1
|
Chen Q, Ren Y, Yan Q, Zheng Z, Zhang G, Ma L, Song Q, Niu N. Genome-wide identification and expression analysis of the kinesin gene superfamily suggests roles in response to abiotic stress and fertility of wheat (Triticum aestivum L.). BMC Genomics 2024; 25:1223. [PMID: 39701941 DOI: 10.1186/s12864-024-11156-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Kinesin is a motor for microtubule-based motility. It plays a vital role in plant growth and development. The kinesin superfamily members are known mainly from Arabidopsis. Little research about kinesin superfamily has been conducted on hexploid wheat (Triticum aestivum L.). The functions of kinesins in wheat growth and development, regulation of cell division and response to stress are still unclear. RESULTS In this study, we identified 155 kinesin (TaKIN) genes in wheat, which were divided into 10 families and some orphan genes via phylogenetic analysis. Less gene structural differences showed that TaKIN genes had redundant functions. The conserved domains of different family members were different, and some families might have some special functional domains. We found many cis-acting elements related to hormones (GA, Auxin, SA, MeJA), cell cycle and cell division in homeopathic elements of the TaKIN genes. Collinearity analysis showed that TaKIN genes were more conservative in monocotyledons. Expression level in different tissues at different stages suggested that TaKIN family may function during the whole growth and development process in wheat. It was worth noting there were quite different at gene expression level between physiological and heritable male sterile lines during the different stages of pollen development. The differential expression patterns of some TaKIN genes between male sterile line and maintainer line might be related to wheat male sterility. Furthermore, we also found TaKIN genes were involved in response to plant hormones and abiotic stress by stress assays. CONCLUSIONS The result is useful for further exploration of the molecular mechanism of kinesin genes in wheat male sterility and provides important information concerning response to plant hormones and abiotic stress caused by kinesin genes.
Collapse
Affiliation(s)
- Qinge Chen
- College of Agronomy, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100, China
| | - Yang Ren
- College of Agronomy, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100, China
| | - Qin Yan
- College of Agronomy, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100, China
| | - Zhiyuan Zheng
- College of Agronomy, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100, China
| | - Gaisheng Zhang
- College of Agronomy, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100, China
| | - Lingjian Ma
- College of Agronomy, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100, China
| | - Qilu Song
- College of Agronomy, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100, China.
- Peking University Institute of Advanced Agricultural Sciences/National Key Laboratory of Wheat Improvement, Weifang, Shandong, 261325, China.
| | - Na Niu
- College of Agronomy, Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A & F University, Yangling, 712100, China.
| |
Collapse
|
2
|
Koenig AM, Liu B, Hu J. Visualizing the dynamics of plant energy organelles. Biochem Soc Trans 2023; 51:2029-2040. [PMID: 37975429 PMCID: PMC10754284 DOI: 10.1042/bst20221093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Plant organelles predominantly rely on the actin cytoskeleton and the myosin motors for long-distance trafficking, while using microtubules and the kinesin motors mostly for short-range movement. The distribution and motility of organelles in the plant cell are fundamentally important to robust plant growth and defense. Chloroplasts, mitochondria, and peroxisomes are essential organelles in plants that function independently and coordinately during energy metabolism and other key metabolic processes. In response to developmental and environmental stimuli, these energy organelles modulate their metabolism, morphology, abundance, distribution and motility in the cell to meet the need of the plant. Consistent with their metabolic links in processes like photorespiration and fatty acid mobilization is the frequently observed inter-organellar physical interaction, sometimes through organelle membranous protrusions. The development of various organelle-specific fluorescent protein tags has allowed the simultaneous visualization of organelle movement in living plant cells by confocal microscopy. These energy organelles display an array of morphology and movement patterns and redistribute within the cell in response to changes such as varying light conditions, temperature fluctuations, ROS-inducible treatments, and during pollen tube development and immune response, independently or in association with one another. Although there are more reports on the mechanism of chloroplast movement than that of peroxisomes and mitochondria, our knowledge of how and why these three energy organelles move and distribute in the plant cell is still scarce at the functional and mechanistic level. It is critical to identify factors that control organelle motility coupled with plant growth, development, and stress response.
Collapse
Affiliation(s)
- Amanda M. Koenig
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA, U.S.A
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
3
|
Sumbal S, Ali A, Nasser Binjawhar D, Ullah Z, Eldin SM, Iqbal R, Sher H, Ali I. Comparative Effects of Hydropriming and Iron Priming on Germination and Seedling Morphophysiological Attributes of Stay-Green Wheat. ACS OMEGA 2023; 8:23078-23088. [PMID: 37396271 PMCID: PMC10308549 DOI: 10.1021/acsomega.3c02359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023]
Abstract
Seed priming is considered to play an essential role in the overall improvement of agricultural crops. The current research work was carried out in order to investigate the comparative effects of hydropriming and iron priming on the germination behavior and morphophysiological attributes of wheat seedlings. The experimental materials consisted of three wheat genotypes including a synthetically derived wheat line (SD-194), stay-green wheat genotype (Chirya-7), and conventional wheat variety (Chakwal-50). The treatments included hydro (distilled and tap water)- and iron priming (10 and 50 mM) of wheat seeds for 12 h duration. Results indicated that both priming treatment and wheat genotypes exhibited highly different germination and seedling characteristics. These included germination percentage, root volume, root surface, root length, relative water content, chlorophyll content, membrane stability index, and chlorophyll fluorescence attributes. Furthermore, the synthetically derived line (SD-194) was the most promising in majority of the studied attributes by exhibiting a high germination index (2.21%), root fresh weight (7.76%), shoot dry weight (3.36%), relative water content (19.9%), chlorophyll content (7.58%), and photochemical quenching coefficient (2.58%) when compared with stay-green wheat (Chirya-7). The study also found that hydropriming with tap water and priming wheat seeds with low concentrations of iron yielded better results when a comparison was made with wheat seeds primed at high concentrations of iron. Therefore, wheat seed priming with tap water and iron solution for 12 h is recommended for optimum wheat improvement. Furthermore, current findings suggest that seed priming may have the prospect of an innovative and user-friendly approach for wheat biofortification with the aim of enhanced iron acquisition and accumulation in grains.
Collapse
Affiliation(s)
- Sumbal Sumbal
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
| | - Ahmad Ali
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
| | - Dalal Nasser Binjawhar
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Zahid Ullah
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
| | - Sayed M. Eldin
- Center
of Research, Faculty of Engineering, Future
University in Egypt, New Cairo 18939, Egypt
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hassan Sher
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
| | - Iftikhar Ali
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
- Department
of Genetics and Development, Columbia University
Irving Medical Center, New York, New York 10032, United States
- School of
Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
4
|
Abstract
Kinesins constitute a superfamily of ATP-driven microtubule motor enzymes that convert the chemical energy of ATP hydrolysis into mechanical work along microtubule tracks. Kinesins are found in all eukaryotic organisms and are essential to all eukaryotic cells, involved in diverse cellular functions such as microtubule dynamics and morphogenesis, chromosome segregation, spindle formation and elongation and transport of organelles. In this review, we explore recently reported functions of kinesins in eukaryotes and compare their specific cargoes in both plant and animal kingdoms to understand the possible roles of uncharacterized motors in a kingdom based on their reported functions in other kingdoms.
Collapse
Affiliation(s)
- Iftikhar Ali
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing, China.,The College of Advanced Agricultural Science, The University of Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
5
|
Goodson HV, Kelley JB, Brawley SH. Cytoskeletal diversification across 1 billion years: What red algae can teach us about the cytoskeleton, and vice versa. Bioessays 2021; 43:e2000278. [PMID: 33797088 DOI: 10.1002/bies.202000278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/05/2022]
Abstract
The cytoskeleton has a central role in eukaryotic biology, enabling cells to organize internally, polarize, and translocate. Studying cytoskeletal machinery across the tree of life can identify common elements, illuminate fundamental mechanisms, and provide insight into processes specific to less-characterized organisms. Red algae represent an ancient lineage that is diverse, ecologically significant, and biomedically relevant. Recent genomic analysis shows that red algae have a surprising paucity of cytoskeletal elements, particularly molecular motors. Here, we review the genomic and cell biological evidence and propose testable models of how red algal cells might perform processes including cell motility, cytokinesis, intracellular transport, and secretion, given their reduced cytoskeletons. In addition to enhancing understanding of red algae and lineages that evolved from red algal endosymbioses (e.g., apicomplexan parasites), these ideas may also provide insight into cytoskeletal processes in animal cells.
Collapse
Affiliation(s)
- Holly V Goodson
- Department of Chemistry and Biochemistry and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua B Kelley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Susan H Brawley
- School of Marine Sciences, University of Maine, Orono, Maine, USA
| |
Collapse
|