1
|
Crabb HK, Allen JL, Devlin JM, Firestone SM, Wilks CR, Gilkerson JR. Salmonella spp. transmission in a vertically integrated poultry operation: Clustering and diversity analysis using phenotyping (serotyping, phage typing) and genotyping (MLVA). PLoS One 2018; 13:e0201031. [PMID: 30024964 PMCID: PMC6053207 DOI: 10.1371/journal.pone.0201031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/06/2018] [Indexed: 11/18/2022] Open
Abstract
The transmission of Salmonella enterica within a vertically integrated poultry operation was investigated longitudinally over an 18-month period (2013–2014). Thirty six percent of all samples collected (1503 of 4219) were positive for salmonellae with seven Salmonella enterica subsp. enterica serovars, and one Salmonella enterica subsp. salamae serovar detected. Both Salmonella enterica subsp. enterica serovars Infantis and Typhimurium were detected in all locations sampled. Salmonella Typhimurium was the most frequently detected serovar (63% of serotyped samples) with 8 phage types (PT) and 41 multiple-locus variable-number tandem-repeats analysis (MLVA) profiles identified. The most frequently identified phage types were PT135a and DT135. A total of 62 PT/MLVA combinations were observed. MLVA profiles 03-14-10-09-525 and 03-15-11-11-525 were the most frequently identified and 83% of the isolates shared at least one MLVA profile with an isolate from another phage type. The use of phage typing and MLVA profiling, on their own or in combination, were insufficient to understand the complexity of the epidemiological relationships between locations within this production system. Despite the high level of apparent diversity, cluster analysis was unable to differentiate the transmission pathways of all S. Typhimurium variants detected within the integrated enterprise. Using additional epidemiological information, the parent breeder rearing site was identified as the most likely point of introduction of two S. Typhimurium isolates into the production system with subsequent dissemination to the broiler flocks via the hatchery. This complexity is unable to be resolved in the absence of intensive sampling programs at all generations of the production system.
Collapse
Affiliation(s)
- Helen Kathleen Crabb
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Joanne Lee Allen
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Joanne Maree Devlin
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Simon Matthew Firestone
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Colin Reginald Wilks
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - James Rudkin Gilkerson
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Longitudinal study of Salmonella 1,4,[5],12:i:- shedding in five Australian pig herds. Prev Vet Med 2016; 136:19-28. [PMID: 28010904 DOI: 10.1016/j.prevetmed.2016.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/10/2016] [Accepted: 11/09/2016] [Indexed: 11/24/2022]
Abstract
The shedding patterns of Salmonella spp. and MLVA profiles of Salmonella enterica subspecies enterica (I) serotype 1,4,[5],12:i:- were monitored in a 12-month longitudinal observational study of five pig herds to inform management; provide indications of potential hazard load at slaughter; and assist evaluation of MLVA for use by animal and public health practitioners. Twenty pooled faecal samples, stratified by age group, were collected quarterly. When Salmonella was cultured, multiple colonies were characterized by serotyping and where S. Typhimurium-like serovars were confirmed, isolates were further characterized by phage typing and multiple locus variable number tandem repeat analysis (MLVA). Salmonella was detected in 43% of samples. Salmonella 1,4,[5],12:i- was one of several serovars that persisted within the herds and was found among colonies from each production stage. Virtually all Salmonella 1,4,[5],12:i:- isolates were phage type 193, but exhibited 12 different, closely-related MLVA profiles. Salmonella 1,4,[5],12:i:- diversity within herds was low and MLVA profiles were stable indicating colonization throughout the herds and suggesting each farm had an endemic strain. High prevalence of S. 1,4,[5],12:i:- specific shedding among terminal animals indicated high hazard load at slaughter, suggesting that primary production may be an important pathway of S. 1,4,[5],12:i:- into the human food chain, this has implications for on-farm management and the application and targeting control measures and further evidence of the need for effective process control procedures to be in place during slaughter and in pork boning rooms. These findings have implications for animal health and food safety risk mitigation and risk management.
Collapse
|
3
|
Ford L, Glass K, Veitch M, Wardell R, Polkinghorne B, Dobbins T, Lal A, Kirk MD. Increasing Incidence of Salmonella in Australia, 2000-2013. PLoS One 2016; 11:e0163989. [PMID: 27732615 PMCID: PMC5061413 DOI: 10.1371/journal.pone.0163989] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/27/2016] [Indexed: 11/18/2022] Open
Abstract
Salmonella is a key cause of foodborne gastroenteritis in Australia and case numbers are increasing. We used negative binomial regression to analyze national surveillance data for 2000-2013, for Salmonella Typhimurium and non-Typhimurium Salmonella serovars. We estimated incidence rate ratios adjusted for sex and age to show trends over time. Almost all states and territories had significantly increasing trends of reported infection for S. Typhimurium, with states and territories reporting annual increases as high as 12% (95% confidence interval 10-14%) for S. Typhimurium in the Australian Capital Territory and 6% (95% CI 5-7%) for non-Typhimurium Salmonella in Victoria. S. Typhimurium notification rates were higher than non-Typhimurium Salmonella rates in most age groups in the south eastern states of Australia, while non-Typhimurium rates were higher in most age groups elsewhere. The S. Typhimurium notification rate peaked at 12-23 months of age and the non-Typhimurium Salmonella notification rate peaked at 0-11 months of age. The age-specific pattern of S. Typhimurium cases suggests a foodborne origin, while the age and geographic pattern for non-Typhimurium may indicate that other transmission routes play a key role for these serovars.
Collapse
Affiliation(s)
- Laura Ford
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory (ACT), Australia
| | - Kathryn Glass
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory (ACT), Australia
| | - Mark Veitch
- Department of Health and Human Services, Hobart, Tasmania (Tas.), Australia
| | - Rebecca Wardell
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory (ACT), Australia
| | - Ben Polkinghorne
- OzFoodNet, Australian Government Department of Health, Canberra, Australian Capital Territory (ACT), Australia
| | - Timothy Dobbins
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory (ACT), Australia
| | - Aparna Lal
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory (ACT), Australia
| | - Martyn D. Kirk
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory (ACT), Australia
| |
Collapse
|
4
|
Phillips A, Sotomayor C, Wang Q, Holmes N, Furlong C, Ward K, Howard P, Octavia S, Lan R, Sintchenko V. Whole genome sequencing of Salmonella Typhimurium illuminates distinct outbreaks caused by an endemic multi-locus variable number tandem repeat analysis type in Australia, 2014. BMC Microbiol 2016; 16:211. [PMID: 27629541 PMCID: PMC5024487 DOI: 10.1186/s12866-016-0831-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 09/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background Salmonella Typhimurium (STM) is an important cause of foodborne outbreaks worldwide. Subtyping of STM remains critical to outbreak investigation, yet current techniques (e.g. multilocus variable number tandem repeat analysis, MLVA) may provide insufficient discrimination. Whole genome sequencing (WGS) offers potentially greater discriminatory power to support infectious disease surveillance. Methods We performed WGS on 62 STM isolates of a single, endemic MLVA type associated with two epidemiologically independent, food-borne outbreaks along with sporadic cases in New South Wales, Australia, during 2014. Genomes of case and environmental isolates were sequenced using HiSeq (Illumina) and the genetic distance between them was assessed by single nucleotide polymorphism (SNP) analysis. SNP analysis was compared to the epidemiological context. Results The WGS analysis supported epidemiological evidence and genomes of within-outbreak isolates were nearly identical. Sporadic cases differed from outbreak cases by a small number of SNPs, although their close relationship to outbreak cases may represent an unidentified common food source that may warrant further public health follow up. Previously unrecognised mini-clusters were detected. Conclusions WGS of STM can discriminate foodborne community outbreaks within a single endemic MLVA clone. Our findings support the translation of WGS into public health laboratory surveillance of salmonellosis. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0831-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anastasia Phillips
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, NSW, Australia.
| | - Cristina Sotomayor
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,NSW Enteric Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Pathology West, Sydney, NSW, Australia
| | - Nadine Holmes
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Catriona Furlong
- OzFood Net, Communicable Disease Branch, Health Protection, NSW Ministry of Health, Sydney, NSW, Australia
| | - Kate Ward
- OzFood Net, Communicable Disease Branch, Health Protection, NSW Ministry of Health, Sydney, NSW, Australia
| | - Peter Howard
- NSW Enteric Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Pathology West, Sydney, NSW, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,NSW Enteric Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Pathology West, Sydney, NSW, Australia
| |
Collapse
|
5
|
Communicable Diseases Report, NSW, January-March 2013. NSW PUBLIC HEALTH BULLETIN 2013; 24:96-8, 102-3. [PMID: 24195857 DOI: 10.1071/nb13011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Improving resolution of public health surveillance for human Salmonella enterica serovar Typhimurium infection: 3 years of prospective multiple-locus variable-number tandem-repeat analysis (MLVA). BMC Infect Dis 2012; 12:78. [PMID: 22462487 PMCID: PMC3368731 DOI: 10.1186/1471-2334-12-78] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 03/31/2012] [Indexed: 11/26/2022] Open
Abstract
Background Prospective typing of Salmonella enterica serovar Typhimurium (STM) by multiple-locus variable-number tandem-repeat analysis (MLVA) can assist in identifying clusters of STM cases that might otherwise have gone unrecognised, as well as sources of sporadic and outbreak cases. This paper describes the dynamics of human STM infection in a prospective study of STM MLVA typing for public health surveillance. Methods During a three-year period between August 2007 and September 2010 all confirmed STM isolates were fingerprinted using MLVA as part of the New South Wales (NSW) state public health surveillance program. Results A total of 4,920 STM isolates were typed and a subset of 4,377 human isolates was included in the analysis. The STM spectrum was dominated by a small number of phage types, including DT170 (44.6% of all isolates), DT135 (13.9%), DT9 (10.8%), DT44 (4.5%) and DT126 (4.5%). There was a difference in the discriminatory power of MLVA types within endemic phage types: Simpson's index of diversity ranged from 0.109 and 0.113 for DTs 9 and 135 to 0.172 and 0.269 for DTs 170 and 44, respectively. 66 distinct STM clusters were observed ranging in size from 5 to 180 cases and in duration from 4 weeks to 25 weeks. 43 clusters had novel MLVA types and 23 represented recurrences of previously recorded MLVA types. The diversity of the STM population remained relatively constant over time. The gradual increase in the number of STM cases during the study was not related to significant changes in the number of clusters or their size. 667 different MLVA types or patterns were observed. Conclusions Prospective MLVA typing of STM allows the detection of community outbreaks and demonstrates the sustained level of STM diversity that accompanies the increasing incidence of human STM infections. The monitoring of novel and persistent MLVA types offers a new benchmark for STM surveillance. A part of this study was presented at the MEEGID × (Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) Conference, 3-5 November 2010, Amsterdam, The Netherlands
Collapse
|
7
|
Prendergast D, O’Grady D, Fanning S, Cormican M, Delappe N, Egan J, Mannion C, Fanning J, Gutierrez M. Application of multiple locus variable number of tandem repeat analysis (MLVA), phage typing and antimicrobial susceptibility testing to subtype Salmonella enterica serovar Typhimurium isolated from pig farms, pork slaughterhouses and meat producing plants in Ireland. Food Microbiol 2011; 28:1087-94. [DOI: 10.1016/j.fm.2011.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 11/16/2022]
|
8
|
Multilocus variable number tandem repeat analysis for Salmonella enterica subspecies. Eur J Clin Microbiol Infect Dis 2010; 30:465-73. [DOI: 10.1007/s10096-010-1110-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
|
9
|
Multiple-locus variable-number tandem-repeat analysis for discriminating within Salmonella enterica serovar Typhimurium definitive types and investigation of outbreaks. Epidemiol Infect 2010; 139:1050-9. [PMID: 20822575 DOI: 10.1017/s0950268810002025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discriminatory power of multiple-locus variable-number tandem-repeat analysis (MLVA) needs to be evaluated for all Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium) phage types so that the power of this methodology is understood and results can be interpreted correctly during outbreak investigations. We evaluated the ability of MLVA to characterize four definitive phage types (DT) problematic in New Zealand. MLVA discriminated between DT104 isolates although there was very limited variation in the MLVA profiles for isolates with an RDNC phage type (reacts but does not conform to a recognized Typhimurium phage pattern) first observed in New Zealand's Enteric Reference Laboratory in May 2006. Most DT101 isolates had indistinguishable MLVA profiles or profiles that differed at one or two loci. This was also observed in DT160 isolates. MLVA may not identify all common-source outbreaks although it provided valuable data when applied to case isolates from two S. Typhimurium outbreaks.
Collapse
|