1
|
Victoria J, Tripathi S, Prakash V, Tiwari K, Mahra S, Sharma A, Rana S, Kandhol N, Sahi S, Tripathi DK, Sharma S. Encapsulated nanopesticides application in plant protection: Quo vadis? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108225. [PMID: 38147708 DOI: 10.1016/j.plaphy.2023.108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023]
Abstract
The increased global food insecurity due to the growing population can be addressed with precision and sustainable agricultural practices. To tackle the issues regarding food insecurity, farmers used different agrochemicals that improved plant growth and protection. Among these agrochemicals, synthetic pesticides used for plant protection in the agricultural field have various disadvantages. Conventional applications of synthetic pesticides have drawbacks such as rapid degradation, poor solubility, and non-target effects, as well as increased pesticide runoff that pollutes the environment. Nanotechnology has evolved as a potential solution to increase agricultural productivity through the development of different nanoforms of agrochemicals such as nanopesticides, nano-fabricated fertilizers, nanocapsules, nanospheres, nanogels, nanofibers, nanomicelles, and nano-based growth promoters. Encapsulation of these pesticides inside the nanomaterials has provided good biocompatibility over conventional application by inhibiting the early degradation of active ingredients (AI), increasing the uptake and adhesion of pesticides, improving the stability, solubility, and permeability of the pesticides, and decreasing the environmental impacts due to the pesticide runoff. In this review, different nanoforms of encapsulated pesticides and their smart delivery systems; nanocarriers in RNA interference (RNAi) based pesticides; environmental fate, practical implications, management of nanopesticides; and future perspectives are discussed.
Collapse
Affiliation(s)
- J Victoria
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Adwithiya Sharma
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida, India
| | - Shweta Rana
- Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Shivendra Sahi
- Department of Biology, Saint Joseph's University, University City Campus, 600 S. 43rd St., Philadelphia, PA, 19104, USA
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India.
| |
Collapse
|
2
|
Tripathi DK, Bhat JA, Ahmad P, Allakhverdiev SI. Polyamines and nitric oxide crosstalk in plant development and abiotic stress tolerance. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:i-iv. [PMID: 36734992 DOI: 10.1071/fp22170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polyamines (PAs) and nitric oxide (NO) are crucial signalling molecules that exhibit a promising role in improving stress tolerance in plants, maintaining their growth and development. They act as protecting agents for plants through activation of stress adaptation strategies such as membrane stabilisation, acid neutralisation and suppression of ROS generation. NO interacts with PAs during several developmental processes and stress responses. External supplementation of PAs to plants is also reported to cause an increase in NO content. However, it is unclear whether PAs promote synthesis of NO by either as substrates, cofactors, or signals. Impact of NO on synthesis of PAs has been also reported in some studies, yet the exact governing mechanisms of the interrelation between NO and PAs is currently obscure. Understanding the crosstalk between PAs and NO during growth and stress condition in plants can aid in providing better tolerance to plants against stressful environment.
Collapse
Affiliation(s)
- Durgesh K Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture (AIOA), Amity University, Noida, Uttar Pradesh, India
| | - Javaid A Bhat
- International Genome Center, Jiangsu University, Zhenjiang 212013, PR China
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russian Federation
| |
Collapse
|