1
|
López-Londoño T, Enríquez S, Iglesias-Prieto R. Effects of surface geometry on light exposure, photoacclimation and photosynthetic energy acquisition in zooxanthellate corals. PLoS One 2024; 19:e0295283. [PMID: 38170717 PMCID: PMC10763928 DOI: 10.1371/journal.pone.0295283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Symbiotic corals display a great array of morphologies, each of which has unique effects on light interception and the photosynthetic performance of in hospite zooxanthellae. Changes in light availability elicit photoacclimation responses to optimize the energy balances in primary producers, extensively documented for corals exposed to contrasting light regimes along depth gradients. Yet, response variation driven by coral colony geometry and its energetic implications on colonies with contrasting morphologies remain largely unknown. In this study, we assessed the effect of the inclination angle of coral surface on light availability, short- and long-term photoacclimation responses, and potential photosynthetic usable energy. Increasing surface inclination angle resulted in an order of magnitude reduction of light availability, following a linear relationship explained by the cosine law and relative changes in the direct and diffuse components of irradiance. The light gradient induced by surface geometry triggered photoacclimation responses comparable to those observed along depth gradients: changes in the quantum yield of photosystem II, photosynthetic parameters, and optical properties and pigmentation of the coral tissue. Differences in light availability and photoacclimation driven by surface inclination led to contrasting energetic performance. Horizontally and vertically oriented coral surfaces experienced the largest reductions in photosynthetic usable energy as a result of excessive irradiance and light-limiting conditions, respectively. This pattern is predicted to change with depth or local water optical properties. Our study concludes that colony geometry plays an essential role in shaping the energy balance and determining the light niche of zooxanthellate corals.
Collapse
Affiliation(s)
- Tomás López-Londoño
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Unidad Académica Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Cancún, México
| | - Susana Enríquez
- Unidad Académica Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Cancún, México
| | - Roberto Iglesias-Prieto
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Unidad Académica Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Cancún, México
| |
Collapse
|
2
|
Jiang Z, Liu S, Cui L, He J, Fang Y, Premarathne C, Li L, Wu Y, Huang X, Kumar M. Sand supplementation favors tropical seagrass Thalassia hemprichii in eutrophic bay: implications for seagrass restoration and management. BMC PLANT BIOLOGY 2022; 22:296. [PMID: 35710355 PMCID: PMC9205049 DOI: 10.1186/s12870-022-03647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sediment is crucial for the unique marine angiosperm seagrass growth and successful restoration. Sediment modification induced by eutrophication also exacerbates seagrass decline and reduces plantation and transplantation survival rates. However, we lack information regarding the influence of sediment on seagrass photosynthesis and the metabolics, especially regarding the key secondary metabolic flavone. Meanwhile, sulfation of flavonoids in seagrass may mitigate sulfide intrusion, but limited evidence is available. RESULTS We cultured the seagrass Thalassia hemprichii under controlled laboratory conditions in three sediment types by combining different ratios of in-situ eutrophic sediment and coarse beach sand. We examined the effects of beach sand mixed with natural eutrophic sediments on seagrass using photobiology, metabolomics and isotope labelling approaches. Seagrasses grown in eutrophic sediments mixed with beach sand exhibited significantly higher photosynthetic activity, with a larger relative maximum electron transport rate and minimum saturating irradiance. Simultaneously, considerably greater belowground amino acid and flavonoid concentrations were observed to counteract anoxic stress in eutrophic sediments without mixed beach sand. This led to more positive belowground stable sulfur isotope ratios in eutrophic sediments with a lower Eh. CONCLUSIONS These results indicated that coarse beach sand indirectly enhanced photosynthesis in T. hemprichii by reducing sulfide intrusion with lower amino acid and flavonoid concentrations. This could explain why T. hemprichii often grows better on coarse sand substrates. Therefore, it is imperative to consider adding beach sand to sediments to improve the environmental conditions for seagrass and restore seagrass in eutrophic ecosystems.
Collapse
Affiliation(s)
- Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
- Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China
| | - Lijun Cui
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jialu He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yang Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chanaka Premarathne
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Linglan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
- Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China.
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China.
| | - Manoj Kumar
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
3
|
Zavafer A, Fan D, Murakami K. Advanced technologies in studying plant photosynthesis: principles and applications. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:i-iii. [PMID: 35533097 DOI: 10.1071/fp22050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
sion="1.0" encoding="utf-8"?> FP Functional Plant Biology Funct. Plant Biol. 1445-4408 1445-4416 CSIRO Publishing 36 Gardiner Road Clayton VIC 3168 Australia FP22050 10.1071/FP22050 Foreword Advanced technologies in studying plant photosynthesis: principles and applications A. Zavafer et al . https://orcid.org/0000-0002-8905-1618 Zavafer Alonso A Fan Dayong B * https://orcid.org/0000-0001-8150-9535 Murakami Keach C Handling Editor Shabala Sergey Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 2001, Australia. Hokkaido Agricultural Research Center (HARC), National Agriculture and Food Research Organization (NARO), 1 Hitsujigaoka, Toyohira, Sapporo 062-8555, Japan. College of Forestry, Beijing Forestry, University, Beijing 100083, China. * Correspondence to: Dayong Fan Hokkaido Agricultural Research Center (HARC), National Agriculture and Food Research Organization (NARO), 1 Hitsujigaoka, Toyohira, Sapporo 062-8555, Japan Email: dayong73fan@163.com 9 May 2022 49 6 Special Issue i iii 9 May 2022 Published: 9 May 2022 © 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing 2022 The Authors The foreword to this special issue on the advanced technologies in studying photosynthesis focuses on the main contributions of Fred Chow, one of the key Australian scientists studying light reactions in plants.
Collapse
Affiliation(s)
- Alonso Zavafer
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 2001, Australia
| | - Dayong Fan
- Hokkaido Agricultural Research Center (HARC), National Agriculture and Food Research Organization (NARO), 1 Hitsujigaoka, Toyohira, Sapporo 062-8555, Japan
| | - Keach Murakami
- College of Forestry, Beijing Forestry, University, Beijing 100083, China
| |
Collapse
|