttl1ttl3ttl4 mutants are less sensitive to BR treatment in terms of LR formation and primary root growth. The ability of TTL3 to modulate biophysical properties of the cell wall was established under restrictive conditions of hyperosmotic stress and loss of root growth recovery, which was enhanced in ttl1ttl3ttl4. Timing and spatial distribution of TTL3 expression is consistent with its role in development of LRP before their emergence and subsequent growth of LR. TTL3 emerged as a component of the root system morphogenesis regulatory network.
Collapse
Affiliation(s)
- Pengfei Xin
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Jakub Schier
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Yvetta Šefrnová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca, 62250, Morelos, Mexico
| | - Jean-Philippe Vielle-Calzada
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato, 36821, Mexico
| | - Aleš Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| |
Collapse
|
6
|
Ruiz-Huerta EA, Armienta-Hernández MA, Dubrovsky JG, Gómez-Bernal JM. Bioaccumulation of heavy metals and As in maize (Zea mays L) grown close to mine tailings strongly impacts plant development. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:447-467. [PMID: 35119643 DOI: 10.1007/s10646-022-02522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Potentially toxic metals and metalloids present in mining residues can affect ecosystems, particularly plant growth and development. In this study we evaluated heavy metal (Fe, Zn, Cu, Cd, Pb) and As contents in maize (Zea mays L) plants grown in soils collected near (40 m), at intermediate (400 m) and remote (3000 m) distances from mine tailings near Taxco City, Mexico. Soils sampled near and at intermediate sites from the tailings contained high levels of heavy metals which were 3- to 55-fold higher compared to the control samples. Heavy metal and As content in plants reflected the soil contamination being the greatest for most studied elements in root samples followed by stems, leaves, and kernels. Though plants were capable of completing their life cycle and producing the seeds, high bioaccumulation levels had a strong impact negatively on plant development. Abnormalities in the organs like malformations in reproductive structures (tassel and ear), reduction in the phytomer number and the plant height were present. Microscopic studies and morphometric analyses suggest that strongly affected plant growth result from negative and synergistic action of heavy metals and As in soils on cell growth and cell production. This study showed that maize grown near mine tailings accumulated high levels of heavy metals and As which decrease significantly plant yield and could be dangerous if it is consumed by animals and humans.
Collapse
Affiliation(s)
- Esther Aurora Ruiz-Huerta
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Circuito exterior 3000, Ciudad Universitaria, 04510, CDMX, Mexico City, México.
| | - Ma Aurora Armienta-Hernández
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Circuito exterior 3000, Ciudad Universitaria, 04510, CDMX, Mexico City, México
| | - Joseph G Dubrovsky
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Juan Miguel Gómez-Bernal
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Circuito exterior 3000, Ciudad Universitaria, 04510, CDMX, Mexico City, México
| |
Collapse
|
7
|
Torres-Martínez HH, Napsucialy-Mendivil S, Dubrovsky JG. Cellular and molecular bases of lateral root initiation and morphogenesis. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102115. [PMID: 34742019 DOI: 10.1016/j.pbi.2021.102115] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Lateral root development is essential for the establishment of the plant root system. Lateral root initiation is a multistep process that impacts early primordium morphogenesis and is linked to the formation of a morphogenetic field of pericycle founder cells. Gradual recruitment of founder cells builds this morphogenetic field in an auxin-dependent manner. The complex process of lateral root primordium morphogenesis includes several subprocesses, which are presented in this review. The underlying cellular and molecular mechanisms of these subprocesses are examined.
Collapse
Affiliation(s)
- Héctor H Torres-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210, Morelos, Mexico
| | - Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210, Morelos, Mexico
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, 62210, Morelos, Mexico.
| |
Collapse
|
8
|
Parker D, Daguerre Y, Dufil G, Mantione D, Solano E, Cloutet E, Hadziioannou G, Näsholm T, Berggren M, Pavlopoulou E, Stavrinidou E. Biohybrid plants with electronic roots via in vivo polymerization of conjugated oligomers. MATERIALS HORIZONS 2021; 8:3295-3305. [PMID: 34730593 DOI: 10.1039/d1mh01423d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant processes, ranging from photosynthesis through production of biomaterials to environmental sensing and adaptation, can be used in technology via integration of functional materials and devices. Previously, plants with integrated organic electronic devices and circuits distributed in their vascular tissue and organs have been demonstrated. To circumvent biological barriers, and thereby access the internal tissue, plant cuttings were used, which resulted in biohybrids with limited lifetime and use. Here, we report intact plants with electronic functionality that continue to grow and develop enabling plant-biohybrid systems that fully maintain their biological processes. The biocatalytic machinery of the plant cell wall was leveraged to seamlessly integrate conductors with mixed ionic-electronic conductivity along the root system of the plants. Cell wall peroxidases catalyzed ETE-S polymerization while the plant tissue served as the template, organizing the polymer in a favorable manner. The conductivity of the resulting p(ETE-S) roots reached the order of 10 S cm-1 and remained stable over the course of 4 weeks while the roots continued to grow. The p(ETE-S) roots were used to build supercapacitors that outperform previous plant-biohybrid charge storage demonstrations. Plants were not affected by the electronic functionalization but adapted to this new hybrid state by developing a more complex root system. Biohybrid plants with electronic roots pave the way for autonomous systems with potential applications in energy, sensing and robotics.
Collapse
Affiliation(s)
- Daniela Parker
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden.
| | - Yohann Daguerre
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 90183 Umea, Sweden
| | - Gwennaël Dufil
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden.
| | - Daniele Mantione
- Université de Bordeaux, Bordeaux INP, CNRS, LCPO UMR 5629, F-33615, Pessac, France
| | - Eduardo Solano
- NCD-SWEET Beamline, ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain
| | - Eric Cloutet
- Université de Bordeaux, Bordeaux INP, CNRS, LCPO UMR 5629, F-33615, Pessac, France
| | - Georges Hadziioannou
- Université de Bordeaux, Bordeaux INP, CNRS, LCPO UMR 5629, F-33615, Pessac, France
| | - Torgny Näsholm
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 90183 Umea, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden.
- Wallenberg Wood Science Center, Linköping University, SE-60174, Norrköping, Sweden
| | - Eleni Pavlopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, 71110 Heraklion Crete, Greece
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden.
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 90183 Umea, Sweden
- Wallenberg Wood Science Center, Linköping University, SE-60174, Norrköping, Sweden
| |
Collapse
|