1
|
Hwang IS, Park MR, Lee HS, Kwak TU, Son HY, Kang JK, Lee JW, Lee K, Park EW, Hwang S. Developmental and Degenerative Characterization of Porcine Parthenogenetic Fetuses during Early Pregnancy. Animals (Basel) 2020; 10:ani10040622. [PMID: 32260352 PMCID: PMC7222715 DOI: 10.3390/ani10040622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary To increase the early implantation rate, oocytes and zygotes have been subjected to various artificial stimulations before and/or after in vitro fertilization, nuclear transfer, or sperm (spermatid) injection, etc. However, the stimulation process may induce parthenogenetic development. It is difficult to identify whether the embryo or fetus is normally fertilized or parthenogenetically activated in early pregnancy. In the present study, the porcine parthenotes originated from electric stimulation implanted and developed normally during the first month, in a manner similar to artificially inseminated embryos and fetuses. There were no statistical differences in the formation of the major organs such as the brain, liver, kidney, or heart in both groups. However, the implanted parthenotes radically ceased their development and degenerated after one month. It can be postulated that the parthenotes are one of the reasons for the gap between early pregnancy and delivery rate in assisted reproduction techniques. Abstract The difference between early pregnancy and delivery rate is quite large in assisted reproduction techniques (ARTs), including animal cloning. However, it is not clear why the implanted fetuses aborted after the early pregnancy stage. In the present study, we tried to evaluate the developmental and morphological characteristics of porcine parthenogenetically activated (PA) embryos or fetuses by electric stimulation during the early pregnancy period. The implanted PA and artificially inseminated (AI) embryos and fetuses were collected at day 26 and 35 after embryo transfer, respectively. The developmental and morphological parameters in the PA embryos at day 26 were similar to the AI embryos. The size, weight, formation of major organs, and apoptotic cells were not statistically different in both embryos at day 26. However, the PA fetuses at day 35 showed ceased fetal development and degenerated with abnormal morphologies in their organs. The day 35 PA fetuses showed significantly higher apoptotic cells and lower methylation status in three differentially methylated regions of the H19 gene compared to their comparators. Therefore, the normal development of PA embryos and fetuses during early gestation could lead to these pregnancies being misinterpreted as normal and become one of the main reasons for the gap between early pregnancy and delivery rate.
Collapse
Affiliation(s)
- In-Sul Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Jeonbuk 55365, Korea; (I.-S.H.); (M.-R.P.); (H.-S.L.); (T.-U.K.); (E.-W.P.)
| | - Mi-Ryung Park
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Jeonbuk 55365, Korea; (I.-S.H.); (M.-R.P.); (H.-S.L.); (T.-U.K.); (E.-W.P.)
| | - Hae-Sun Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Jeonbuk 55365, Korea; (I.-S.H.); (M.-R.P.); (H.-S.L.); (T.-U.K.); (E.-W.P.)
| | - Tae-Uk Kwak
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Jeonbuk 55365, Korea; (I.-S.H.); (M.-R.P.); (H.-S.L.); (T.-U.K.); (E.-W.P.)
| | - Hwa-Young Son
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea;
| | - Jong-Koo Kang
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Korea;
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Eung-Woo Park
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Jeonbuk 55365, Korea; (I.-S.H.); (M.-R.P.); (H.-S.L.); (T.-U.K.); (E.-W.P.)
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Jeonbuk 55365, Korea; (I.-S.H.); (M.-R.P.); (H.-S.L.); (T.-U.K.); (E.-W.P.)
- Correspondence: ; Tel.: +82-632-387-253
| |
Collapse
|
2
|
Handmade cloning: recent advances, potential and pitfalls. J Anim Sci Biotechnol 2015; 6:43. [PMID: 26473031 PMCID: PMC4606838 DOI: 10.1186/s40104-015-0043-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/21/2015] [Indexed: 12/02/2022] Open
Abstract
Handmade cloning (HMC) is the most awaited, simple and micromanipulator-free version of somatic cell nuclear transfer (SCNT). The requirement of expensive micromanipulators and skilled expertise is eliminated in this technique, proving it as a major revolution in the field of embryology. During the past years, many modifications have been incorporated in this technique to boost its efficiency. This alternative approach to micromanipulator based traditional cloning (TC) works wonder in generating comparable or even higher birth rates in addition to declining costs drastically and enabling cryopreservation. This technique is not only applicable to intraspecies nuclear transfer but also to interspecies nuclear transfer (iSCNT) thus permitting conservation of endangered species. It also offers unique possibilities for automation of SCNT which aims at production of transgenic animals that can cure certain human diseases by producing therapeutics hence, providing a healthier future for the wellbeing of humans. The present review aims at highlighting certain aspects of HMC including recent advancements in procedure and factors involved in elevating its efficiency besides covering the potentials and pitfalls of this technique.
Collapse
|