1
|
Aquaporins and Animal Gamete Cryopreservation: Advances and Future Challenges. Animals (Basel) 2022; 12:ani12030359. [PMID: 35158682 PMCID: PMC8833750 DOI: 10.3390/ani12030359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Cryopreservation is the method for the long-term preservation of gametes and embryos. In recent years, intensive research has focused on improving cryopreservation protocols for the determination of optimal freezing conditions and cryoprotective agents’ concentration for each cell type. The optimal cryopreservation protocol comprises the adequate balance between the freezing rate and the correct concentration of cryoprotective agents to achieve controlled cellular dehydration and minimal intracellular ice formation. Osmoregulation is, therefore, central in cryobiology. Water and some solutes can cross the plasma membrane, whereas facilitating transport takes a great part in intracellular/extracellular fluid homeostasis. Cells express water channels known as aquaporins that facilitate the transport of water and small uncharged solutes on their plasma membrane, including some cryoprotective agents. This review explores the expression and the function of aquaporins in gametes and embryos. In addition, the putative role of aquaporins for cryopreservation procedures is discussed. Abstract Cryopreservation is globally used as a method for long-term preservation, although freeze-thawing procedures may strongly impair the gamete function. The correct cryopreservation procedure is characterized by the balance between freezing rate and cryoprotective agents (CPAs), which minimizes cellular dehydration and intracellular ice formation. For this purpose, osmoregulation is a central process in cryopreservation. During cryopreservation, water and small solutes, including penetrating cryoprotective agents, cross the plasma membrane. Aquaporins (AQPs) constitute a family of channel proteins responsible for the transport of water, small solutes, and certain gases across biological membranes. Thirteen homologs of AQPs (AQP0-12) have been described. AQPs are widely distributed throughout the male and female reproductive systems, including the sperm and oocyte membrane. The composition of the male and female gamete membrane is of special interest for assisted reproductive techniques (ART), including cryopreservation. In this review, we detail the mechanisms involved in gamete cryopreservation, including the most used techniques and CPAs. In addition, the expression and function of AQPs in the male and female gametes are explored, highlighting the potential protective role of AQPs against damage induced during cryopreservation.
Collapse
|
2
|
Embryology outcomes after oocyte vitrification with super-cooled slush nitrogen are similar to outcomes with conventional liquid nitrogen: a randomized controlled trial. Fertil Steril 2021; 117:106-114. [PMID: 34654569 DOI: 10.1016/j.fertnstert.2021.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether the use of slush nitrogen (SN), a super-cooled form of nitrogen with a temperature from -207 to -210 °C, can improve oocyte survival after vitrification and warming compared with conventional liquid nitrogen (LN). DESIGN Randomized controlled trial. SETTING Academic-affiliated private practice. PATIENT(S) A total of 556 metaphase II oocytes from 32 oocyte donor cycles were included. INTERVENTION(S) Donor oocytes were block randomized to undergo vitrification with either SN or LN. Vitrification was followed by warming, fertilization with donor sperm, embryo culture to the blastocyst stage, and preimplantation genetic testing for aneuploidy via trophectoderm biopsy with targeted next-generation sequencing. MAIN OUTCOME MEASURE(S) The primary outcome was oocyte survival after vitrification and warming. Secondary outcomes included rates of fertilization, usable blastocyst formation, and whole chromosome aneuploidy. RESULT(S) Half of the metaphase II oocytes (n = 278) were randomized to undergo vitrification with SN, whereas the other half (n = 278) were randomized to undergo vitrification with LN. There were no statistically significant differences noted in oocyte survival rate (85.3% vs. 86.3%), fertilization rate (84.0% vs. 80.0%), rate of usable blastocyst formation (54.3% vs. 55.7%), or rate of whole chromosome aneuploidy (9.4% vs. 11.7%) between the SN and LN arms, respectively. CONCLUSION(S) The implementation of an SN oocyte vitrification protocol resulted in similar embryology outcomes compared with LN. The use of SN did not lead to any demonstrable improvement in oocyte survival after vitrification and warming. CLINICAL TRIAL REGISTRATION NUMBER NCT04342364.
Collapse
|
3
|
Tharasanit T, Thuwanut P. Oocyte Cryopreservation in Domestic Animals and Humans: Principles, Techniques and Updated Outcomes. Animals (Basel) 2021; 11:ani11102949. [PMID: 34679970 PMCID: PMC8533007 DOI: 10.3390/ani11102949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/25/2022] Open
Abstract
Oocyte cryopreservation plays important roles in basic research and the application of models for genetic preservation and in clinical situations. This technology provides long-term storage of gametes for genetic banking and subsequent use with other assisted reproductive technologies. Until recently, oocytes have remained the most difficult cell type to freeze, as the oocytes per se are large with limited surface area to cytoplasm ratio. They are also highly sensitive to damage during cryopreservation, and therefore the success rate of oocyte cryopreservation is generally poor when compared to noncryopreserved oocytes. Although advancement in oocyte cryopreservation has progressed rapidly for decades, the improvement of cryosurvival and clinical outcomes is still required. This review focuses on the principles, techniques, outcomes and prospects of oocyte cryopreservation in domestic animals and humans.
Collapse
Affiliation(s)
- Theerawat Tharasanit
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Bangkok 10330, Thailand
- Veterinary Clinical Stem Cells and Bioengineering Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| | - Paweena Thuwanut
- Department of Obstetrics and Gynecology, Division of Reproductive Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
4
|
Cantatore C, George JS, Depalo R, D'Amato G, Moravek M, Smith GD. Mouse oocyte vitrification with and without dimethyl sulfoxide: influence on cryo-survival, development, and maternal imprinted gene expression. J Assist Reprod Genet 2021; 38:2129-2138. [PMID: 34021463 DOI: 10.1007/s10815-021-02221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/04/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Oocytes and embryos can be vitrified with and without dimethyl sulfoxide (DMSO). Objectives were to compare no vitrification (No-Vitr), vitrification with DMSO (Vitr + DMSO), and vitrification without DMSO (Vitr - DMSO) on fresh/warmed oocyte survival, induced parthenogenetic activation, parthenogenetic embryo development, and embryonic maternal imprinted gene expression. METHODS In this prospective controlled laboratory study, mature B6C3F1 female mouse metaphase II oocytes were treated as: i) No-Vitr, ii) Vitr + DMSO/warmed, and iii) Vitr - DMSO/warmed with subsequent parthenogenetic activation and culture to the blastocyst stage. Oocyte cryo-survival, parthenogenetic activation and embryo development, parthenogenetic embryo maternal imprinted gene expression were outcome measures. RESULTS Oocyte cryo-survival was significantly improved in Vitr + DMSO versus Vitr - DMSO at initial warming and 2 h after warming. Induced parthenogenetic activation was similar between all three intervention groups. While early preimplantation parthenogenetic embryo development was similar between control, Vitr + DMSO, Vitr - DMSO oocytes, the development to blastocysts was significantly inferior in the Vitr - DMSO oocytes group compared to the control and Vitr + DMSO oocyte groups. Finally, maternal imprinted gene expression was similar between intervention groups at both the 2-cell and blastocyst parthenogenetic embryo stage. CONCLUSION(S) Inclusion of DMSO in oocyte vitrification solutions improved cryo-survival and developmental potential of parthenogenetic embryos to the blastocyst stage without significantly altering maternal imprinted gene expression.
Collapse
Affiliation(s)
- Clementina Cantatore
- Department of Maternal and Child Health, Reproductive and IVF Unit, Asl Bari, Conversano (BA), Italy
| | - Jenny S George
- Department of Ob/Gyn, University of Michigan, 6422A Medical Sciences I, 1301 E. Catherine Street, SPC5617, Ann Arbor, MI, 48109-056171500, USA
| | - Raffaella Depalo
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Giuseppe D'Amato
- Department of Maternal and Child Health, Reproductive and IVF Unit, Asl Bari, Conversano (BA), Italy
| | - Molly Moravek
- Department of Ob/Gyn, University of Michigan, 6422A Medical Sciences I, 1301 E. Catherine Street, SPC5617, Ann Arbor, MI, 48109-056171500, USA
| | - Gary D Smith
- Department of Ob/Gyn, University of Michigan, 6422A Medical Sciences I, 1301 E. Catherine Street, SPC5617, Ann Arbor, MI, 48109-056171500, USA. .,Departments of Physiology and Urology and Reproductive Sciences Program, University of Michigan, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Abstract
PURPOSE To determine the effects of prolonged cryopreservation at subzero-degree temperatures on corneal transparency and histology after treatment with preservation medium containing the phosphodiester glycerylphosphorylcholine (GPC). METHODS Rabbit corneas (n = 30) were immersed for 3 hours in K-Sol preservation medium containing 30 mM GPC. Three groups with 6 corneas each were refrigerated at -8°C for 2 weeks and liquid nitrogen temperature for 2 and 6 weeks, respectively. Two groups with 6 corneas each immersed in K-Sol preservation medium only were refrigerated at -8°C for 2 weeks and liquid nitrogen temperature for 6 weeks, respectively. Postthawing corneal transparency was measured on a grading scale after which corneas were prepared for and analyzed by light and transmission electron microscopy. RESULTS All 3 groups of corneas preserved with GPC maintained a greater degree of corneal transparency compared with corneas preserved without GPC. The number of corneas retaining epithelial and endothelial layers increased in all groups where corneas were preserved in medium containing GPC, in contrast to corneas preserved in medium without GPC. Cytoplasmic vacuolization or nuclear damage was greater in corneas preserved without GPC. Similar findings were found in corneas stored at -8°C and liquid nitrogen temperatures. CONCLUSIONS This study demonstrates a cryoprotective effect of corneas preserved in K-Sol containing the phosphodiester GPC at subzero-degree temperatures. In corneas immersed in preservation medium containing GPC, a higher degree of transparency is maintained and a lesser degree of histopathologic changes is observed with storage at both -8°C and in liquid nitrogen.
Collapse
|
6
|
Preincubation with glutathione ethyl ester improves the developmental competence of vitrified mouse oocytes. J Assist Reprod Genet 2018; 35:1169-1178. [PMID: 29876682 DOI: 10.1007/s10815-018-1215-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Oocyte vitrification is currently used for human fertility preservation. However, vitrification damage is a problem caused by decreasing ooplasmic levels of glutathione (GSH). The GSH donor glutathione ethyl ester (GSH-OEt) can significantly increase the GSH content in oocytes. However, it is difficult to obtain oocyte from woman. To overcome this, we used mouse oocytes to replace human oocytes as a model of study. METHODS Oocytes from B6D2F1 mice were preincubated for 30 min with 2.5 mmol/L GSH-OEt (GSH-OEt group), without GSH-OEt preincubation before vitrification (control vitrification group) or in nonvitrified oocytes (fresh group). After thawing, oocytes were fertilized for evaluating the developmental competence of embryos in vitro and in vivo. Immunofluorescence, Polscope equipment and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to analyze damage, including mitochondrial distribution, reactive oxygen species (ROS) levels, spindle morphology, and gene expression levels (Bcl-2, BAX, and MnSOD). RESULTS The rates of fertilization, 3-4 cell, blastocyst formation and expanded blastocysts were significantly higher (p < 0.05) in the GSH-OEt group (90.4%; 91.1%; 88.9% and 63.0%) than in the control (80.0%; 81.4%; 77.7% and 50.5%). Provided embryos overcame the 2-cell block and developed to the blastocyst stage, birth rates of all groups were similar. Vitrification altered mitochondrial distribution, increased ROS levels, and caused abnormal spindle morphology; GSH-OEt preincubation could improve such damage. RT-qPCR showed that the expression of Bcl-2 was lower in the control group compared with the GSH-OEt group; BAX and MnSoD expression levels were higher in the control group than in the GSH-OEt group (p < 0.05). CONCLUSIONS The beneficial effect of GSH-OEt preincubation occurred before the 2-cell stage.
Collapse
|
7
|
Live birth rates are satisfactory following multiple IVF treatment cycles in poor prognosis patients. Reprod Biol 2016; 17:34-41. [PMID: 27964842 DOI: 10.1016/j.repbio.2016.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 11/22/2022]
Abstract
This seven-year retrospective study analysed the live birth rate (LBR) for women undergoing IVF treatment with various antral follicle counts (AFC). The LBR decreased with lower AFC ratings, and in 290 treatment cycles for women in the poorest AFC category, ≤4 follicles (group E), the LBR was the lowest at 10.7%. The pregnancy loss rate (PLR) significantly increased with poorer AFC categories, from 21.8% in AFC group A (≥20 follicles), to 54.4% in AFC group E (p<0.0001). This trend was repeated with advancing age, from 21.6% for younger women (<35years), to 32.9, 48.5 and 100% for ages 35-39, 40-44 and ≥45 years, respectively (p<0.0001). However, LBR within the specific AFC group E cohort was also age-dependent and decreased significantly from 30.0% for <35 years old, to 13.3, 3.9 and 0% for patients aged 35-39, 40-44 and ≥45 years, respectively. Most, importantly, LBR rates within these age groups were not dependent on the number of IVF attempts (1st, 2nd, 3rd or ≥4 cycles), which indicated that cycle number should not be the primary deciding factor for cessation of IVF treatment in responding women <45years old.
Collapse
|
8
|
Higher β-HCG concentrations and higher birthweights ensue from single vitrified embryo transfers. Reprod Biomed Online 2016; 33:149-60. [DOI: 10.1016/j.rbmo.2016.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 11/18/2022]
|
9
|
Herrick JR, Wang C, Machaty Z. The effects of permeating cryoprotectants on intracellular free-calcium concentrations and developmental potential of in vitro-matured feline oocytes. Reprod Fertil Dev 2016; 28:599-607. [DOI: 10.1071/rd14233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/26/2014] [Indexed: 11/23/2022] Open
Abstract
Embryos produced from vitrified feline oocytes have resulted in pregnancies, but the efficiency of oocyte vitrification in cats is still low. Our objectives were to evaluate the effects of exposing feline oocytes to ethylene glycol (EG), propanediol (PrOH) and dimethyl sulfoxide (DMSO) on changes in intracellular free-calcium concentrations ([Ca2+]i), the time needed for enzymatic digestion of the zona pellucida (ZP), the incidence of parthenogenetic activation and degeneration and embryonic development following in vitro fertilisation (IVF). All of the chemicals tested altered [Ca2+]i, but changes in [Ca2+]i, resistance of the ZP to enzymatic digestion and the incidence of parthenogenetic activation (<5% for all treatments) were not affected (P > 0.05) by extracellular Ca2+. Exposure to EG (>44.1%) and DMSO (19.7%) increased (P < 0.05) oocyte degeneration compared with control oocytes and oocytes exposed to PrOH (≤2.5%). Following exposure to a combination of PrOH and DMSO (10% v/v each), blastocyst development (per cleaved embryo; 52.1%) was similar (P > 0.05) to control oocytes (64.4%). When oocytes were vitrified with PrOH and DMSO, 28.3% of surviving (intact plasma membrane) oocytes cleaved following IVF, but no blastocyst developed. When a non-permeating cryoprotectant (galactose, 0.25 M) was added to the vitrification medium, 47.7% of surviving oocytes cleaved and 14.3% developed to the blastocyst stage.
Collapse
|
10
|
The impact of cryopreservation on human peripheral blood leucocyte bioenergetics. Clin Sci (Lond) 2015; 128:723-33. [PMID: 25597817 DOI: 10.1042/cs20140725] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/23/2014] [Accepted: 01/19/2015] [Indexed: 12/25/2022]
Abstract
Circulating immune cells are considered a source for biomarkers in health and disease, since they are exposed to nutritional, metabolic and immunological stimuli in the vasculature. Cryopreservation of leucocytes is routinely used for long-term storage and determination of phenotypic/functional changes at a later date. Exploring the role of bioenergetics and mitochondrial (dys)function in leucocytes is often examined by using freshly isolated cells. The aim of the pilot study described herein was to assess leucocyte bioenergetics in cryopreserved cells. Leucocytes were isolated from whole blood, counted and frozen in liquid nitrogen (LN2) for a period of 3 months. Cells were thawed at regular intervals and bioenergetic analysis performed using the Seahorse XFe96 flux analyser. Cryogenic storage reduced cell viability by 20%, but cell bioenergetic responses were largely intact for up to 1 month storage in LN2. However, after 1 month storage, mitochondrial function was impaired as reflected by decreasing basal respiration, ATP production, maximum (MAX) respiration, reserve capacity and coupling efficiency. Conversely, glycolytic activity was increased after 1 month, most notably the enhanced glycolytic response to 25 mM glucose without any change in glycolytic capacity. Finally, calculation of bioenergetic health index (BHI) demonstrated that this potential diagnostic parameter was sensitive to cryopreservation. The present study has demonstrated for the first time that cryopreservation of primary immune cells modified their metabolism in a time-dependent fashion, indicated by attenuated aerobic respiration and enhanced glycolytic activity. Taken together, we recommend caution in the interpretation of bioenergetic responses or BHI in cryopreserved samples.
Collapse
|
11
|
Bianchi V, Macchiarelli G, Borini A, Lappi M, Cecconi S, Miglietta S, Familiari G, Nottola SA. Fine morphological assessment of quality of human mature oocytes after slow freezing or vitrification with a closed device: a comparative analysis. Reprod Biol Endocrinol 2014; 12:110. [PMID: 25421073 PMCID: PMC4255960 DOI: 10.1186/1477-7827-12-110] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/14/2014] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Human mature oocytes are very susceptible to cryodamage. Several reports demonstrated that vitrification might preserve oocyte better than slow freezing. However, this is still controversial. Thus, larger clinical, biological and experimental trials to confirm this concept are necessary. The aim of the study was to evaluate and compare fine morphological features in human mature oocytes cryopreserved with either slow freezing or vitrification. METHODS We used 47 supernumerary human mature (metaphase II) oocytes donated by consenting patients, aged 27-32 years, enrolled in an IVF program. Thirtyfive oocytes were cryopreserved using slow freezing with 1.5 M propanediol +0.2 M sucrose concentration (20 oocytes) or a closed vitrification system (CryoTip Irvine Scientific CA) (15 oocytes). Twelve fresh oocytes were used as controls. All samples were prepared for light and transmission electron microscopy evaluation. RESULTS Control, slow frozen/thawed and vitrified/warmed oocytes (CO, SFO and VO, respectively) were rounded, 90-100 μm in diameter, with normal ooplasm showing uniform distribution of organelles. Mitochondria-smooth endoplasmic reticulum (M-SER) aggregates and small mitochondria-vesicle (MV) complexes were the most numerous structures found in all CO, SFO and VO cultured for 3-4 hours. M-SER aggregates decreased, and large MV complexes increased in those SFO and VO maintained in culture for a prolonged period of time (8-9 hours). A slight to moderate vacuolization was present in the cytoplasm of SFO. Only a slight vacuolization was present in VO, whereas vacuoles were almost completely absent in CO. Amount and density of cortical granules (CG) appeared abnormally reduced in SFO and VO, irrespective of the protocol applied. CONCLUSIONS Even though, both slow freezing and vitrification ensured a good overall preservation of the oocyte, we found that: 1) prolonged culture activates an intracellular membrane "recycling" that causes the abnormal transformation of the membranes of the small MV complexes and of SER into larger rounded vesicles; 2) vacuolization appears as a recurrent form of cell damage during slow freezing and, at a lesser extent, during vitrification using a closed device; 3) premature CG exocytosis was present in both SFO and VO and may cause zona pellucida hardening.
Collapse
Affiliation(s)
- Veronica Bianchi
- Casa di Cura Città di Udine, Udine, Italy, affiliated to Tecnobios Procreazione, Centre for Reproductive Health, Bologna, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L´Aquila, L’Aquila, Italy
| | - Andrea Borini
- Casa di Cura Città di Udine, Udine, Italy, affiliated to Tecnobios Procreazione, Centre for Reproductive Health, Bologna, Italy
| | - Michela Lappi
- Casa di Cura Città di Udine, Udine, Italy, affiliated to Tecnobios Procreazione, Centre for Reproductive Health, Bologna, Italy
| | - Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L´Aquila, L’Aquila, Italy
| | - Selenia Miglietta
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University, Rome, Italy
| | - Giuseppe Familiari
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University, Rome, Italy
| | - Stefania A Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University, Rome, Italy
| |
Collapse
|
12
|
Weall BM, Al-Samerria S, Conceicao J, Yovich JL, Almahbobi G. A direct action for GH in improvement of oocyte quality in poor-responder patients. Reproduction 2014; 149:147-54. [PMID: 25376626 DOI: 10.1530/rep-14-0494] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Declining female fecundity at later age and the increasing tendency for women to delay childbirth have lead to a drastic rise in the number of women seeking assisted reproductive technology. Many women fail to respond adequately to standard ovarian stimulation regimens, raising a significant therapeutic challenge. Recently, we have demonstrated that the administration of GH, as an adjunct to ovarian stimulation, has improved the clinical outcomes by enhancing the oocyte quality. However, the mechanism(s) by which GH facilitated this improvement is yet to be understood. This study aimed to determine these potential mechanism(s) through the use of immunofluorescent localisation of GH receptors (GHRs) on the human oocyte and unbiased computer-based quantification to assess and compare oocyte quality between women of varying ages, with or without GH treatment. This study demonstrates for the first time, the presence of GHRs on the human oocyte. The oocytes retrieved from older women showed significant decrease in the expression of GHRs and amount of functional mitochondria when compared with those from younger patients. More interestingly, when older patients were treated with GH, a significant increase in functional mitochondria was observed in their oocytes. We conclude that GH exerts a direct mode of action, enabling the improvement of oocyte quality observed in our previous study, via the upregulation of its own receptors and enhancement of mitochondrial activity. This result, together with recent observations, provides scientific evidence in support of the use of GH supplementation for the clinical management of poor ovarian response.
Collapse
Affiliation(s)
- B M Weall
- School of Biomedical SciencesWestern Australian Biomedical Research Institute, Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, Perth, WA 6102, AustraliaPIVET Medical Centre166-168 Cambridge Street, Leederville, Perth, WA 6007, Australia
| | - S Al-Samerria
- School of Biomedical SciencesWestern Australian Biomedical Research Institute, Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, Perth, WA 6102, AustraliaPIVET Medical Centre166-168 Cambridge Street, Leederville, Perth, WA 6007, Australia
| | - J Conceicao
- School of Biomedical SciencesWestern Australian Biomedical Research Institute, Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, Perth, WA 6102, AustraliaPIVET Medical Centre166-168 Cambridge Street, Leederville, Perth, WA 6007, Australia
| | - J L Yovich
- School of Biomedical SciencesWestern Australian Biomedical Research Institute, Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, Perth, WA 6102, AustraliaPIVET Medical Centre166-168 Cambridge Street, Leederville, Perth, WA 6007, Australia School of Biomedical SciencesWestern Australian Biomedical Research Institute, Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, Perth, WA 6102, AustraliaPIVET Medical Centre166-168 Cambridge Street, Leederville, Perth, WA 6007, Australia
| | - G Almahbobi
- School of Biomedical SciencesWestern Australian Biomedical Research Institute, Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, Perth, WA 6102, AustraliaPIVET Medical Centre166-168 Cambridge Street, Leederville, Perth, WA 6007, Australia School of Biomedical SciencesWestern Australian Biomedical Research Institute, Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, Perth, WA 6102, AustraliaPIVET Medical Centre166-168 Cambridge Street, Leederville, Perth, WA 6007, Australia
| |
Collapse
|
13
|
Should Postponing Motherhood via “Social Freezing” Be Legally Banned? An Ethical Analysis. LAWS 2014. [DOI: 10.3390/laws3020282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|