1
|
Zhou Y, Shearwin-Whyatt L, Li J, Song Z, Hayakawa T, Stevens D, Fenelon JC, Peel E, Cheng Y, Pajpach F, Bradley N, Suzuki H, Nikaido M, Damas J, Daish T, Perry T, Zhu Z, Geng Y, Rhie A, Sims Y, Wood J, Haase B, Mountcastle J, Fedrigo O, Li Q, Yang H, Wang J, Johnston SD, Phillippy AM, Howe K, Jarvis ED, Ryder OA, Kaessmann H, Donnelly P, Korlach J, Lewin HA, Graves J, Belov K, Renfree MB, Grutzner F, Zhou Q, Zhang G. Platypus and echidna genomes reveal mammalian biology and evolution. Nature 2021; 592:756-762. [PMID: 33408411 PMCID: PMC8081666 DOI: 10.1038/s41586-020-03039-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
Egg-laying mammals (monotremes) are the only extant mammalian outgroup to therians (marsupial and eutherian animals) and provide key insights into mammalian evolution1,2. Here we generate and analyse reference genomes of the platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus), which represent the only two extant monotreme lineages. The nearly complete platypus genome assembly has anchored almost the entire genome onto chromosomes, markedly improving the genome continuity and gene annotation. Together with our echidna sequence, the genomes of the two species allow us to detect the ancestral and lineage-specific genomic changes that shape both monotreme and mammalian evolution. We provide evidence that the monotreme sex chromosome complex originated from an ancestral chromosome ring configuration. The formation of such a unique chromosome complex may have been facilitated by the unusually extensive interactions between the multi-X and multi-Y chromosomes that are shared by the autosomal homologues in humans. Further comparative genomic analyses unravel marked differences between monotremes and therians in haptoglobin genes, lactation genes and chemosensory receptor genes for smell and taste that underlie the ecological adaptation of monotremes.
Collapse
Affiliation(s)
- Yang Zhou
- BGI-Shenzhen, Shenzhen, China
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Linda Shearwin-Whyatt
- School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jing Li
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhenzhen Song
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
- Japan Monkey Centre, Inuyama, Japan
| | - David Stevens
- School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jane C Fenelon
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Filip Pajpach
- School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Natasha Bradley
- School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Joana Damas
- The Genome Center, University of California, Davis, CA, USA
| | - Tasman Daish
- School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Tahlia Perry
- School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Zexian Zhu
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuncong Geng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ying Sims
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Jonathan Wood
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Bettina Haase
- The Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | | | - Olivier Fedrigo
- The Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Qiye Li
- BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Stephen D Johnston
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kerstin Howe
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Harris A Lewin
- The Genome Center, University of California, Davis, CA, USA
- Department of Evolution and Ecology, College of Biological Sciences, University of California, Davis, CA, USA
- Department of Reproduction and Population Health, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jennifer Graves
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Frank Grutzner
- School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen, China.
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
2
|
Stolle E, Pracana R, Howard P, Paris CI, Brown SJ, Castillo-Carrillo C, Rossiter SJ, Wurm Y. Degenerative Expansion of a Young Supergene. Mol Biol Evol 2019; 36:553-561. [PMID: 30576522 PMCID: PMC6389315 DOI: 10.1093/molbev/msy236] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Long-term suppression of recombination ultimately leads to gene loss, as demonstrated by the depauperate Y and W chromosomes of long-established pairs of XY and ZW chromosomes. The young social supergene of the Solenopsis invicta red fire ant provides a powerful system to examine the effects of suppressed recombination over a shorter timescale. The two variants of this supergene are carried by a pair of heteromorphic chromosomes, referred to as the social B and social b (SB and Sb) chromosomes. The Sb variant of this supergene changes colony social organization and has an inheritance pattern similar to a Y or W chromosome because it is unable to recombine. We used high-resolution optical mapping, k-mer distribution analysis, and quantification of repetitive elements on haploid ants carrying alternate variants of this young supergene region. We find that instead of shrinking, the Sb variant of the supergene has increased in length by more than 30%. Surprisingly, only a portion of this length increase is due to consistent increases in the frequency of particular classes of repetitive elements. Instead, haplotypes of this supergene variant differ dramatically in the amounts of other repetitive elements, indicating that the accumulation of repetitive elements is a heterogeneous and dynamic process. This is the first comprehensive demonstration of degenerative expansion in an animal and shows that it occurs through nonlinear processes during the early evolution of a region of suppressed recombination.
Collapse
Affiliation(s)
- Eckart Stolle
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Institut für Biologie, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, Halle, Germany
| | - Rodrigo Pracana
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Philip Howard
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Carolina I Paris
- Departamento Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Susan J Brown
- Division of Biology, Kansas State University, Manhattan, Kansas
| | | | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Yannick Wurm
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|