1
|
Ducreux B, Patrat C, Trasler J, Fauque P. Transcriptomic integrity of human oocytes used in ARTs: technical and intrinsic factor effects. Hum Reprod Update 2024; 30:26-47. [PMID: 37697674 DOI: 10.1093/humupd/dmad025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Millions of children have been born throughout the world thanks to ARTs, the harmlessness of which has not yet been fully demonstrated. For years, efforts to evaluate the specific effects of ART have focused on the embryo; however, it is the oocyte quality that mainly dictates first and foremost the developmental potential of the future embryo. Ovarian stimulation, cryopreservation, and IVM are sometimes necessary steps to obtain a mature oocyte, but they could alter the appropriate expression of the oocyte genome. Additionally, it is likely that female infertility, environmental factors, and lifestyle have a significant influence on oocyte transcriptomic quality, which may interfere with the outcome of an ART attempt. OBJECTIVE AND RATIONALE The objective of this review is to identify transcriptomic changes in the human oocyte caused by interventions specific to ART but also intrinsic factors such as age, reproductive health issues, and lifestyle. We also provide recommendations for future good practices to be conducted when attempting ART. SEARCH METHODS An in-depth literature search was performed on PubMed to identify studies assessing the human oocyte transcriptome following ART interventions, or in the context of maternal aging, suboptimal lifestyle, or reproductive health issues. OUTCOMES ART success is susceptible to external factors, maternal aging, lifestyle factors (smoking, BMI), and infertility due to endometriosis or polycystic ovary syndrome. Indeed, all of these are likely to increase oxidative stress and alter mitochondrial processes in the foreground. Concerning ART techniques themselves, there is evidence that different ovarian stimulation regimens shape the oocyte transcriptome. The perturbation of processes related to the mitochondrion, oxidative phosphorylation, and metabolism is observed with IVM. Cryopreservation might dysregulate genes belonging to transcriptional regulation, ubiquitination, cell cycle, and oocyte growth pathways. For other ART laboratory factors such as temperature, oxygen tension, air pollution, and light, the evidence remains scarce. Focusing on genes involved in chromatin-based processes such as DNA methylation, heterochromatin modulation, histone modification, and chromatin remodeling complexes, but also genomic imprinting, we observed systematic dysregulation of such genes either after ART intervention or lifestyle exposure, as well as due to internal factors such as maternal aging and reproductive diseases. Alteration in the expression of such epigenetic regulators may be a common mechanism linked to adverse oocyte environments, explaining global transcriptomic modifications. WIDER IMPLICATIONS Many IVF factors and additional external factors have the potential to impair oocyte transcriptomic integrity, which might not be innocuous for the developing embryo. Fortunately, it is likely that such dysregulations can be minimized by adapting ART protocols or reducing adverse exposure.
Collapse
Affiliation(s)
- Bastien Ducreux
- Université Bourgogne Franche-Comtés-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France
| | - Catherine Patrat
- Université de Paris Cité, Faculty of Medicine, Inserm 1016, Paris, France
- Department of Reproductive Biology-CECOS, aphp.centre-Université Paris Cité, Paris, France
| | - Jacquetta Trasler
- Department of Pediatrics, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pharmacology & Therapeutics, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Patricia Fauque
- Université Bourgogne Franche-Comtés-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| |
Collapse
|
2
|
Ducreux B, Barberet J, Guilleman M, Pérez-Palacios R, Teissandier A, Bourc’his D, Fauque P. Assessing the influence of distinct culture media on human pre-implantation development using single-embryo transcriptomics. Front Cell Dev Biol 2023; 11:1155634. [PMID: 37435029 PMCID: PMC10330962 DOI: 10.3389/fcell.2023.1155634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
The use of assisted reproductive technologies is consistently rising across the world. However, making an informed choice on which embryo culture medium should be preferred to ensure satisfactory pregnancy rates and the health of future children critically lacks scientific background. In particular, embryos within their first days of development are highly sensitive to their micro-environment, and it is unknown how their transcriptome adapts to different embryo culture compositions. Here, we determined the impact of culture media composition on gene expression in human pre-implantation embryos. By employing single-embryo RNA-sequencing after 2 or 5 days of the post-fertilization culture in different commercially available media (Ferticult, Global, and SSM), we revealed medium-specific differences in gene expression changes. Embryos cultured pre-compaction until day 2 in Ferticult or Global media notably displayed 266 differentially expressed genes, which were related to essential developmental pathways. Herein, 19 of them could have a key role in early development, based on their previously described dynamic expression changes across development. When embryos were cultured after day 2 in the same media considered more suitable because of its amino acid enrichment, 18 differentially expressed genes thought to be involved in the transition from early to later embryonic stages were identified. Overall, the differences were reduced at the blastocyst stage, highlighting the ability of embryos conceived in a suboptimal in vitro culture medium to mitigate the transcriptomic profile acquired under different pre-compaction environments.
Collapse
Affiliation(s)
- Bastien Ducreux
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
| | - Julie Barberet
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction—CECOS, Dijon, France
| | - Magali Guilleman
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction—CECOS, Dijon, France
| | - Raquel Pérez-Palacios
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | - Patricia Fauque
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction—CECOS, Dijon, France
| |
Collapse
|
3
|
Gene Expression Detects the Factors Influencing the Reproductive Success and the Survival Rates of Paracentrotus lividus Offspring. Int J Mol Sci 2022; 23:ijms232112790. [DOI: 10.3390/ijms232112790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The increase in the demand for Paracentrotus lividus roe, a food delicacy, causes increased pressure on its wild stocks. In this scenario, aquaculture facilities will mitigate the effects of anthropogenic pressures on the wild stocks of P. lividus. Consequently, experimental studies should be conducted to enhance techniques to improve efficient aquaculture practices for these animals. Here, we for the first time performed molecular investigations on cultured sea urchins. We aimed at understanding if maternal influences may significantly impact the life of future offspring, and how the culture conditions may impact the development and growth of cultured specimens. Our findings demonstrate that the outcomes of in vitro fertilization of P. lividus are influenced by maternal influences, but these effects are largely determined by culture conditions. In fact, twenty-three genes involved in the response to stress and skeletogenesis, whose expressions were measured by Real Time qPCR, were differently expressed in sea urchins cultured in two experimental conditions, and the results were largely modified in offspring deriving from two groups of females. The findings herein reported will be critical to develop protocols for the larval culture of the most common sea urchin, both for research and industrial production purposes for mass production.
Collapse
|
4
|
Masullo T, Biondo G, Natale MD, Tagliavia M, Bennici CD, Musco M, Ragusa MA, Costa S, Cuttitta A, Nicosia A. Gene Expression Changes after Parental Exposure to Metals in the Sea Urchin Affect Timing of Genetic Programme of Embryo Development. BIOLOGY 2021; 10:biology10020103. [PMID: 33535713 PMCID: PMC7912929 DOI: 10.3390/biology10020103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
It is widely accepted that phenotypic traits can be modulated at the epigenetic level so that some conditions can affect the progeny of exposed individuals. To assess if the exposure of adult animals could result in effects on the offspring, the Mediterranean sea urchin and its well-characterized gene regulatory networks (GRNs) was chosen as a model. Adult animals were exposed to known concentrations of zinc and cadmium (both individually and in combination) for 10 days, and the resulting embryos were followed during the development. The oxidative stress occurring in parental gonads, embryo phenotypes and mortality, and the expression level of a set of selected genes, including members of the skeletogenic and endodermal GRNs, were evaluated. Increased oxidative stress at F0, high rates of developmental aberration with impaired gastrulation, in association to deregulation of genes involved in skeletogenesis (dri, hex, sm50, p16, p19, msp130), endodermal specification (foxa, hox11/13b, wnt8) and epigenetic regulation (kat2A, hdac1, ehmt2, phf8 and UBE2a) occurred either at 24 or 48 hpf. Results strongly indicate that exposure to environmental pollutants can affect not only directly challenged animals but also their progeny (at least F1), influencing optimal timing of genetic programme of embryo development, resulting in an overall impairment of developmental success.
Collapse
Affiliation(s)
- Tiziana Masullo
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Girolama Biondo
- Institute for Anthropic Impacts and Sustainability in Marine Environment-National Research Council (IAS-CNR), Detached Unit of Capo Granitola, Via del mare 3, 91021 Campobello di Mazara, Italy;
| | - Marilena Di Natale
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
- Department of Earth and Marine Science (DiSTeM), University of Palermo, Via Archirafi 20, 90123 Palermo, Italy
| | - Marcello Tagliavia
- Institute for Biomedical Research and Innovation-National Research Council-(IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Carmelo Daniele Bennici
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Marianna Musco
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy; (M.A.R.); (S.C.)
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy; (M.A.R.); (S.C.)
| | - Angela Cuttitta
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
- Correspondence: (A.C.); (A.N.)
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council-(IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
- Correspondence: (A.C.); (A.N.)
| |
Collapse
|
5
|
Robinson PC, Littler HR, Lange A, Santos EM. Developmental exposure window influences silver toxicity but does not affect the susceptibility to subsequent exposures in zebrafish embryos. Histochem Cell Biol 2020; 154:579-595. [PMID: 33083906 PMCID: PMC7609441 DOI: 10.1007/s00418-020-01933-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 01/07/2023]
Abstract
Silver is a non-essential, toxic metal widespread in freshwaters and capable of causing adverse effects to wildlife. Its toxic effects have been studied in detail but less is known about how sensitivity varies during development and whether pre-exposures affect tolerance upon re-exposure. We address these knowledge gaps using the zebrafish embryo (Danio rerio) model to investigate whether exposures encompassing stages of development prior to mid-blastula transition, when chorion hardening and epigenetic reprogramming occur, result in greater toxicity compared to those initiated after this period. We conducted exposures to silver initiated at 0.5 h post fertilisation (hpf) and 4 hpf to determine if toxicity differed. In parallel, we exposed embryos to the methylation inhibitor 5-azacytidine as a positive control. Toxicity increased when exposures started from 0.5 hpf compared to 4 hpf and LC50 were significantly lower by 1.2 and 7.6 times for silver and 5-azacyitidine, respectively. We then investigated whether pre-exposure to silver during early development (from 0.5 or 4 hpf) affected the outcome of subsequent exposures during the larvae stage, and found no alterations in toxicity compared to naïve larvae. Together, these data demonstrate that during early development zebrafish embryos are more sensitive to silver when experiments are initiated at the one-cell stage, but that pre-exposures do not influence the outcome of subsequent exposures, suggesting that no long-lasting memory capable of influencing future susceptibility was maintained under our experimental conditions. The finding that toxicity is greater for exposures initiated at the one-cell stage has implications for designing testing systems to assess chemical toxicity.
Collapse
Affiliation(s)
- Paige C Robinson
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK.
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, DT4 8UB, Dorset, UK.
| | - Hannah R Littler
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, DT4 8UB, Dorset, UK
| | - Anke Lange
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Eduarda M Santos
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK.
- Sustainable Aquaculture Futures, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
6
|
Fu B, Ma H, Liu D. Extracellular Vesicles Function as Bioactive Molecular Transmitters in the Mammalian Oviduct: An Inspiration for Optimizing in Vitro Culture Systems and Improving Delivery of Exogenous Nucleic Acids during Preimplantation Embryonic Development. Int J Mol Sci 2020; 21:ijms21062189. [PMID: 32235756 PMCID: PMC7139358 DOI: 10.3390/ijms21062189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Two technologies, in vitro culture and exogenous gene introduction, constitute cornerstones of producing transgenic animals. Although in vitro embryo production techniques can bypass the oviduct during early development, such embryos are inferior to their naturally produced counterparts. In addition, preimplantation embryos are resistant to the uptake of exogenous genetic material. These factors restrict the production of transgenic animals. The discovery of extracellular vesicles (EVs) was a milestone in the study of intercellular signal communication. EVs in the oviduct, known as oviductosomes (OVS), are versatile delivery tools during maternal–embryo communication. In this review, we discuss the important roles of OVS in these interactions and the feasibility of using them as tools for transferring exogenous nucleic acids during early development. We hypothesize that further accurate characterization of OVS cargoes and functions will open new horizons for research on maternal–embryo interactions and enhance the production of transgenic animals.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People’s Republic of China, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People’s Republic of China, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People’s Republic of China, Harbin 150086, China
- Correspondence: ; Tel.: +86-138-4512-0192
| |
Collapse
|
7
|
Norouzitallab P, Baruah K, Vanrompay D, Bossier P. Can epigenetics translate environmental cues into phenotypes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1281-1293. [PMID: 30180336 DOI: 10.1016/j.scitotenv.2018.08.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/03/2018] [Accepted: 08/04/2018] [Indexed: 05/17/2023]
Abstract
Living organisms are constantly exposed to wide ranges of environmental cues. They react to these cues by undergoing a battery of phenotypic responses, such as by altering their physiological and behavioral traits, in order to adapt and survive in the changed environments. The adaptive response of a species induced by environmental cues is typically thought to be associated with its genetic diversity such that higher genetic diversity provides increased adaptive potential. This originates from the general consensus that phenotypic traits have a genetic basis and are subject to Darwinian natural selection and Mendelian inheritance. There is no doubt about the validity of these principles, supported by the successful introgression of specific traits during (selective) breeding. However, a range of recent studies provided fascinating evidences suggesting that environmental effects experienced by an organism during its lifetime can have marked influences on its phenotype, and additionally the organism can pass on the acquired phenotypes to its subsequent generations through non-genetic mechanisms (also termed as epigenetic mechanism) - a notion that dates back to Lamarck and has been controversial ever since. In this review, we describe how the epigenetics has reshaped our long perception about the inheritance/development of phenotypes within organisms, contrasting with the classical gene-based view of inheritance. We particularly highlighted recent developments in our understanding of inheritance of parental environmental induced phenotypic traits in multicellular organisms under different environmental conditions, and discuss how modifications of the epigenome contribute to the determination of the adult phenotype of future generations.
Collapse
Affiliation(s)
- Parisa Norouzitallab
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure 653, Ghent 9000, Belgium; Laboratory of Aquaculture &Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure 653, Ghent 9000, Belgium.
| | - Kartik Baruah
- Laboratory of Aquaculture &Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure 653, Ghent 9000, Belgium; Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure 653, Ghent 9000, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture &Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure 653, Ghent 9000, Belgium
| |
Collapse
|
8
|
Wu F, Liu Y, Wu Q, Li D, Zhang L, Wu X, Wang R, Zhang D, Gao S, Li W. Long non-coding RNAs potentially function synergistically in the cellular reprogramming of SCNT embryos. BMC Genomics 2018; 19:631. [PMID: 30139326 PMCID: PMC6107955 DOI: 10.1186/s12864-018-5021-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/15/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), a type of epigenetic regulator, are thought to play important roles in embryonic development in mice, and several developmental defects are associated with epigenetic modification disorders. The most dramatic epigenetic reprogramming event occurs during somatic cell nuclear transfer (SCNT) when the expression profile of a differentiated cell is abolished, and a newly embryo-specific expression profile is established. However, the molecular mechanism underlying somatic reprogramming remains unclear, and the dynamics and functions of lncRNAs in this process have not yet been illustrated, resulting in inefficient reprogramming. RESULTS In this study, 63 single-cell RNA-seq libraries were first generated and sequenced. A total of 7009 mouse polyadenylation lncRNAs (including 5204 novel lncRNAs) were obtained, and a comprehensive analysis of in vivo and SCNT mouse pre-implantation embryo lncRNAs was further performed based on our single-cell RNA sequencing data. Expression profile analysis revealed that lncRNAs were expressed in a developmental stage-specific manner during mouse early-stage embryonic development, whereas a more temporal and spatially specific expression pattern was identified in mouse SCNT embryos with changes in the state of chromatin during somatic cell reprogramming, leading to incomplete zygotic genome activation, oocyte to embryo transition and 2-cell to 4-cell transition. No obvious differences between other stages and mouse NTC or NTM embryos at the same stage were observed. Gene oncology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and weighted gene co-expression network analysis (WGCNA) of lncRNAs and their association with known protein-coding genes suggested that several lncRNAs and their associated with known protein-coding genes might be involved in mouse embryonic development and cell reprogramming. CONCLUSIONS This is a novel report on the expression landscapes of lncRNAs of mouse NT embryos by scRNA-seq analysis. This study will provide insight into the molecular mechanism underlying the involvement of lncRNAs in mouse pre-implantation embryonic development and epigenetic reprogramming in mammalian species after SCNT-based cloning.
Collapse
Affiliation(s)
- Fengrui Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Yong Liu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Qingqing Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Dengkun Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Ling Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Rong Wang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Di Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Shaorong Gao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenyong Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| |
Collapse
|
9
|
Cavalieri V, Spinelli G. Environmental epigenetics in zebrafish. Epigenetics Chromatin 2017; 10:46. [PMID: 28982377 PMCID: PMC5629768 DOI: 10.1186/s13072-017-0154-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023] Open
Abstract
It is widely accepted that the epigenome can act as the link between environmental cues, both external and internal, to the organism and phenotype by converting the environmental stimuli to phenotypic responses through changes in gene transcription outcomes. Environmental stress endured by individual organisms can also enforce epigenetic variations in offspring that had never experienced it directly, which is termed transgenerational inheritance. To date, research in the environmental epigenetics discipline has used a wide range of both model and non-model organisms to elucidate the various epigenetic mechanisms underlying the adaptive response to environmental stimuli. In this review, we discuss the advantages of the zebrafish model for studying how environmental toxicant exposures affect the regulation of epigenetic processes, especially DNA methylation, which is the best-studied epigenetic mechanism. We include several very recent studies describing the state-of-the-art knowledge on this topic in zebrafish, together with key concepts in the function of DNA methylation during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Laboratory of Molecular Biology and Functional Genomics, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, 90128, Palermo, Italy. .,Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Edificio 18, 90128, Palermo, Italy.
| | - Giovanni Spinelli
- Laboratory of Molecular Biology and Functional Genomics, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, 90128, Palermo, Italy.
| |
Collapse
|
10
|
Bertoldo MJ, Faure M, Dupont J, Froment P. AMPK: a master energy regulator for gonadal function. Front Neurosci 2015; 9:235. [PMID: 26236179 PMCID: PMC4500899 DOI: 10.3389/fnins.2015.00235] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/19/2015] [Indexed: 12/11/2022] Open
Abstract
From C. elegans to mammals (including humans), nutrition and energy metabolism significantly influence reproduction. At the cellular level, some detectors of energy status indicate whether energy reserves are abundant (obesity), or poor (diet restriction). One of these detectors is AMPK (5′ AMP-activated protein kinase), a protein kinase activated by ATP deficiency but also by several natural substances such as polyphenols or synthetic molecules like metformin, used in the treatment of insulin resistance. AMPK is expressed in muscle and liver, but also in the ovary and testis. This review focuses on the main effects of AMPK identified in gonadal cells. We describe the role of AMPK in gonadal steroidogenesis, in proliferation and survival of somatic gonadal cells and in the maturation of oocytes or spermatozoa. We discuss also the role of AMPK in germ and somatic cell interactions within the cumulus-oocyte complex and in the blood testis barrier. Finally, the interface in the gonad between AMPK and modification of metabolism is reported and discussion about the role of AMPK on fertility, in regards to the treatment of infertility associated with insulin resistance (male obesity, polycystic ovary syndrome).
Collapse
Affiliation(s)
- Michael J Bertoldo
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales Sydney, NSW, Australia
| | - Melanie Faure
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| | - Joëlle Dupont
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| | - Pascal Froment
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, UMR85 Nouzilly, France
| |
Collapse
|
11
|
Bertoldo MJ, Guibert E, Faure M, Ramé C, Foretz M, Viollet B, Dupont J, Froment P. Specific deletion of AMP-activated protein kinase (α1AMPK) in murine oocytes alters junctional protein expression and mitochondrial physiology. PLoS One 2015; 10:e0119680. [PMID: 25767884 PMCID: PMC4359026 DOI: 10.1371/journal.pone.0119680] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 01/15/2015] [Indexed: 12/30/2022] Open
Abstract
Oogenesis and folliculogenesis are dynamic processes that are regulated by endocrine, paracrine and autocrine signals. These signals are exchanged between the oocyte and the somatic cells of the follicle. Here we analyzed the role of AMP-activated protein kinase (AMPK), an important regulator of cellular energy homeostasis, by using transgenic mice deficient in α1AMPK specifically in the oocyte. We found a decrease of 27% in litter size was observed in ZP3-α1AMPK-/- (ZP3-KO) female mice. Following in vitro fertilization, where conditions are stressful for the oocyte and embryo, ZP3-KO oocytes were 68% less likely to pass the 2-cell stage. In vivo and in cumulus-oocyte complexes, several proteins involved in junctional communication, such as connexin37 and N-cadherin were down-regulated in the absence of α1AMPK. While the two signalling pathways (PKA and MAPK) involved in the junctional communication between the cumulus/granulosa cells and the oocyte were stimulated in control oocytes, ZP3-KO oocytes exhibited only low phosphorylation of MAPK or CREB proteins. In addition, MII oocytes deficient in α1AMPK had a 3-fold lower ATP concentration, an increase in abnormal mitochondria, and a decrease in cytochrome C and PGC1α levels, suggesting perturbed energy production by mitochondria. The absence of α1AMPK also induced a reduction in histone deacetylase activity, which was associated with an increase in histone H3 acetylation (K9/K14 residues). Together, the results of the present study suggest that absence of AMPK, modifies oocyte quality through energy processes and oocyte/somatic cell communication. The limited effect observed in vivo could be partly due to a favourable follicle microenvironment where nutrients, growth factors, and adequate cell interaction were present. Whereas in a challenging environment such as that of in vitro culture following IVF, the phenotype is revealed.
Collapse
Affiliation(s)
- Michael J. Bertoldo
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
- School of Women’s and Children’s Health, Discipline of Obstetrics and Gynaecology, University of New South Wales, Sydney, NSW, Australia
| | - Edith Guibert
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
| | - Melanie Faure
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
| | - Christelle Ramé
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Joëlle Dupont
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
| | - Pascal Froment
- UMR 7247 INRA CNRS Université de Tours Haras Nationaux Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France
| |
Collapse
|