1
|
Bertuzzi ML, Torres EY, Durand MGP, Huanca T, Giuliano SM, Carretero MI. Cooling of alpaca spermatozoa using an extender with the addition of different percentages of seminal plasma. Anim Reprod Sci 2024; 260:107383. [PMID: 38061197 DOI: 10.1016/j.anireprosci.2023.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/23/2023] [Indexed: 12/22/2023]
Abstract
The objective of this study was to evaluate the effect of the addition of different percentages of seminal plasma (SP) during the cooling at 5 °C of alpaca spermatozoa from vas deferens. Fifteen pools of sperm from vas deferens were evaluated and then divided into four aliquots that were diluted to a final concentration of 30 × 106 sperm/ml with either: (1) Tris with 20% egg yolk (T-EY) (control, 0% SP), (2) T-EY with 10% SP, (3) T-EY with 25% SP, and (4) T-EY with 50% SP. Samples were cooled at 5 °C and the following sperm parameters were evaluated after 24 and 48 h of storage: motility, viability, membrane function, acrosome integrity, morphology, and chromatin condensation. Motility was also evaluated after 72 h of storage. A significant decrease in progressive and total sperm motility was observed in samples cooled with 50% SP with respect to all diluted samples, while these parameters were preserved in samples cooled with 0%, 10%, and 25% SP. The percentages of sperm viability, normal morphology, and highly condensed chromatin did not change after the cooling process and were similar between cooled samples. Although a significant decrease was observed in the percentage of spermatozoa with functional membranes and with an intact acrosome in all refrigerated samples compared to raw sperm, the greatest decrease was observed in samples cooled with 50% SP. No advantage was observed from the addition of SP to alpaca spermatozoa obtained from vas deferens and being cooled. In addition, to preserve the sperm motility of cooled samples for up to 72 h, it should be recommended to include a 10% SP in the extender.
Collapse
Affiliation(s)
- Mariana Lucía Bertuzzi
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Edita Yola Torres
- Laboratorio de Reproducción Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano Puno, Puno, Peru; Instituto Nacional de Innovación Agraria (INIA), Centro de Investigación y Producción Quinsachata, Puno, Peru
| | - Manuel Guido Pérez Durand
- Laboratorio de Reproducción Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano Puno, Puno, Peru; Instituto Nacional de Innovación Agraria (INIA), Centro de Investigación y Producción Quinsachata, Puno, Peru
| | - Teodosio Huanca
- Instituto Nacional de Innovación Agraria (INIA), Centro de Investigación y Producción Quinsachata, Puno, Peru
| | - Susana María Giuliano
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| | - María Ignacia Carretero
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Ali MA, Qin Z, Dou S, Huang A, Wang Y, Yuan X, Zhang Y, Ni Q, Azmat R, Zeng C. Cryopreservation Induces Acetylation of Metabolism-Related Proteins in Boar Sperm. Int J Mol Sci 2023; 24:10983. [PMID: 37446160 DOI: 10.3390/ijms241310983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Cryodamage affects the normal physiological functions and survivability of boar sperm during cryopreservation. Lysine acetylation is thought to be an important regulatory mechanism in sperm functions. However, little is known about protein acetylation and its effects on cryotolerance or cryodamage in boar sperm. In this study, the characterization and protein acetylation dynamics of boar sperm during cryopreservation were determined using liquid chromatography-mass spectrometry (LC-MS). A total of 1440 proteins were identified out of 4705 modified proteins, and 2764 quantifiable sites were elucidated. Among the differentially modified sites, 1252 were found to be upregulated compared to 172 downregulated sites in fresh and frozen sperms. Gene ontology indicated that these differentially modified proteins are involved in metabolic processes and catalytic and antioxidant activities, which are involved in pyruvate metabolism, phosphorylation and lysine degradation. In addition, the present study demonstrated that the mRNA and protein expressions of SIRT5, IDH2, MDH2 and LDHC, associated with sperm quality parameters, are downregulated after cryopreservation. In conclusion, cryopreservation induces the acetylation and deacetylation of energy metabolism-related proteins, which may contribute to the post-thawed boar sperm quality parameters.
Collapse
Affiliation(s)
- Malik Ahsan Ali
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ziyue Qin
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan Dou
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Anqi Huang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yihan Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Yuan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingyong Ni
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Rameesha Azmat
- Department of Biochemistry, Faculty of Science and Technology, Government College Women University, Faisalabad 38000, Pakistan
| | - Changjun Zeng
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Advances in sperm cryopreservation in farm animals: Cattle, horse, pig and sheep. Anim Reprod Sci 2022; 246:106904. [PMID: 34887155 DOI: 10.1016/j.anireprosci.2021.106904] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022]
Abstract
Sperm cryopreservation is one of the most important procedures in the development of biotechnologies for assisted reproduction. In some farm animals, the use of cryopreserved sperm has so many benefits for which relevance has become more evident in recent decades. Values for post-thaw sperm quality, however, are variable among species and within individuals of the same species. There is no standardized methodology for each of the stages of the cryopreservation procedure (andrological examination, semen collection, dilution, centrifugation, resuspension of the pellet with the freezing medium, packaging, freezing and post-thaw sperm evaluation), which also contributes to differences among studies. Cryotolerance markers of sperm and seminal plasma (SP) have been evaluated for prediction of ejaculate freezability. In addition, in previous research, there has been a focus on supplementing cryopreservation media with different substances, such as enzymatic and non-enzymatic antioxidants. In most studies, inclusion of these substances have led to improved post-thaw sperm quality and fertilizing capacity as a result of minimizing the adverse effects on sperm structure and function. Another approach is the use of different cryoprotectants. The aim with this review article is to provide an update on sperm cryopreservation in farm animals. The main detrimental effects of cryopreservation are described, including the negative repercussion on reproductive performance. Furthermore, the potential use of molecular biomarkers to predict sperm cryotolerance is discussed, as well as the addition of substances that can mitigate the harmful impact of freezing and thawing on sperm.
Collapse
|
4
|
Xie Y, Xu Z, Wu C, Zhou C, Zhang X, Gu T, Yang J, Yang H, Zheng E, Xu Z, Cai G, Li Z, Liu D, Wu Z, Hong L. Extracellular vesicle-encapsulated miR-21-5p in seminal plasma prevents sperm capacitation via Vinculin inhibition. Theriogenology 2022; 193:103-113. [PMID: 36156422 DOI: 10.1016/j.theriogenology.2022.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 07/11/2022] [Accepted: 09/10/2022] [Indexed: 10/31/2022]
Abstract
To penetrate the zona pellucida before sperm-egg binding, sperm must undergo highly time-controlled capacitation and acrosome reaction in the female reproductive tract. Our previous study demonstrated that miR-21-5p is the most abundant miRNA in boar seminal plasma (SP)-derived extracellular vesicles (EVs) and can target Vinculin (VCL) gene, which may participate in boar sperm capacitation. Thus, this study aims to explore the potential role of miR-21-5p from SP-derived EVs in preventing sperm capacitation and its underlying mechanism. We observed that sperm could incorporate miR-21-5p from SP-derived EVs. The roles of SP-derived EVs miR-21-5p in sperm capacitation were then determined using gain- and loss-of-function analyses. In addition, the expression levels of miR-21-5p, VCL, and VCL protein in liquid-preserved boar sperm following transfection were determined using RT-qPCR and Western blotting. Our results revealed that miR-21-5p overexpression inhibited sperm capacitation and acrosome reaction. Similarly, miR-21-5p expression was significantly lower (P < 0.05) in capacitated sperm than un-capacitated sperm. However, the protein level of VCL was also significantly lower (P < 0.05) in capacitated sperm than un-capacitated sperm. Furthermore, immunofluorescence analysis showed that VCL protein mainly located in sperm head and sperm capacitation was inhibited after treating with VCL protein inhibitor (Chrysin). In conclusion, our study provides reasonable evidence that miR-21-5p expression in SP-derived EVs could prevent sperm capacitation via VCL inhibition.
Collapse
Affiliation(s)
- Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zhiqian Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Changhua Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Chen Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | | | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, 510642, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, 510642, China.
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China.
| |
Collapse
|
5
|
Akhtar MF, Ma Q, Li Y, Chai W, Zhang Z, Li L, Wang C. Effect of Sperm Cryopreservation in Farm Animals Using Nanotechnology. Animals (Basel) 2022; 12:ani12172277. [PMID: 36077996 PMCID: PMC9454492 DOI: 10.3390/ani12172277] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Sperm cryopreservation is one of the sublime biotechnologies for assisted reproduction. In recent decades, there has been an increasing trend in the use of preserved semen. Post-thaw semen quality and values vary among animals of the same species. Similarly, there are species-specific variations in sperm morphology, i.e., sperm head, kinetic properties, plasma membrane integrity, and freezability. Similarly, the viability of sperm varies in the female reproductive tract, i.e., from a few hours (in cattle) to several days (in chicken). Various steps of sperm cryopreservation, i.e., male health examination, semen collection, dilution, semen centrifugation, pre- and post-thaw semen quality evaluation, lack standardized methodology, that result in differences in opinions. Assisted reproductive technologies (ART), including sperm preservation, are not applied to the same extent in commercial poultry species as in mammalian species for management and economic reasons. Sperm preservation requires a reduction in physiological metabolism by extending the viable duration of the gametes. Physiologically and morphologically, spermatozoa are unique in structure and function to deliver paternal DNA and activate oocytes after fertilization. Variations in semen and sperm composition account for better handling of semen, which can aid in improved fertility. This review aims to provide an update on sperm cryopreservation in farm animals.
Collapse
|
6
|
Fractionated Seminal Plasma of Boar Ejaculates Analyzed by LC-MS/MS: Its Effects on Post-Thaw Semen Quality. Genes (Basel) 2021; 12:genes12101574. [PMID: 34680969 PMCID: PMC8536186 DOI: 10.3390/genes12101574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
This study aimed to characterize the protein composition of fractionated seminal plasma (SP) by liquid chromatography mass spectrometry (LC–MS/MS) analysis and investigate its effects on survival of frozen-thaw (FT) boar spermatozoa following storage. Seminal plasma (SP) was fractionated by gel filtration chromatography to give two fractions, SP1 with more than 40 kDa (>40 kDa) and SP2 with less than 40 kDa (<40 kDa). SP1 and SP2 were subjected to LC–MS/MS and bioinformatics analysis. Following cryopreservation, FT boar semen (n = 7) was thawed in Beltsville Thawing Solution (BTS), BTS + SP1 or BTS + SP2, stored at different periods and subjected to post-thaw (PT) quality assessment. A total of 52 and 22 abundant proteins were detected in SP1 and SP2, respectively. FN1, ANGPTL1, and KIF15 proteins were more abundance in SP1, whereas a high abundance of spermadhesins (PSP-I and PSP-II) was detected in SP2. Proteins of the fractionated SP were involved in various biological processes, such as cell motility and signal transduction. The dominant pathway of SP1 proteins was the apelin signaling pathway (GNA13, MEF2D, SPHK2, and MEF2C), whereas a pathway related to lysosome (CTSH, CTSB, and NPC2) was mainly represented by SP2 proteins. In most of the boars, significantly higher motility characteristics, membrane integrity, and viability were observed in FT spermatozoa exposed to SP1 or SP2 compared with BTS. The results of our study confirm that a combination of several proteins from the fractionated SP exerted beneficial effects on the sperm membrane, resulting in improved quality characteristics following PT storage.
Collapse
|
7
|
The Presence of Seminal Plasma during Liquid Storage of Pig Spermatozoa at 17 °C Modulates Their Ability to Elicit In Vitro Capacitation and Trigger Acrosomal Exocytosis. Int J Mol Sci 2020; 21:ijms21124520. [PMID: 32630462 PMCID: PMC7350249 DOI: 10.3390/ijms21124520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Although seminal plasma is essential to maintain sperm integrity and function, it is diluted/removed prior to liquid storage and cryopreservation in most mammalian species. This study sought to evaluate, using the pig as a model, whether storing semen in the presence of seminal plasma affects the sperm ability to elicit in vitro capacitation and acrosomal exocytosis. Upon collection, seminal plasma was separated from sperm samples, which were diluted in a commercial extender, added with seminal plasma (15% or 30%), and stored at 17 °C for 48 or 72 h. Sperm cells were subsequently exposed to capacitating medium for 4 h, and then added with progesterone to induce acrosomal exocytosis. Sperm motility, acrosome integrity, membrane lipid disorder, intracellular Ca2+ levels, mitochondrial activity, and tyrosine phosphorylation levels of glycogen synthase kinase-3 (GSK3)α/β were determined after 0, 2, and 4 h of incubation, and after 5, 30, and 60 min of progesterone addition. Results showed that storing sperm at 17 °C with 15% or 30% seminal plasma led to reduced percentages of viable spermatozoa exhibiting an exocytosed acrosome, mitochondrial membrane potential, intracellular Ca2+ levels stained by Fluo3, and tyrosine phosphorylation levels of GSK3α/β after in vitro capacitation and progesterone-induced acrosomal exocytosis. Therefore, the direct contact between spermatozoa and seminal plasma during liquid storage at 17 °C modulated their ability to elicit in vitro capacitation and undergo acrosomal exocytosis, via signal transduction pathways involving Ca2+ and Tyr phosphorylation of GSK3α/β. Further research is required to address whether such a modulating effect has any impact upon sperm fertilizing ability.
Collapse
|
8
|
Rickard JP, de Graaf SP. Sperm surface changes and their consequences for sperm transit through the female reproductive tract. Theriogenology 2020; 150:96-105. [PMID: 32067798 DOI: 10.1016/j.theriogenology.2020.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/17/2022]
Abstract
Spermatozoa are faced with considerable challenges during their passage through the female reproductive tract. Following deposition, they must deal with several physical and biochemical barriers as well as an aggressive immune defence system before they reach the site of fertilisation. While many factors are at play, the surface characteristics of spermatozoa are central to communication with the female and successful transit. The surface proteome of spermatozoa has been extensively studied and shown to vary considerably between species that deposit semen in the vagina (ram and bull) and uterus (boar and stallion), likely due to major differences in accessory sex gland anatomy. Comparing the surface characteristics of spermatozoa from these domestic species and how individual components may equip spermatozoa to interact with different features of the female tract could help understand how spermatozoa navigate from vagina or uterus to oviduct ampulla. Furthermore, we can begin to explain why use of high quality preserved spermatozoa in artificial insemination programs may still result in reduced fertility due to altered interaction with the female. In this review, we describe the sperm surface characteristics of the ram, bull, boar and stallion and compare changes as a result of mixture with seminal plasma and/or in vitro processing. The role of these seminal components in facilitating sperm survival and transit within the female reproductive tract is summarised, drawing attention to potential implications for applied reproductive technologies.
Collapse
Affiliation(s)
- J P Rickard
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW, 2006, Australia.
| | - S P de Graaf
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW, 2006, Australia
| |
Collapse
|
9
|
Valencia J, Yeste M, Quintero-Moreno A, Niño-Cardenas CDP, Henao FJ. Relative content of Niemann-Pick C2 protein (NPC2) in seminal plasma, but not that of spermadhesin AQN-1, is related to boar sperm cryotolerance. Theriogenology 2019; 145:181-189. [PMID: 31711697 DOI: 10.1016/j.theriogenology.2019.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/26/2019] [Accepted: 10/26/2019] [Indexed: 01/05/2023]
Abstract
Variation between and within boar ejaculates in terms of their ability to withstand freeze-thawing is a limitation for sperm cryopreservation. Consequently, searching for freezability markers not only in sperm but also in seminal plasma (SP) is imperative. The present study aimed to evaluate the relationship between cholesterol content, relative levels of NPC2 and AQN-1 at two different holding times (0 h: HT0 and 24 h: HT24) at 17 °C, and boar sperm freezability. Forty-five ejaculates were cryopreserved and subsequently classified as of good (GFE) or poor (PFE) freezability according to their post-thaw sperm viability and total motility. Prior to cryopreservation, relative abundances of two SP proteins (NPC2 and AQN-1) and cholesterol content in sperm and SP were determined through immunoblotting and colorimetric methods, respectively. These determinations were made after ejaculation (HT0) and after 24 h of storage at 17 °C (HT24). Two bands for NPC2 protein (16 kDa and 19 kDa) were identified. Relative amounts of the 16 kDa-band were significantly (P < 0.05) higher in poor (PFE) than in good (GFE) freezability ejaculates both at HT0 and HT24, whereas those of the 19 kDa-band were significantly (P < 0.05) higher in PFE than in GFE at HT24 only. In the case of AQN-1, no significant differences between GFE and PFE were observed. In addition, no variations in the cholesterol content of sperm and SP were observed either between HT0 and HT24 or between GFE and PFE. We can conclude that the content of two NPC2 isoforms in SP, but not of that of spermadhesin AQN-1, may be involved in the sperm resilience to withstand freeze-thawing procedures and may predict ejaculate freezability. While a possible mechanism through which NPC2 during HT could affect boar sperm cryotolerance is suggested to be related to its ability to bind the plasma membrane cholesterol, further research is warranted.
Collapse
Affiliation(s)
- Julian Valencia
- Faculty of Agricultural Sciences, Department of Agricultural Production, University of Caldas, Manizales, Colombia
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Unit of Cell Biology, Department of Biology, Institute of Food and Agricultural Technology, Faculty of Sciences, University of Girona, Girona, Spain.
| | - Armando Quintero-Moreno
- Laboratory of Andrology, Unit of Animal Production (UNIPA), Faculty of Veterinary Science, University of Zulia, Maracaibo, Venezuela
| | | | - Francisco Javier Henao
- Faculty of Agricultural Sciences, Department of Agricultural Production, University of Caldas, Manizales, Colombia
| |
Collapse
|
10
|
Rickard JP, Pool KR, Druart X, de Graaf SP. The fate of spermatozoa in the female reproductive tract: A comparative review. Theriogenology 2019; 137:104-112. [PMID: 31230704 DOI: 10.1016/j.theriogenology.2019.05.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The journey that spermatozoa take following deposition in the female tract is a long and perilous one. The barriers they face within the female tract differ depending on whether they are deposited in the vagina or uterus, like spermatozoa of the ram or boar respectively. Comparative studies on the transit of spermatozoa through the ewe and sow tracts serves to highlight similarities, or differences, in the way their sperm-surface properties enable them to overcome these barriers, progress through the tract and fertilise the oocyte. The female environment contributes towards this successful transit by providing a vehicle for sperm transport, aiding the removal of dead spermatozoa and other pathogens and applying strict selection pressures to ensure only those cells with the highest quality reach the site of fertilisation. Understanding the criteria behind these natural barriers helps an understanding of the limitations to fertility associated with preserved spermatozoa, and how in vitro manipulation can alter this complex interaction between spermatozoa and the female environment. Similar mechanisms or surface coat interactions exist in both species, but each has evolved to be used for physiologically disparate functions. Here we briefly describe the sperm surface characteristics of both fresh and frozen-thawed boar and ram spermatozoa and compare how these properties equip them to survive the physical, biochemical and immune interactions within the female reproductive tract.
Collapse
Affiliation(s)
- J P Rickard
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW, 2006, Australia.
| | - K R Pool
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW, 2006, Australia
| | - X Druart
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Le Centre National de la Recherche Scientifique, Institut Francais du Cheval et de L'Equitation, Université de Tours, Nouzilly, France
| | - S P de Graaf
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW, 2006, Australia
| |
Collapse
|
11
|
Abstract
During ejaculation and deposition in the female genital tract, spermatozoa are exposed to seminal plasma, a mix of secretions primarily from the accessory sex glands. Proteins, which make up the largest contribution to seminal plasma by weight, have been the focus of much interest, in particular the identification of specific proteins both in the plasma and/or found bound to the sperm surface post ejaculation. Global proteomic studies of seminal plasma originating from a range of species over the last 15 years have revealed their hitherto unknown diversity and complexity. Seminal plasma is generally known to aid sperm survival and fertility in a range of species and studies have begun to reveal its link with sperm function and identification, as markers of fertility. This review summarises recent data on proteins found on the sperm surface that originate from seminal plasma and have subsequently been shown to correlate with fertility, with a focus on the pig.
Collapse
|
12
|
Abstract
Artificial insemination (AI) is widely used for livestock breeding. Although sperm cryopreservation is the most efficient method for long-term storage, its use for porcine AI is marginal, because of its dramatic impact on sperm quality. While the removal of seminal plasma is a routine practice prior to porcine sperm cryopreservation, its beneficial role on sperm function has not been investigated in as much detail. In this context and despite seminal plasma being regarded as a mere vehicle of sperm, mounting evidence indicates that it could be positive for porcine sperm fertility. In effect, not only is seminal plasma able to interact with the female reproductive tract after mounting/insemination, but it has been demonstrated it modulates sperm function. For this reason, the composition of this fluid and its proteome have begun to be investigated in order to elucidate whether its components play any role in sperm function, fertility and cryotolerance. Previous research has demonstrated that seminal plasma may maintain the quality and fertilizing ability of frozen-thawed boar spermatozoa when added before or after cryopreservation. However, a large variety of results have been reported with both beneficial and detrimental effects, including studies in which no influence has been observed. This review examines the composition of porcine seminal plasma and summarizes the available published studies regarding seminal plasma supplementation to spermatozoa before or after freeze-thawing. The take-home message of this article is that clearing up the role of seminal plasma in sperm cryotolerance may increase the reproductive performance of frozen-thawed boar spermatozoa.
Collapse
|
13
|
Removal of seminal plasma prior to liquid storage of boar spermatozoa: A practice that can improve their fertilizing ability. Theriogenology 2018; 125:79-86. [PMID: 30390482 DOI: 10.1016/j.theriogenology.2018.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/27/2018] [Accepted: 10/25/2018] [Indexed: 11/23/2022]
Abstract
Seminal plasma (SP) plays a vital role in the maintenance of sperm function and integrity along with being involved in their communication with the female reproductive tract. Under in vitro conditions, although it is generally accepted that boar semen is better preserved when SP is diluted (extended) or removed (cryopreserved), its role during storage is not completely elucidated. In this context, the current study sought to determine the role of SP during storage of boar spermatozoa at 17 °C for 72 h. Thus, two treatments were prepared with semen from the sperm-rich fraction (SRF) of boar ejaculate previous to storage in liquid state: 1) PSP: semen directly extended in Beltsville Thawing Solution (BTS), and 2) ASP: semen first centrifuged with subsequent removal of supernatant (containing SP) followed by suspension of sperm in BTS. From this, two experiments were conducted separately in this work: 1) in vitro and 2) in vivo assays. The former aimed to evaluate how sperm capacity responds to in vitro capacitation (IVC) and whether their quality is affected by previous exposure to SP. In the latter, the objective was to understand how important these previous conditions can be for reproductive performance after artificial insemination (AI). According to our results, the previous removal of SP does not affect sperm quality and the response of these cells to IVC (P > 0.05) along with resulting in a lower percentage of acrosome damage in them [12.87 ± 0.76 (ASP) vs. 16.38 ± 0.73 (PSP)] (P < 0.05). This improved preservation of acrosome integrity in the absence of SP can explain the higher fertility rate (%) [63.27 ± 23.47 (ASP) vs. 38.57 ± 16.30 (PSP)] and number of implanted embryos at 28 days after AI (13.71 ± 4.88 (ASP) vs. 7.16 ± 4.02 (PSP)] (P < 0.05) presented by gilts inseminated with seminal doses of ASP. In conclusion, removal of SP prior to liquid storage of boar sperm for 72 h can be beneficial for their fertilizing ability.
Collapse
|
14
|
Luna C, Mendoza N, Casao A, Pérez-Pé R, Cebrián-Pérez JA, Muiño-Blanco T. c-Jun N-terminal kinase and p38 mitogen-activated protein kinase pathways link capacitation with apoptosis and seminal plasma proteins protect sperm by interfering with both routes†. Biol Reprod 2018; 96:800-815. [PMID: 28379343 DOI: 10.1093/biolre/iox017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/18/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p38 MAP kinase (p38) signaling cascades are involved in triggering apoptosis in somatic cells. Given that spermatozoa are able to undergo apoptosis, we tested the hypothesis that these pathways might be functional in ram spermatozoa as two signal transduction mechanisms that contribute to the modulation of capacitation and apoptosis. Indirect immunofluorescence and western blot analysis evidenced the presence of JNK and p38 in ram spermatozoa. To verify the involvement of these enzymes in sperm physiology, we determined the effect of specific inhibitors of JNK or p38 on in vitro capacitation induced with either cAMP-elevating agents or epidermal growth factor (EGF). Both inhibitions reduced the EGF-induced capacitation with a decrease in the chlortetracycline capacitated-sperm pattern, protein tyrosine phosphorylation, phosphatidylserine externalization, caspase-3 and -7 activation, and the proportion of DNA-damaged spermatozoa. No significant changes were found in the high-cAMP capacitated samples. The addition of 3.4 mg/ml seminal plasma proteins (SPPs) to the EGF-containing samples, either alone or together with each inhibitor, resulted in a decreased proportion of capacitated sperm pattern, protein tyrosine phosphorylation, loss of plasma membrane integrity, and apoptotic alterations. Furthermore, SPPs significantly reduced the phosphorylation level of JNK and p38 MAPK (active forms). These findings show a relationship between capacitation and apoptosis, and represent a step forward in the knowledge of the SPP protective mechanism in spermatozoa.
Collapse
|
15
|
Torres MA, Ravagnani GM, Leal DF, Martins SMMK, Muro BBD, Meirelles FV, Papa FO, Dell'aqua JA, Alvarenga MA, Moretti AS, De Andrade AFC. Seminal plasma arising from the whole boar sperm-rich fraction increases the stability of sperm membrane after thawing. J Anim Sci 2017; 94:1906-12. [PMID: 27285688 DOI: 10.2527/jas.2016-0293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Boar spermatozoa arising from the sperm-rich ejaculate fraction are reported to have a more stable plasma membrane and are more resistant to cold shock and premature acrosome reaction than spermatozoa from the whole ejaculate. Furthermore, seminal plasma (SP) can increase the cryotolerance of boar spermatozoa, and in other domestic species, it has the ability to reverse cryopreservation damage. This study aimed to evaluate the effects of boar SP arising from the whole sperm-rich ejaculate fraction (SP-SRF) on the integrity, stability, and peroxidation of sperm membranes after thawing. Each ejaculate ( = 24) was divided among 4 treatments: control (CT), centrifuged and suspended in autologous SP-SRF (CS), centrifuged with withdrawn SP-SRF (CW), and post-thawed SP arising from the whole sperm-rich fraction addition to CW (CWSP). After thawing, all treatments were incubated for 5, 60, and 120 min and were analyzed for membrane integrity, fluidity, and peroxidation by flow cytometer. The absence of SP-SRF increased the lipid disorder ( < 0.05) but had no effect on lipid peroxidation ( > 0.05) or membrane integrity ( > 0.05). However, the increase in lipid disorder by withdrawal of SP-SRF was reversed by SP-SRF addition ( < 0.05) to the post-thawing medium, whereas plasma and acrosomal membrane integrity ( > 0.05) and lipid peroxidation ( > 0.05) were unchanged. In conclusion, despite the centrifugation effects, the addition of SP arising from the whole sperm-rich fraction to post-thawed boar semen decreased sperm lipid disorder without an influence of the sperm membrane integrity and peroxidation.
Collapse
|
16
|
Patel M, Cheema R, Bansal A, Gandotra V. A 31-kDa seminal plasma heparin–binding protein reduces cold shock stress during cryopreservation of cross-bred cattle bull semen. Theriogenology 2016; 86:1599-1606. [DOI: 10.1016/j.theriogenology.2016.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 12/27/2022]
|
17
|
Gelatin Binding Proteins in Reproductive Physiology. Indian J Microbiol 2016; 56:383-393. [PMID: 27784933 DOI: 10.1007/s12088-016-0618-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022] Open
Abstract
In order to advance the assisted reproductive technologies used in animals and human beings, it is important to accumulate basic informations about underlying molecular mechanisms that shape the biological processes of reproduction. From within seminal plasma, proteins perform a wide variety of distinct functions that regulate major reproductive events such as fertilization. The ability of such proteins to bind and interact with different antagonistic ions and biomolecules such as polysaccharides, lipids, and other proteins present in the male and female reproductive tract define these capabilities. Over the last two decades, extensive work has been undertaken in an attempt to define the role of seminal plasma proteins, of which, Gelatin binding proteins (GBPs) represent a large family. GBPs comprise of known group of Bovine seminal plasma (BSP) protein family, matrix metallo proteinases (MMP 2 and MMP 9) and fibronectin, which have been widely studied. The presence of a type II repeat is a characteristic feature of GBPs, which is similar in structure to the fibronectin type II domain (fn2), which has ability to bind multiple ligands including gelatin, glycosaminoglycans, choline phospholipids, and lipoproteins. Two fn2 domains are present within the BSP protein family, while, three fn2 domains are found in gelatinases (MMP-2 and MMP9), and ELSPBP1 (Epididymosomes Transfer Epididymal Sperm Binding Protein 1) contains four long fn2 domains. For the most part BSP proteins are exclusively expressed in seminal vesicles although mBSPH1, mBSPH2 and hBSPH1 are all expressed in the epididymis. The expression of gelatinases has been demonstrated in several organs and tissues such as the prostate, testis, epididymis, ovary, human placenta, cervix and endometrial wall. This review intends to bring current updates on the role of GBPs in reproductive physiology to light, which may act as basis for future studies on GBPs.
Collapse
|
18
|
Torres MA, Díaz R, Boguen R, Martins SMMK, Ravagnani GM, Leal DF, Oliveira MDL, Muro BBD, Parra BM, Meirelles FV, Papa FO, Dell’Aqua JA, Alvarenga MA, Moretti ADS, Sepúlveda N, de Andrade AFC. Novel Flow Cytometry Analyses of Boar Sperm Viability: Can the Addition of Whole Sperm-Rich Fraction Seminal Plasma to Frozen-Thawed Boar Sperm Affect It? PLoS One 2016; 11:e0160988. [PMID: 27529819 PMCID: PMC4987046 DOI: 10.1371/journal.pone.0160988] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 07/28/2016] [Indexed: 11/24/2022] Open
Abstract
Boar semen cryopreservation remains a challenge due to the extension of cold shock damage. Thus, many alternatives have emerged to improve the quality of frozen-thawed boar sperm. Although the use of seminal plasma arising from boar sperm-rich fraction (SP-SRF) has shown good efficacy; however, the majority of actual sperm evaluation techniques include a single or dual sperm parameter analysis, which overrates the real sperm viability. Within this context, this work was performed to introduce a sperm flow cytometry fourfold stain technique for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential. We then used the sperm flow cytometry fourfold stain technique to study the effect of SP-SRF on frozen-thawed boar sperm and further evaluated the effect of this treatment on sperm movement, tyrosine phosphorylation and fertility rate (FR). The sperm fourfold stain technique is accurate (R2 = 0.9356, p > 0.01) for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential (IPIAH cells). Centrifugation pre-cryopreservation was not deleterious (p > 0.05) for any analyzed variables. Addition of SP-SRF after cryopreservation was able to improve total and progressive motility (p < 0.05) when boar semen was cryopreserved without SP-SRF; however, it was not able to decrease tyrosine phosphorylation (p > 0.05) or improve IPIAH cells (p > 0.05). FR was not (p > 0.05) statistically increased by the addition of seminal plasma, though females inseminated with frozen-thawed boar semen plus SP-SRF did perform better than those inseminated with sperm lacking seminal plasma. Thus, we conclude that sperm fourfold stain can be used to simultaneously evaluate plasma and acrosomal membrane integrity and mitochondrial membrane potential, and the addition of SP-SRF at thawed boar semen cryopreserved in absence of SP-SRF improve its total and progressive motility.
Collapse
Affiliation(s)
- Mariana Andrade Torres
- Laboratory of Andrology and Technology of Swine Embryos, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Rommy Díaz
- Center of Excellence in Biotechnology of Reproduction, University of La Frontera, Temuco, Araucania, Chile
| | - Rodrigo Boguen
- Center of Excellence in Biotechnology of Reproduction, University of La Frontera, Temuco, Araucania, Chile
| | - Simone Maria Massami Kitamura Martins
- Laboratory of Andrology and Technology of Swine Embryos, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Laboratory of Swine Research, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Gisele Mouro Ravagnani
- Laboratory of Andrology and Technology of Swine Embryos, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Diego Feitosa Leal
- Laboratory of Andrology and Technology of Swine Embryos, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Melissa de Lima Oliveira
- Laboratory of Andrology and Technology of Swine Embryos, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Bruno Bracco Donatelli Muro
- Laboratory of Andrology and Technology of Swine Embryos, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Beatriz Martins Parra
- Laboratory of Andrology and Technology of Swine Embryos, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineerig, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Frederico Ozanan Papa
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - José Antônio Dell’Aqua
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Marco Antônio Alvarenga
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Aníbal de Sant’Anna Moretti
- Laboratory of Swine Research, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Néstor Sepúlveda
- Center of Excellence in Biotechnology of Reproduction, University of La Frontera, Temuco, Araucania, Chile
| | - André Furugen Cesar de Andrade
- Laboratory of Andrology and Technology of Swine Embryos, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
19
|
Perez-Patiño C, Barranco I, Parrilla I, Valero ML, Martinez EA, Rodriguez-Martinez H, Roca J. Characterization of the porcine seminal plasma proteome comparing ejaculate portions. J Proteomics 2016; 142:15-23. [PMID: 27109353 DOI: 10.1016/j.jprot.2016.04.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/04/2016] [Accepted: 04/17/2016] [Indexed: 01/04/2023]
Abstract
UNLABELLED Full identification of boar seminal plasma (SP) proteins remains challenging. This study aims to provide an extensive proteomic analysis of boar SP and to generate an accessible database of boar SP-proteome. A SP-pool (33entire ejaculates/11 boars; 3ejaculates/boar) was analyzed to characterize the boar SP-proteome. Twenty ejaculates (5 boars, 4ejaculates/boar) collected in portions (P1: first 10mL of sperm rich ejaculate fraction (SRF), P2: rest of SRF and P3: post-SRF) were analyzed to evaluate differentially expressed SP-proteins among portions. SP-samples were analyzed using a combination of SEC, 1-D SDS PAGE and NanoLC-ESI-MS/MS followed by functional bioinformatics. The identified proteins were quantified from normalized LFQ intensity data. A total of 536 SP-proteins were identified, 409 of them in Sus scrofa taxonomy (374 validated with ≥99% confidence). Barely 20 of the identified SP-proteins were specifically implicated in reproductive processes, albeit other SP-proteins could be indirectly involved in functionality and fertility of boar spermatozoa. Thirty-four proteins (16 identified in S. scrofa taxonomy) were differentially expressed among ejaculate portions, 16 being over-expressed and 18 under-expressed in P1-P2 regarding to P3. This major proteome mapping of the boar SP provides a complex inventory of proteins with potential roles as sperm function- and fertility- biomarkers. BIOLOGICAL SIGNIFICANCE This proteomic study provides the major characterization of the boar SP-proteome with >250 proteins first reported. The boar SP-proteome is described so that a spectral library can be built for relative 'label free' protein quantification with SWATH approach. This proteomic profiling allows the creation of a publicly accessible database of the boar SP-proteome, as a first step for further understanding the role of SP-proteins in reproductive outcomes as well as for the identification of biomarkers for sperm quality and fertility.
Collapse
Affiliation(s)
- Cristina Perez-Patiño
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - M Luz Valero
- Proteomics Section, Central Service for Experimental Research, University of Valencia, Spain; Department of Biochemistry and Molecular Biology, University of Valencia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | | | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain.
| |
Collapse
|
20
|
Yeste M. Recent Advances in Boar Sperm Cryopreservation: State of the Art and Current Perspectives. Reprod Domest Anim 2016; 50 Suppl 2:71-9. [PMID: 26174922 DOI: 10.1111/rda.12569] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/05/2015] [Indexed: 01/04/2023]
Abstract
While sperm cryopreservation is the best technology to store boar semen for long-term periods, only 1% of all artificial inseminations (AI) conducted worldwide are made using frozen-thawed boar sperm. With the emergence of long-term extenders for liquid storage, the use of cryopreserved sperm in routine AI is less required. However, banks of boar semen contain cryopreserved sperm and planning inseminations in AI centres may benefit from the use of frozen-thawed semen. Therefore, there is an interest in the use of this technology to preserve boar sperm. In this regard, although the first attempts to cryopreserve boar semen date back to the seventies and this technology is still considered as optimal, some relevant improvements have been made in the last decade. After giving a general picture about boar sperm cryodamage, the present review seeks to shed light on these recent cryopreservation advances. These contributions regard to protein markers for predicting ejaculate freezability, sperm selection prior to start cryopreservation procedures, additives to freezing and thawing extenders, relevance of the AI-technique and insemination-to-ovulation interval. In conclusion, most of these progresses have allowed counteracting better boar sperm cryodamage and are thus considered as forward steps for this storage method. It is also worth noting that, despite being lower than fresh/extended semen, reproductive performance outcomes following AI with frozen-thawed boar sperm are currently acceptable.
Collapse
Affiliation(s)
- M Yeste
- Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| |
Collapse
|
21
|
Funahashi H. Methods for Improving In Vitro and In Vivo Boar Sperm Fertility. Reprod Domest Anim 2016; 50 Suppl 2:40-7. [PMID: 26174918 DOI: 10.1111/rda.12568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022]
Abstract
Fertility of boar spermatozoa is changed after ejaculation in vivo and in vitro. During processing for in vitro fertilization (IVF), although spermatozoa are induced capacitation, resulting in a high penetration rate, persistent obstacle of polyspermic penetration is still observed with a high incidence. For artificial insemination (AI), we still need a large number of spermatozoa and lose a majority of those in the female reproductive tract. Fertility of cryopreserved boar spermatozoa is still injured through freezing and thawing process. In the present brief review, factors affecting fertility of boar sperm during IVF, AI and cryopreservation are discussed in the context of discovering methodologies to improve it.
Collapse
Affiliation(s)
- H Funahashi
- Department of Animal Science, Okayama University, Okayama, Japan
| |
Collapse
|
22
|
Fraser L, Strzeżek J, Filipowicz K, Mogielnicka-Brzozowska M, Zasiadczyk L. Age and seasonal-dependent variations in the biochemical composition of boar semen. Theriogenology 2016; 86:806-16. [PMID: 27114169 DOI: 10.1016/j.theriogenology.2016.02.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/04/2016] [Accepted: 02/27/2016] [Indexed: 12/26/2022]
Abstract
This study investigated the effect of age- and seasonal-related variations in the composition of boar semen over a 3-year period. At the onset of 8 months of age, ejaculates were collected from four boars and allocated into three groups: 8 to 18, 19 to 30, and 31 to 42 months and were divided into two seasonal periods: autumn-winter and spring-summer. Boar variability had a significant effect on most of the analyzed semen parameters. Significantly, higher ejaculate volumes were observed in the boars older than 18 months of age during the autumn-winter period. Sperm concentration was higher in boars less than the age of 18 months of age, whereas the total sperm numbers were significantly higher during the autumn-winter period, regardless of the age group. Seasonal effects in sperm motility were more marked in boars at the age of 19 to 30 months, being significantly higher during the autumn-winter period. The proportions of spermatozoa with intact, normal apical ridge acrosome, and osmotically tolerant acrosomal membranes were markedly higher in boars at the age of 19 to 30 months during the autumn-winter period. Spermatozoa harvested during the spring-summer period were more susceptible to lipid peroxidation, irrespective of the age group. Significantly, higher levels of protein content and concentrations of nonthiol-containing antioxidant components of the seminal plasma (SP) were detected in boars less than 18 months of age during the autumn-winter period. Seasonal effects on the pH and proteinase inhibitory activity in the SP were more marked in boars less than 18 months of age, whereas alkaline phosphatase activity was greater in boars at the age of 19 to 30 months during the autumn-winter period. Substantial amounts of the thiol-containing antioxidants of the SP were detected in boars older than 18 months of age during the spring-summer period. Neither osmolality nor total antioxidant status was affected by differences in the seasonal periods or age groups. The findings of this study indicate that age- and seasonal-related variations affect the reproductive tract functions in the boar, resulting in marked changes in the biochemical composition of the semen.
Collapse
Affiliation(s)
- L Fraser
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, Warmia and Mazury University in Olsztyn, Olsztyn, Poland.
| | - J Strzeżek
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, Warmia and Mazury University in Olsztyn, Olsztyn, Poland
| | - K Filipowicz
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, Warmia and Mazury University in Olsztyn, Olsztyn, Poland
| | - M Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, Warmia and Mazury University in Olsztyn, Olsztyn, Poland
| | - L Zasiadczyk
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, Warmia and Mazury University in Olsztyn, Olsztyn, Poland
| |
Collapse
|
23
|
Yeste M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology 2015; 85:47-64. [PMID: 26506124 DOI: 10.1016/j.theriogenology.2015.09.047] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 02/04/2023]
Abstract
Cryopreservation is the most efficient method for long-term preservation of mammalian sperm. However, freeze-thawing procedures may strongly impair the sperm function and survival and thus decrease the reproductive performance. In addition, the sperm resilience to withstand cryopreservation, also known as freezability, presents a high individual variability. The present work summarizes the principles of cryoinjury and the relevance of permeating and nonpermeating cryoprotective agents. Descriptions about sperm cryodamage are mainly focused on boar sperm, but reference to other mammalian species is also made when relevant. Main cryoinjuries not only regard to sperm motility and membrane integrity, but also to the degradation effect exerted by freeze-thawing on other important components for sperm fertilizing ability, such as mRNAs. After delving into the main differences between good and poor freezability boar ejaculates, those protein markers predicting the sperm ability to sustain cryopreservation are also mentioned. Moreover, factors that may influence sperm freezability, such as season, diet, breed, or ejaculate fractions are discussed, together with the effects of different additives, like seminal plasma and antioxidants. After briefly referring to the effects of long-term sperm preservation in frozen state and the reproductive performance of frozen-thawed boar sperm, this work speculates with new research horizons on the preservation of boar sperm, such as vitrification and freeze-drying.
Collapse
Affiliation(s)
- Marc Yeste
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
24
|
van Tilburg M, Rodrigues M, Moreira R, Moreno F, Monteiro-Moreira A, Cândido M, Moura A. Membrane-associated proteins of ejaculated sperm from Morada Nova rams. Theriogenology 2013; 79:1247-61. [DOI: 10.1016/j.theriogenology.2013.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 02/20/2013] [Accepted: 03/16/2013] [Indexed: 12/22/2022]
|
25
|
|
26
|
Caballero I, Parrilla I, Almiñana C, del Olmo D, Roca J, Martínez EA, Vázquez JM. Seminal plasma proteins as modulators of the sperm function and their application in sperm biotechnologies. Reprod Domest Anim 2012; 47 Suppl 3:12-21. [PMID: 22681294 DOI: 10.1111/j.1439-0531.2012.02028.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Seminal plasma (SP) is known to play an important role in mammalian fertilization. However, the variability found in its composition among species, males and even fractions of the same ejaculate has made difficult to completely understand its effect in sperm function. Proteins are one of the major SP components that modulate sperm functionality. During the last years, intensive work has been performed to characterize the role of these proteins. They have been found to influence sperm capacitation, formation of the oviductal sperm reservoir and sperm-oocyte interaction. Sperm biotechnologies, such as sperm cryopreservation and flow cytometric sex-sorting, that involve a substantial dilution of the SP are detrimental to sperm quality. Attempts to improve the outcome of these biotechnologies include the restoration of SP, which has produced contradictory results. To overcome this variability, different research groups have proposed the application of isolated SP proteins. Herein, we will review the current knowledge in the role of the major SP proteins as modulators of sperm functionality. Furthermore, we will discuss the possible applications of the SP proteins in sperm cryopreservation and flow cytometric sex-sorting.
Collapse
Affiliation(s)
- I Caballero
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, UK.
| | | | | | | | | | | | | |
Collapse
|
27
|
Okazaki T, Shimada M. New strategies of boar sperm cryopreservation: development of novel freezing and thawing methods with a focus on the roles of seminal plasma. Anim Sci J 2012; 83:623-9. [PMID: 22943528 DOI: 10.1111/j.1740-0929.2012.01034.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cryopreservation of boar spermatozoa offers an effective means of long-term storage of important genetic material. Many researchers have investigated how to improve reproductive performance by artificial insemination (AI) using cryopreserved boar spermatozoa. Recently, we and other groups reported that high conception rates (70-80%) can be achieved by AI with frozen-thawed boar spermatozoa using a modified temperature program during freezing, or a novel cryopreservation extender to improve sperm quality (including sperm survivability, motility, membrane status and fertilization ability) after thawing, or a novel sperm infusion method, deep intra uterine insemination. However, these techniques have not yet been used for commercial pig production. The variation in sperm freezability among boars or among ejaculations in an identical boar is one of the main reasons for this problem. In our previous study, it was revealed that some components of seminal plasma have a negative effect on the freezability of boar sperm. One of these factors is bacteria-released endotoxin (lipopolysaccharide: LPS). LPS binds to Toll-like receptor-4 (TLR-4) expressed on the sperm surface, resulting in induction of apoptosis. On the other hand, seminal plasma suppresses cryo-capacitation induced by thawing stress. On the basis of these findings, we designed a novel protocol of AI using frozen-thawed boar sperm.
Collapse
Affiliation(s)
- Tetsuji Okazaki
- Smaller Livestock and Environment Section, Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita
| | | |
Collapse
|
28
|
Seminal plasma and seminal plasma proteins added to bulk sorted sperm do not alter the mRNA expression of in vitro produced bovine embryos. Theriogenology 2012; 78:132-9. [DOI: 10.1016/j.theriogenology.2012.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 01/03/2012] [Accepted: 01/27/2012] [Indexed: 11/23/2022]
|
29
|
Rodríguez-Martínez H, Kvist U, Ernerudh J, Sanz L, Calvete JJ. Seminal plasma proteins: what role do they play? Am J Reprod Immunol 2011; 66 Suppl 1:11-22. [PMID: 21726334 DOI: 10.1111/j.1600-0897.2011.01033.x] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PROBLEM Semen is a heterogeneous and complex cell suspension in a protein-rich fluid with different functions, some of them well known, others still obscure. METHOD OF STUDY This paper reviews, comparatively, our current knowledge on the growing field of proteomics of the SP and its relevance in relation to the in vivo situation, for the sake of reproductive biology, diagnostics and treatment. RESULTS Ejaculated spermatozoa, primarily bathing in cauda epididymal fluid, are (in vitro) bulky, exposed to most, if not all, secretions from the accessory sexual glands. In vivo, however, not all spermatozoa are necessarily exposed to all secretions from these glands, because sperm cohorts are delivered in differential order and bathe in seminal plasma (SP) with different concentrations of constituents, including peptides and proteins. Proteins are relevant for sperm function and relate to sperm interactions with the various environments along the female genital tract towards the oocyte vestments. Specific peptides and proteins act as signals for the female immune system to modulate sperm rejection or tolerance, perhaps even influencing the relative intrinsic fertility of the male and/or couple by attaining a status of maternal tolerance towards embryo and placental development. CONCLUSIONS Proteins of the seminal plasma have an ample panorama of action, and some appear responsible for establishing fertility.
Collapse
Affiliation(s)
- Heriberto Rodríguez-Martínez
- Department of Clinical & Experimental Medicine (IKE), Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | | | |
Collapse
|
30
|
Leahy T, Gadella BM. Sperm surface changes and physiological consequences induced by sperm handling and storage. Reproduction 2011; 142:759-78. [DOI: 10.1530/rep-11-0310] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spermatozoa interact with their immediate environment and this contact remodels the sperm surface in preparation for fertilisation. These fundamental membrane changes will be critically covered in this review with special emphasis on the very specific surface destabilisation event, capacitation. This process involves very subtle and intricate modifications of the sperm membrane including removal of suppression (decapacitation) factors and changes in the lateral organisation of the proteins and lipids of the sperm surface. Processing of sperm for assisted reproduction (storage, sex-sorting, etc.) subjects spermatozoa to numerous stressors, and it is possible that this processing overrides such delicate processes resulting in sperm instability and cell damage. To improve sperm quality, novel mechanisms must be used to stabilise the sperm surface during handling. In this review, different types of membrane stress are considered, as well as novel surface manipulation methods to improve sperm stability.
Collapse
|
31
|
Leahy T, Gadella BM. Capacitation and Capacitation-like Sperm Surface Changes Induced by Handling Boar Semen. Reprod Domest Anim 2011; 46 Suppl 2:7-13. [DOI: 10.1111/j.1439-0531.2011.01799.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Gadella BM, Evans JP. Membrane Fusions During Mammalian Fertilization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:65-80. [DOI: 10.1007/978-94-007-0763-4_5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|