1
|
Wang JJ, Zhang XY, Zeng Y, Liu QC, Feng XL, Yan JM, Li MH, Reiter RJ, Shen W. Melatonin alleviates the toxic effect of di(2-ethylhexyl) phthalate on oocyte quality resulting from CEBPB suppression during primordial follicle formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:132997. [PMID: 38008054 DOI: 10.1016/j.jhazmat.2023.132997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 11/28/2023]
Abstract
Presently, the exposure of plasticizers to humans and animals occurs daily, which pose a potential threat to reproductive health. In the present study, a pregnant mouse model exposed to di(2-ethylhexyl) phthalate (DEHP, one of the most common plasticizers) and melatonin was established, and the single-cell transcriptome technology was applied to investigate the effects of melatonin in ovarian cells against DEHP. Results showed that DEHP markedly altered the gene expression pattern of ovarian cells, and severely weakened the histone methylation modification of oocytes. The administration of melatonin recovered the expression of LHX8 and SOHLH1 proteins that essential for primordial follicle formation, and increased the expression of CEBPB, as well as key genes of histone methylation modification (such as Smyd3 and Kdm5a). In addition, the ovarian damage caused by DEHP was also relieved after the overexpression of CEBPB, which suggested melatonin could improve primordial follicle formation progress via enhancing CEBPB expression in mice. Besides, the apoptosis of ovarian cells induced by DEHP also was diminished by melatonin. The study provides evidence of melatonin preventing the damage mediated by plasticizers on the reproductive system in females and CEBPB may serve as a downstream target factor of melatonin in the process.
Collapse
Affiliation(s)
- Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Yuan Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yue Zeng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing-Chun Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin-Lei Feng
- Animal Products Quality and Safety Center, Shandong Animal Husbandry and Veterinary Bureau, Jinan 250100, China
| | - Jia-Mao Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming-Hao Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Zhu X, Liu M, Dong R, Gao L, Hu J, Zhang X, Wu X, Fan B, Chen C, Xu W. Mechanism Exploration of Environmental Pollutants on Premature Ovarian Insufficiency: a Systematic Review and Meta-analysis. Reprod Sci 2024; 31:99-106. [PMID: 37612521 DOI: 10.1007/s43032-023-01326-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
As a public health problem, premature ovarian insufficiency leads to infertility or sub-fertility. In addition to premature ovarian insufficiency (POI) increases the lifetime risk of bone fragility, cardiovascular disease, and cognitive impairment. To investigate the effects of environmental pollutants on the occurrence of POI and explore its mechanism, we conducted a computer search for articles published in electronic databases by December 13, 2022. Three reviewers independently examined all included studies and scored the qualities of included studies using the Newcastle-Ottawa Scale criteria. In this meta-analysis, eight clinical studies as well as ten preclinical findings showed a pooled OR of 2.331 and 95% CI of 1.968-2.760. This confirms that environmental pollutants, including POPs, heavy metals, PAEs, PAHs, cosmetic and pharmaceutical products, and cigarette smoke, are indeed significant risk factors for POI. In addition, it is demonstrated from the results of this study that signaling pathway of calcium and PI3K Akt and Xpnpep2, Col1, Col3, Col4, Cx43, Egr3, Tff1, and Ptgs2 genes may all be involved in the process. Environmental pollutants, including POPs, heavy metals, PAEs, PAHs, cosmetic and pharmaceutical products, and cigarette smoke, are indeed significant risk factors for POI.
Collapse
Affiliation(s)
- Xiaodan Zhu
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Meixia Liu
- Occupational Health Department, Shanghai Municipal Center for Disease Control and Prevention/Shanghai Institute for Prevention Medicine, Shanghai, China
| | - Ruoxi Dong
- Department of Anal & Intestinal Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liqun Gao
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Jiazhen Hu
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Xinpei Zhang
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Xiaomei Wu
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China
| | - Bozhen Fan
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China.
| | - Chao Chen
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China.
| | - Wenjuan Xu
- Depertment of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Putuo District, Shanghai, 200062, China.
| |
Collapse
|
3
|
Abdallah S, Jampy A, Moison D, Wieckowski M, Messiaen S, Martini E, Campalans A, Radicella JP, Rouiller-Fabre V, Livera G, Guerquin MJ. Foetal exposure to the bisphenols BADGE and BPAF impairs meiosis through DNA oxidation in mouse ovaries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120791. [PMID: 36464114 DOI: 10.1016/j.envpol.2022.120791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Many endocrine disruptors have been proven to impair the meiotic process which is required for the production of healthy gametes. Bisphenol A is emblematic of such disruptors, as it impairs meiotic prophase I and causes oocyte aneuploidy following in utero exposure. However, the mechanisms underlying these deleterious effects remain poorly understood. Furthermore, the increasing use of BPA alternatives raises concerns for public health. Here, we investigated the effects of foetal exposure to two BPA alternatives, bisphenol A Diglycidyl Ether (BADGE) and bisphenol AF (BPAF), on oogenesis in mice. These compounds delay meiosis initiation, increase the number of MLH1 foci per cell and induce oocyte aneuploidy. We further demonstrate that these defects are accompanied by changes in gene expression in foetal premeiotic germ cells and aberrant mRNA splicing of meiotic genes. We observed an increase in DNA oxidation after exposure to BPA alternatives. Specific induction of oxidative DNA damage during foetal germ cell differentiation causes similar defects during oogenesis, as observed in 8-oxoguanine DNA Glycosylase (OGG1)-deficient mice or after in utero exposure to potassium bromate (KBrO3), an inducer of oxidative DNA damage. The supplementation of BPA alternatives with N-acetylcysteine (NAC) counteracts the effects of bisphenols on meiosis. Together, our results propose oxidative DNA lesion as an event that negatively impacts female meiosis with major consequences on oocyte quality. This could be a common mechanism of action for numerous environmental pro-oxidant pollutants, and its discovery, could lead to reconsider the adverse effect of bisphenol mixtures that are simultaneously present in our environment.
Collapse
Affiliation(s)
- Sonia Abdallah
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Amandine Jampy
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Delphine Moison
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Margaux Wieckowski
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Sébastien Messiaen
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Emmanuelle Martini
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Anna Campalans
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France
| | - Juan Pablo Radicella
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France
| | - Virginie Rouiller-Fabre
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Gabriel Livera
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France
| | - Marie-Justine Guerquin
- Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Université de Paris-Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Institut de Biologie François Jacob, 92260, Fontenay aux Roses, France; Laboratory of the Development of the Gonads, France.
| |
Collapse
|
4
|
Li MH, Wang JJ, Feng YQ, Liu X, Yan ZH, Zhang XJ, Wen YX, Luo HW, Li L, De Felici M, Zhao AH, Shen W. H3K4me3 as a target of di(2-ethylhexyl) phthalate (DEHP) impairing primordial follicle assembly. CHEMOSPHERE 2023; 310:136811. [PMID: 36220427 DOI: 10.1016/j.chemosphere.2022.136811] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a widely used plastics additive that growing evidence indicates as endocrine disruptor able to negatively affect various reproductive processes both in female and male animals, including humans. However, the precise molecular mechanism of such actions is not completely understood. In the present study, scRNA-seq was performed on the ovaries of offspring from mothers exposed to DEHP from 16.5 days post coitum to 3 days post-partum, when the primordial follicle (PF) stockpile is established. While the histological observations of the offspring ovaries from DEHP exposed mothers confirmed previous data about a distinct reduction of oocytes enclosed in PFs. Focusing on oocytes, scRNA-seq analyses showed that the genes that mostly changed by DEHP were enriched GO terms related to histone H3-K4 methylation. Moreover, we observed H3K4me3 level, an epigenetics modification of H3 that is crucial for chromatin transcription, decreased by 40.28% (P < 0.01) in DEHP-treated group compared with control. When the newborn ovaries were cultured in vitro, the DEHP effects were abolished by tamoxifen (an estrogen receptor antagonist) or overexpression of Smyd3 (one specific methyltransferase of H3K4me3), in particular, the percentage of oocyte enclosed in PF was increased by 15.39% in DEHP plus Smyd3 overexpression group than of DEHP group (P < 0.01), which was accompanied by the upregulation of H3K4me3. Collectively, the present results discover Smyd3-H3K4me3 as a novel target of the deleterious ER-mediated effect of DEHP on PF formation during early folliculogenesis in the mouse and highlight epigenetics changes as prominent targets of endocrine disruptors like DEHP.
Collapse
Affiliation(s)
- Ming-Hao Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yan-Qin Feng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuan Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ya-Xin Wen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hao-Wei Luo
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy.
| | - Ai-Hong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China.
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
5
|
Shanmugam DAS, Dhatchanamurthy S, Leela KA, Bhaskaran RS. Maternal exposure to di(2-ethylhexyl) phthalate (DEHP) causes multigenerational adverse effects on the uterus of F 1 and F 2 offspring rats. Reprod Toxicol 2023; 115:17-28. [PMID: 36435455 DOI: 10.1016/j.reprotox.2022.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Phthalates are one of the ubiquitous chemicals found in day-to-day products like food packaging, children's toys, and other consumer commodities. There is rising concern that repeated exposure to phthalates during pregnancy and lactation could have long-term effects on maternal and fetal health. We hypothesize that exposure to DEHP during the developmental windows might affect the expression of molecules that regulate uterine function and that this effect would be passed on to further generations. Rat dams were treated with olive oil (vehicle) or DEHP (100 mg/kg b.wt./day) orally from gestational day 9 (GD 9) to the end of lactation (PND 21). F0 maternal DEHP exposure resulted in multigenerational (F1 and F2) reproductive toxicity, as evidenced by an extended estrous cycle, decreased mating, fertility, and fecundity indices. Serum progesterone and estradiol levels were decreased and their cognate receptors (PR and ERα) in the uterus were decreased in the DEHP-exposed offspring rats. Further analysis of the expression of estrogen and progesterone regulatory genes such as Hox a11, VEGF A, Ihh, LIFR, EP4, PTCH, NR2F2, BMP2, and Wnt4 were reduced in the uteri of adult F1 and F2 generation rats born from DEHP-exposed F0 dams. Decreased expression of these crucial proteins due to DEHP exposure may lead to defects in epithelial proliferation and secretion, uterine receptivity, and decidualization in the uteri of successive generations. This study showed that maternal DEHP exposure impairs the expression of molecules that regulate uterine function and this multigenerational effect is transmitted via maternal lineage.
Collapse
Affiliation(s)
- Dharani Abirama Sundari Shanmugam
- Department of Endocrinology, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India
| | - Sakthivel Dhatchanamurthy
- Department of Endocrinology, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India
| | - Kamakshi Arjunan Leela
- Department of Endocrinology, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India
| | - Ravi Sankar Bhaskaran
- Department of Endocrinology, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India.
| |
Collapse
|
6
|
Tian Y, Zhang Y, Dong PY, Sun YH, Zhao AH, Shen W, Zhang XF. Single-cell transcriptomic profiling to evaluate the effects of Di(2-ethylhexyl)phthalate exposure on early meiosis of female mouse germ cells. CHEMOSPHERE 2022; 307:135698. [PMID: 35842051 DOI: 10.1016/j.chemosphere.2022.135698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) has proven characteristics of an endocrine-disrupting compound (EDC), which can threaten the reproductive health of humans and other animals. In mammals, a series of chromosomal events occur during the meiotic stage of oocytes. External toxins may enter the body and cause infertility and other related diseases. Therefore, it is crucial to explore the influence of DEHP exposure on the molecular mechanism of germ cell meiosis. We used single-cell RNA sequencing (scRNA-seq) to analyse the ovaries of foetal mice at embryonic day 12.5 (E12.5) and E14.5 after maternal DEHP exposure. DEHP exposure further activated the pathways related to DNA repair in germ cells, increased the expression of genes related to DNA damage and changed the developmental trajectory of germ cells. DEHP exposure may affect the proliferation of pregranulosa (PG) cells. Moreover, DEHP exposure altered the signal transduction between PG cells and germ cells. We showed that DEHP affects meiosis by causing DNA damage in oocytes and disrupting the signal transduction between PG cells and germ cells. These results provide a strong theoretical basis for the prevention and treatment of DEHP-mediated female reproductive health problems.
Collapse
Affiliation(s)
- Yu Tian
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ye Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China; Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetic, Shandong University, Jinan, Shandong, 250012, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yong-Hong Sun
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Ai-Hong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Frost ER, Ford EA, Peters AE, Lovell-Badge R, Taylor G, McLaughlin EA, Sutherland JM. A New Understanding, Guided by Single-Cell Sequencing, of the Establishment and Maintenance of the Ovarian Reserve in Mammals. Sex Dev 2022; 17:145-155. [PMID: 36122567 DOI: 10.1159/000526426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Oocytes are a finite and non-renewable resource that are maintained in primordial follicle structures. The ovarian reserve is the totality of primordial follicles, present from birth, within the ovary and its establishment, size, and maintenance dictates the duration of the female reproductive lifespan. Understanding the cellular and molecular dynamics relevant to the establishment and maintenance of the reserve provides the first steps necessary for modulating both individual human and animal reproductive health as well as population dynamics. SUMMARY This review details the key stages of establishment and maintenance of the ovarian reserve, encompassing germ cell nest formation, germ cell nest breakdown, and primordial follicle formation and activation. Furthermore, we spotlight several formative single-cell sequencing studies that have significantly advanced our knowledge of novel molecular regulators of the ovarian reserve, which may improve our ability to modulate female reproductive lifespans. KEY MESSAGES The application of single-cell sequencing to studies of ovarian development in mammals, especially when leveraging genetic and environmental models, offers significant insights into fertility and its regulation. Moreover, comparative studies looking at key stages in the development of the ovarian reserve across species has the potential to impact not just human fertility, but also conservation biology, invasive species management, and agriculture.
Collapse
Affiliation(s)
- Emily R Frost
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, UK
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Emmalee A Ford
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Alexandra E Peters
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, UK
| | - Güneş Taylor
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, UK
| | - Eileen A McLaughlin
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Faculty of Science, Medicine & Health, University of Wollongong, Wollongong, New South Wales, Australia
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science & Pharmacy and Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
8
|
Fletcher EJ, Santacruz-Márquez R, Mourikes VE, Neff AM, Laws MJ, Flaws JA. Effects of Phthalate Mixtures on Ovarian Folliculogenesis and Steroidogenesis. TOXICS 2022; 10:251. [PMID: 35622664 PMCID: PMC9143992 DOI: 10.3390/toxics10050251] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023]
Abstract
The female reproductive system is dependent upon the health of the ovaries. The ovaries are responsible for regulating reproduction and endocrine function. Throughout a female's reproductive lifespan, the ovaries undergo continual structural changes that are crucial for the maturation of ovarian follicles and the production of sex steroid hormones. Phthalates are known to target the ovaries at critical time points and to disrupt normal reproductive function. The US population is constantly exposed to measurable levels of phthalates. Phthalates can also pass placental barriers and affect the developing offspring. Phthalates are frequently prevalent as mixtures; however, most previous studies have focused on the effects of single phthalates on the ovary and female reproduction. Thus, the effects of exposure to phthalate mixtures on ovarian function and the female reproductive system remain unclear. Following a brief introduction to the ovary and its major roles, this review covers what is currently known about the effects of phthalate mixtures on the ovary, focusing primarily on their effects on folliculogenesis and steroidogenesis. Furthermore, this review focuses on the effects of phthalate mixtures on female reproductive outcomes. Finally, this review emphasizes the need for future research on the effects of environmentally relevant phthalate mixtures on the ovary and female reproduction.
Collapse
Affiliation(s)
| | | | | | | | | | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; (E.J.F.); (R.S.-M.); (V.E.M.); (A.M.N.); (M.J.L.)
| |
Collapse
|
9
|
Liu YN, Qin Y, Wu B, Peng H, Li M, Luo H, Liu LL. DNA Methylation in Polycystic Ovary Syndrome:Emerging Evidence and Challenges. Reprod Toxicol 2022; 111:11-19. [PMID: 35562068 DOI: 10.1016/j.reprotox.2022.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 12/09/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a disease related to reproductive endocrine abnormalities in women of reproductive age, often accompanied by metabolic diseases such as hyperandrogenemia, insulin resistance and dyslipidemia. However, the etiology and mechanism of PCOS are still unclear. In recent years, more and more studies have found that epigenetic factors play an important role in PCOS. DNA methylation is the most widely studied epigenetic modification. At present, changes of DNA methylation have been found in serum, ovarian, hypothalamus, skeletal muscle, adipose tissue of PCOS patients, and these changes are closely related to insulin resistance, lipid metabolism and follicular development of PCOS. Although the current research on DNA methylation in PCOS is not in-depth, it indicated up a good direction for future research on the etiology and mechanism of PCOS. This review discussed the relationship between DNA methylation and PCOS. It is expected to help accelerate the application of DNA methylation in the diagnosis and treatment of PCOS.
Collapse
Affiliation(s)
- Yan-Nan Liu
- Nursing School, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Yi Qin
- Faculty of Nursing, Guangxi University of Chinese Medicine, Nanning,530200, Guangxi, China
| | - Bin Wu
- Nursing School, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Hui Peng
- Nursing School, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Ming Li
- School of Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine,Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Hai Luo
- School of Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine,Hunan University of Medicine, Huaihua 418000, Hunan, China.
| | - Lin-Lin Liu
- Faculty of Nursing, Guangxi University of Chinese Medicine, Nanning,530200, Guangxi, China.
| |
Collapse
|
10
|
AOP Key Event Relationship report: Linking decreased retinoic acid levels with disrupted meiosis in developing oocytes. Curr Res Toxicol 2022; 3:100069. [PMID: 35345548 PMCID: PMC8957012 DOI: 10.1016/j.crtox.2022.100069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
The first case study to develop and publish an individual KER as a stand-alone unit of information under the AOP framework overseen by the OECD. Full description of a KER linking decreased all-trans retinoic acid (atRA) levels in developing ovaries with disrupted meiotic entry of oogonia. KER described is associated with an intended AOP linking inhibition of the atRA producing ALDH1A enzymes with reduced fertility in women.
The Adverse Outcome Pathway (AOP) concept is an emerging tool in regulatory toxicology that uses simplified descriptions to show cause-effect relationships between stressors and toxicity outcomes in intact organisms. The AOP structure is a modular framework, with Key Event Relationships (KERs) representing the unit of causal relationship based on existing knowledge, describing the connection between two Key Events. Because KERs are the only unit to support inference it has been argued recently that KERs should be recognized as the core building blocks of knowledge assembly within the AOP-Knowledge Base. Herein, we present a first case to support this proposal and provide a full description of a KER linking decreased all-trans retinoic acid (atRA) levels in developing ovaries with disrupted meiotic entry of oogonia. We outline the evidence to support a role for atRA in inducing meiosis in oogonia across mammals; this is important because elements of the RA synthesis/degradation pathway are recognized targets for numerous environmental chemicals. The KER we describe will be used to support an intended AOP linking inhibition of the atRA producing ALDH1A enzymes with reduced fertility in women.
Collapse
|
11
|
Delbes G, Blázquez M, Fernandino JI, Grigorova P, Hales BF, Metcalfe C, Navarro-Martín L, Parent L, Robaire B, Rwigemera A, Van Der Kraak G, Wade M, Marlatt V. Effects of endocrine disrupting chemicals on gonad development: Mechanistic insights from fish and mammals. ENVIRONMENTAL RESEARCH 2022; 204:112040. [PMID: 34509487 DOI: 10.1016/j.envres.2021.112040] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Over the past century, evidence has emerged that endocrine disrupting chemicals (EDCs) have an impact on reproductive health. An increased frequency of reproductive disorders has been observed worldwide in both wildlife and humans that is correlated with accidental exposures to EDCs and their increased production. Epidemiological and experimental studies have highlighted the consequences of early exposures and the existence of key windows of sensitivity during development. Such early in life exposures can have an immediate impact on gonadal and reproductive tract development, as well as on long-term reproductive health in both males and females. Traditionally, EDCs were thought to exert their effects by modifying the endocrine pathways controlling reproduction. Advances in knowledge of the mechanisms regulating sex determination, differentiation and gonadal development in fish and rodents have led to a better understanding of the molecular mechanisms underlying the effects of early exposure to EDCs on reproduction. In this manuscript, we review the key developmental stages sensitive to EDCs and the state of knowledge on the mechanisms by which model EDCs affect these processes, based on the roadmap of gonad development specific to fish and mammals.
Collapse
Affiliation(s)
- G Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada.
| | - M Blázquez
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - J I Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | | | - B F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - C Metcalfe
- School of Environment, Trent University, Trent, Canada
| | - L Navarro-Martín
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - L Parent
- Université TELUQ, Montréal, Canada
| | - B Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - A Rwigemera
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada
| | - G Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - M Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, Canada
| | - V Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
12
|
Lite C, Raja GL, Juliet M, Sridhar VV, Subhashree KD, Kumar P, Chakraborty P, Arockiaraj J. In utero exposure to endocrine-disrupting chemicals, maternal factors and alterations in the epigenetic landscape underlying later-life health effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103779. [PMID: 34843942 DOI: 10.1016/j.etap.2021.103779] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Widespread persistence of endocrine-disrupting chemicals (EDCs) in the environment has mandated the need to study their potential effects on an individual's long-term health after both acute and chronic exposure periods. In this review article a particular focus is given on in utero exposure to EDCs in rodent models which resulted in altered epigenetic programming and transgenerational effects in the offspring causing disrupted reproductive and metabolic phenotypes. The literature to date establishes the impact of transgenerational effects of EDCs potentially associated with epigenetic mediated mechanisms. Therefore, this review aims to provide a comprehensive overview of epigenetic programming and it's regulation in mammals, primarily focusing on the epigenetic plasticity and susceptibility to exogenous hormone active chemicals during the early developmental period. Further, we have also in depth discussed the epigenetic alterations associated with the exposure to selected EDCs such as Bisphenol A (BPA), di-2-ethylhexyl phthalate (DEHP) and vinclozlin upon in utero exposure especially in rodent models.
Collapse
Affiliation(s)
- Christy Lite
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India.
| | - Glancis Luzeena Raja
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India
| | - Melita Juliet
- Department of Oral and Maxillofacial Surgery, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India
| | - Vasisht Varsh Sridhar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India
| | - K Divya Subhashree
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India
| | - Praveen Kumar
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India.
| |
Collapse
|
13
|
Lopez-Rodriguez D, Franssen D, Heger S, Parent AS. Endocrine-disrupting chemicals and their effects on puberty. Best Pract Res Clin Endocrinol Metab 2021; 35:101579. [PMID: 34563408 DOI: 10.1016/j.beem.2021.101579] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sexual maturation in humans is characterized by a unique individual variability. Pubertal onset is a highly heritable polygenic trait but it is also affected by environmental factors such as obesity or endocrine disrupting chemicals. The last 30 years have been marked by a constant secular trend toward earlier age at onset of puberty in girls and boys around the world. More recent data, although more disputed, suggest an increased incidence in idiopathic central precocious puberty. Such trends point to a role for environmental factors in pubertal changes. Animal data suggest that the GnRH-neuronal network is highly sensitive to endocrine disruption during development. This review focuses on the most recent data regarding secular trend in pubertal timing as well as potential new epigenetic mechanisms explaining the developmental and transgenerational effects of endocrine disrupting chemicals on pubertal timing.
Collapse
Affiliation(s)
| | - Delphine Franssen
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Belgium
| | - Sabine Heger
- Children's Hospital Bult, Janusz-Korczak-Allee 12, 30173, Hannover, Germany
| | - Anne-Simone Parent
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Belgium; Department of Pediatrics, University Hospital Liège, Belgium.
| |
Collapse
|
14
|
Perinatal exposure to known endocrine disrupters alters ovarian development and systemic steroid hormone profile in rats. Toxicology 2021; 458:152821. [PMID: 34051340 DOI: 10.1016/j.tox.2021.152821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Disrupted ovarian development induced by chemical exposure may impair fertility later in life. Since androgens are essential for early ovarian development, we speculated that perinatal exposure to a binary mixture of the known anti-androgens DEHP and procymidone could alter steroid synthesis, disrupt ovarian follicle recruitment and ultimately maturation in female rat offspring. Wistar rat dams were exposed by oral gavage from gestation day 7 to postnatatal day 22 to two mixture doses known to alter reproductive development in male offspring (low: 10 mg/kg bw/day of procymidone and 30 mg/kg bw/day of DEHP; high: 20 mg/kg bw/day of procymidone and 60 mg/kg bw/day of DEHP). The Effects on plasma steroid hormones, ovarian follicle distribution and expression of markers related to steroid synthesis were examined in female offspring. In prepubertal offspring, we observed an increased number of newly recruited (primary) follicles in exposed animals compared to controls, and the plasma steroid hormone profile was altered by exposure: levels of progesterone, corticosterone and estrone were dose dependently elevated, whereas androgen levels were unaffected. In adulthood, a trend towards a smaller number of early-stage follicles may point to accelerated loss of follicle reserves, which is disconcerting. The changes in follicle distribution in exposed ovaries may reflect the combined influence of androgen receptor antagonism and altered ovarian steroid synthesis. This study adds to a growing body of evidence showing altered ovarian development following exposure to human relevant chemicals with possible severe consequences for female fertility.
Collapse
|
15
|
Wang H, Yang X, Li J, Qi Z, Liu B, Liu W, Xu B, Xu Z, Deng Y. Research progress on the effect of Di-(2-ethylhexyl) phthalate (DEHP) on reproductive health at different periods in life. Reprod Fertil Dev 2021; 33:RD20135. [PMID: 33941309 DOI: 10.1071/rd20135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 03/04/2021] [Indexed: 11/23/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a representative endocrine-disrupting chemical (EDC) that has reproductive, developmental, neurological and immune toxicity in humans and rodents, of which damage to the reproductive system is the most serious. However, exposure to DEHP at different stages of life may produce different symptoms. Studies on this substance are also controversial. This review describes the reproductive effects of DEHP in males and females at different life stages, including infancy, childhood and adulthood.
Collapse
|
16
|
Ovarian Toxicity and Epigenetic Mechanisms of Phthalates and Their Metabolites. Curr Med Sci 2021; 41:236-249. [PMID: 33877540 DOI: 10.1007/s11596-021-2342-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/30/2021] [Indexed: 12/12/2022]
Abstract
Ovary plays an important role in the female reproductive system. The maintenance and regulation of ovarian function are affected by various physical and chemical factors. With the development of industrialization, environmental pollutants have caused great harm to public health. Phthalates, as a class of endocrine-disrupting chemicals (EDCs), are synthesized and used in large quantities as plasticizers due to their chemical properties. They are easily released into environment because of their noncovalent interactions with substances, causing human exposure and possibly impairing ovary. In recent years, more and more attention has been paid to the role of epigenetics in the occurrence and development of diseases. And it is urgent to study the role of methylation, gene imprinting, miRNA, and other epigenetic mechanisms in reproductive toxicology.
Collapse
|
17
|
Wang JJ, Tian Y, Li MH, Feng YQ, Kong L, Zhang FL, Shen W. Single-cell transcriptome dissection of the toxic impact of Di (2-ethylhexyl) phthalate on primordial follicle assembly. Am J Cancer Res 2021; 11:4992-5009. [PMID: 33754040 PMCID: PMC7978297 DOI: 10.7150/thno.55006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Rationale: Accumulated evidence indicates that environmental plasticizers are a threat to human and animal fertility. Di (2-ethylhexyl) phthalate (DEHP), a plasticizer to which humans are exposed daily, can trigger reproductive toxicity by acting as an endocrine-disrupting chemical. In mammals, the female primordial follicle pool forms the lifetime available ovarian reserve, which does not undergo regeneration once it is established during the fetal and neonatal period. It is therefore critical to examine the toxicity of DEHP regarding the establishment of the ovarian reserve as it has not been well investigated. Methods: The ovarian cells of postnatal pups, following maternal DEHP exposure, were prepared for single cell-RNA sequencing, and the effects of DEHP on primordial follicle formation were revealed using gene differential expression analysis and single-cell developmental trajectory. In addition, further biochemical experiments, including immunohistochemical staining, apoptosis detection, and Western blotting, were performed to verify the dataset results. Results: Using single-cell RNA sequencing, we revealed the gene expression dynamics of female germ cells and granulosa cells following exposure to DEHP in mice. Regarding germ cells: DEHP impeded the progression of follicle assembly and interfered with their developmental status, while key genes such as Lhx8, Figla, and others, strongly evidenced the reduction. As for granulosa cells: DEHP likely inhibited their proliferative activity, and activated the regulation of cell death. Furthermore, the interaction between ovarian cells mediated by transforming growth factor-beta signaling, was disrupted by DEHP exposure, since the expression of GDF9, BMPR1A, and SMAD3 was affected. In addition, DNA damage and apoptosis were elevated in germ cells and/or somatic cells. Conclusion: These findings offer substantial novel insights into the reproductive toxicity of DEHP exposure during murine germ cell cyst breakdown and primordial follicle formation. These results may enhance the understanding of DEHP exposure on reproductive health.
Collapse
|
18
|
Song Y, Li R. Effects of Environment and Lifestyle Factors on Anovulatory Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:113-136. [PMID: 33523431 DOI: 10.1007/978-981-33-4187-6_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Anovulatory disorder comprises around 30% of female infertility. The origin of ovulatory failure is rooted in pituitary FSH secretion. Any factor or process that disrupts the finely tuned interactions of hypothalamo-pituitary-ovarian axis can potentially lead to anovulation. The World Health Organization (WHO) has classified anovulatory disorders into three categories: hypothalamic-pituitary failure, hypothalamic-pituitary dysregulation, and ovarian failure. Due to industrial development, environmental pollution, and global warming, the human living environment has undergone tremendous changes. Industrial waste, noise, pesticides, fertilizers, and vehicular emission are visible pollutants responsible for environmental contamination and ill effects on health of all living systems. A considerable body of research suggests that chemical exposures in the environment or workplace may be associated with endocrine disruption of the synthesis, secretion, transport, binding, or elimination of natural hormones. For instance, some advanced biological mechanisms suggest that heavy metals may affect progesterone production, which possibly disturbs endocrine function in pregnant women. On the other hand, our lifestyle factors have also changed accordingly, which greatly influence overall health and well-being, including fertility. Many lifestyle factors such as nutrition, weight, exercise, and psychological stress can have substantial effects on female ovulation.
Collapse
Affiliation(s)
- Ying Song
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
19
|
Yang Y, Huang W, Yuan L. Effects of Environment and Lifestyle Factors on Premature Ovarian Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:63-111. [PMID: 33523430 DOI: 10.1007/978-981-33-4187-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Premature ovarian insufficiency (POI) or primary ovarian failure is defined as a cessation of the menstrual cycle in women younger than 40 years old. It is strictly defined as more than 4 months of oligomenorrhea or amenorrhea in a woman <40 years old, associated with at least two follicle-stimulating hormone (FSH) levels >25 U/L in the menopausal range, detected more than 4 weeks apart. It is estimated that POI was affected 1 and 2% of women. Although 80% of POI cases are of unknown etiology, it is suggested that genetic disorder, autoimmune origin, toxins, and environmental factors, as well as personal lifestyles, may be risk factors of developing POI. In this section, we will discuss the influences of environmental and lifestyle factors on POI. Moreover updated basic research findings regarding how these environmental factors affect female ovarian function via epigenetic regulations will also be discussed.
Collapse
Affiliation(s)
- Yihua Yang
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Weiyu Huang
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lifang Yuan
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Li XN, Li HX, Yang TN, Li XW, Huang YQ, Zhu SY, Li JL. Di-(2-ethylhexyl) phthalate induced developmental abnormalities of the ovary in quail (Coturnix japonica) via disruption of the hypothalamic-pituitary-ovarian axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140293. [PMID: 32610232 DOI: 10.1016/j.scitotenv.2020.140293] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
An increasing number of epidemiologic studies show that women have a special exposure profile to phthalates, and the exposures have attracted attention regarding their potential health hazards. Here, we developed a model for studying the ovarian action of di-(2-ethylhexyl) phthalate (DEHP) and its major metabolite monoethylhexyl phthalate (MEHP). In vivo, treatment with DEHP (250, 500, and 1000 mg kg^-1) induced decreased thickness of ovarian granulosa cell layer and mitochondrial damage in quail, caused oxidative stress, interfered with the transcription of hypothalamic-pituitary-ovarian axis (HPOA) steroid hormone-related factors (increased transcription of StAR, 3β-HSD, P450scc, and LH and decreased transcription of 17β-HSD, P450arom, FSH, and ERβ), and blocked the secretion of steroid hormones (decreased FSH, E2, and T levels and increased LH, P, and PRL levels). In vitro, granulosa cells were cultured with MEHP (50, 100, and 200 μM), activator of PPARγ (rosiglitazone, 50 μM), or antagonist of PPARγ (GW9662, 10 μM) for 24 h and gene and protein expression were analyzed by real time RT-PCR and western blot. Rosiglitazone, like MEHP, significantly decreased mRNA and protein levels of P450arom. Antagonist GW9662 partially blocked the suppression of P450arom by MEHP, suggesting that MEHP acts through PPARγ, but not exclusively. Our model shows that MEHP acts on granulosa cells in quail by stimulating PPARs, which leads to decreased gene and protein expression of P450arom. Therefore, the environmental endocrine disruptor DEHP and its major metabolite MEHP act through a receptor-mediated signaling pathway to inhibit the production of estradiol, interfere with the modulation of HPOA, suppress the synthesis of sex hormones, and cause sex hormone secretion disorders, resulting in severe toxicity in the female reproductive system. A framework for an adverse outcome pathway of DEHP/MEHP-induced ovarian toxicity was constructed, which can facilitate an improved understanding of the mechanism of female reproductive toxicity.
Collapse
Affiliation(s)
- Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hui-Xin Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue-Qiang Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
21
|
Mirihagalle S, You T, Suh L, Patel C, Gao L, Rattan S, Qiao H. Prenatal exposure to di-(2-ethylhexyl) phthalate and high-fat diet synergistically disrupts mouse fetal oogenesis and affects folliculogenesis†. Biol Reprod 2020; 100:1561-1570. [PMID: 30939196 DOI: 10.1093/biolre/ioz051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/21/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a chemical that is widely used as a plasticizer. Exposure to DEHP has been shown to alter ovarian function in humans. Additionally, foods high in fat content, regularly found in the western diet, have been shown to be another potential disruptor of fetal ovarian function. Due to DEHP's lipophilicity, high-fat foods can be easily contaminated. Therefore, exposure to DEHP and a high-fat diet are both health concerns, especially in pregnant women, and the effects of these exposures on fetal oocyte quality and quantity should be elucidated. In this study, our goal was to determine if there are synergistic effects of DEHP exposure at an environmentally relevant level (20 μg/kg body weight/day) and high-fat diet on oogenesis and folliculogenesis. Dams were fed with a high-fat diet (45 kcal% fat) or a control diet (10 kcal% fat) 1 week before mating and during pregnancy and lactation. The pregnant mice were dosed with DEHP (20 μg/kg body weight/day) or vehicle control from E10.5 to litter birth. We found that treatment with an environmentally relevant dosage of DEHP and consumption of high-fat diet significantly increases synapsis defects in meiosis and affects folliculogenesis in the F1 generation.
Collapse
Affiliation(s)
- Supipi Mirihagalle
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tianming You
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lois Suh
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chintan Patel
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Liying Gao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Saniya Rattan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
22
|
Putative adverse outcome pathways for female reproductive disorders to improve testing and regulation of chemicals. Arch Toxicol 2020; 94:3359-3379. [PMID: 32638039 PMCID: PMC7502037 DOI: 10.1007/s00204-020-02834-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Modern living challenges female reproductive health. We are witnessing a rise in reproductive disorders and drop in birth rates across the world. The reasons for these manifestations are multifaceted and most likely include continuous exposure to an ever-increasing number of chemicals. The cause–effect relationships between chemical exposure and female reproductive disorders, however, have proven problematic to determine. This has made it difficult to assess the risks chemical exposures pose to a woman’s reproductive development and function. To address this challenge, this review uses the adverse outcome pathway (AOP) concept to summarize current knowledge about how chemical exposure can affect female reproductive health. We have a special focus on effects on the ovaries, since they are essential for lifelong reproductive health in women, being the source of both oocytes and several reproductive hormones, including sex steroids. The AOP framework is widely accepted as a new tool for toxicological safety assessment that enables better use of mechanistic knowledge for regulatory purposes. AOPs equip assessors and regulators with a pragmatic network of linear cause–effect relationships, enabling the use of a wider range of test method data in chemical risk assessment and regulation. Based on current knowledge, we propose ten putative AOPs relevant for female reproductive disorders that can be further elaborated and potentially be included in the AOPwiki. This effort is an important step towards better safeguarding the reproductive health of all girls and women.
Collapse
|
23
|
Cao M, Pan W, Shen X, Li C, Zhou J, Liu J. Urinary levels of phthalate metabolites in women associated with risk of premature ovarian failure and reproductive hormones. CHEMOSPHERE 2020; 242:125206. [PMID: 31678849 DOI: 10.1016/j.chemosphere.2019.125206] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 05/24/2023]
Abstract
Phthalates, a class of high production-volume chemicals widely used as plasticizers, have been shown to impair ovarian functions in female animals, but epidemiological evidence is very limited. In this case-control study, the associations between phthalate exposure and premature ovarian failure (POF) in women were assessed. A total of 173 POF cases and 246 control women were recruited in Zhejiang, China. The urinary concentrations of 8 phthalate metabolites and the serum levels of ovary-related hormones were determined. Mono-isobutyl phthalate (MiBP) was the metabolite with the highest median concentration of 27.23 μg/g of creatinine in the whole group. Compared with the lowest quartile, higher urinary concentrations of MiBP were significantly associated with increased odds of POF (OR = 1.38, 95% CI: 0.73-2.61 for the fourth quartile; p for trend = 0.01). The estradiol/FSH ratio, a marker of ovarian function, in control women was significantly negatively associated with the urinary concentrations of most tested phthalate metabolites. Our results suggest that exposure to some phthalates may impair ovarian function and increase the odds of POF in women.
Collapse
Affiliation(s)
- Miaofeng Cao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wuye Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xueyou Shen
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunming Li
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jianhong Zhou
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Li K, Liszka M, Zhou C, Brehm E, Flaws JA, Nowak RA. Prenatal exposure to a phthalate mixture leads to multigenerational and transgenerational effects on uterine morphology and function in mice. Reprod Toxicol 2020; 93:178-190. [PMID: 32126281 DOI: 10.1016/j.reprotox.2020.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/21/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022]
Abstract
Phthalates are commonly used plasticizers and additives that are found in plastic containers, children's toys and medical equipment. Phthalates are classified as endocrine-disrupting chemicals and exposure to phthalates has been associated with several human health risks including reproductive defects. Most studies focus on a single phthalate; however, humans are exposed to a mixture of phthalates daily. We hypothesized that prenatal exposure to an environmentally relevant phthalate mixture would lead to changes in uterine morphology and function in mice in a multi-generational manner. To test this hypothesis, pregnant CD-1 dams were orally dosed with vehicle or a phthalate mixture (20 μg/kg/day, 200 μg/kg/day, 200 mg/kg/day, and 500 mg/kg/day) from gestational day 10.5 to parturition. The mixture contained 35 % diethyl phthalate, 21 % di-(2-ethylhexyl) phthalate, 15 % dibutyl phthalate, 15 % diisononyl phthalate, 8% diisobutyl phthalate, and 5% benzylbutyl phthalate. The F1 pups were maintained and mated to produce two more generations (F2 and F3). At the age of 13 months, all females were euthanized and tissue samples were collected in diestrus. Our results showed that exposure to a phthalate mixture caused a decrease in progesterone levels in the treated groups in the F2 generation. The 200 mg/kg/day treatment group showed a decreased and increased luminal epithelial cell proliferation in the F1 and F2 generations respectively. In addition, these mice in the F2 generation had reduced Hand2 expression in the sub-epithelial stroma compared to the controls. A higher incidence of multilayered luminal epithelium and large dilated endometrial glands were observed in the phthalate mixture exposed groups in all generations. The mixture also caused a higher incidence of smooth muscle actin expression and collagen deposition in the endometrium compared to controls. Collectively, our results demonstrate that prenatal exposure to an environmentally relevant phthalate mixture can have adverse effects on female reproductive functions.
Collapse
Affiliation(s)
- Kailiang Li
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Monika Liszka
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Changqing Zhou
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, United States
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, United States
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States.
| |
Collapse
|
25
|
Cuenca L, Shin N, Lascarez-Lagunas LI, Martinez-Garcia M, Nadarajan S, Karthikraj R, Kannan K, Colaiácovo MP. Environmentally-relevant exposure to diethylhexyl phthalate (DEHP) alters regulation of double-strand break formation and crossover designation leading to germline dysfunction in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008529. [PMID: 31917788 PMCID: PMC6952080 DOI: 10.1371/journal.pgen.1008529] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
Exposure to diethylhexyl phthalate (DEHP), the most abundant plasticizer used in the production of polyvinyl-containing plastics, has been associated to adverse reproductive health outcomes in both males and females. While the effects of DEHP on reproductive health have been widely investigated, the molecular mechanisms by which exposure to environmentally-relevant levels of DEHP and its metabolites impact the female germline in the context of a multicellular organism have remained elusive. Using the Caenorhabditis elegans germline as a model for studying reprotoxicity, we show that exposure to environmentally-relevant levels of DEHP and its metabolites results in increased meiotic double-strand breaks (DSBs), altered DSB repair progression, activation of p53/CEP-1-dependent germ cell apoptosis, defects in chromosome remodeling at late prophase I, aberrant chromosome morphology in diakinesis oocytes, increased chromosome non-disjunction and defects during early embryogenesis. Exposure to DEHP results in a subset of nuclei held in a DSB permissive state in mid to late pachytene that exhibit defects in crossover (CO) designation/formation. In addition, these nuclei show reduced Polo-like kinase-1/2 (PLK-1/2)-dependent phosphorylation of SYP-4, a synaptonemal complex (SC) protein. Moreover, DEHP exposure leads to germline-specific change in the expression of prmt-5, which encodes for an arginine methyltransferase, and both increased SC length and altered CO designation levels on the X chromosome. Taken together, our data suggest a model by which impairment of a PLK-1/2-dependent negative feedback loop set in place to shut down meiotic DSBs, together with alterations in chromosome structure, contribute to the formation of an excess number of DSBs and altered CO designation levels, leading to genomic instability. Faithful chromosome segregation during meiosis, the specialized cell division program that produces haploid gametes (i.e. eggs and sperm) from a diploid organism, is key for successful sexual reproduction. Diethylhexyl phthalate (DEHP), a commonly used plasticizer found in personal care and household products, has emerged as an endocrine disruptor that exerts reprotoxicity in mammals. In this study, we provide mechanistic insight into the modes of action by which environmentally-relevant levels of DEHP and its metabolites impair female meiosis in the C. elegans germline. Exposure to DEHP leads to defects in late prophase I chromosome remodeling, altered chromosome morphology in oocytes at diakinesis, errors in chromosome segregation, and impaired embryogenesis. Underlying these defects are higher levels of DSBs, altered DSB repair, defects in crossover (CO) designation/formation, germline-specific change in prmt-5 gene expression and altered chromosome structure. We propose that DEHP exposure induces an excess number of DSBs by interfering with mechanisms set in place to turn off DSBs once CO designation is accomplished and by altering chromosome structure resulting in increased chromatin accessibility to the DSB machinery.
Collapse
Affiliation(s)
- Luciann Cuenca
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nara Shin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laura I. Lascarez-Lagunas
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marina Martinez-Garcia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Saravanapriah Nadarajan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rajendiran Karthikraj
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, United States of America
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, United States of America
- Department of Pediatrics, New York University School of Medicine, New York City, New York, United States of America
| | - Mónica P. Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Melatonin alleviates meiotic defects in fetal mouse oocytes induced by Di (2-ethylhexyl) phthalate in vitro. Aging (Albany NY) 2019; 10:4175-4187. [PMID: 30591620 PMCID: PMC6326675 DOI: 10.18632/aging.101715] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
Di (2-ethylhexyl) phthalate (DEHP), an estrogen-like compound that is a ubiquitous environmental contaminant, has been reported to adversely affect human and mammalian reproduction. Many studies have found that exposure to DEHP during pregnancy perturbs female germ cell meiosis and is detrimental to oogenesis. Previous studies have demonstrated that melatonin (MLT) is beneficial to reproductive endocrinology, oogenesis, and embryonic development as the ability to antioxidative and antiapoptotic. However, whether the meiotic defect of germ cells exposed to DEHP could be rescued by MLT is not clear. Here, we cultured 12.5 days post coitum (dpc) fetal mouse ovaries for 6 days, exposed them to 100 μM DEHP with or without 1 μM MLT in vitro.. The results showed that DEHP exposure induced the abnormal formation of DNA double-strand breaks (DSBs), and inhibited the repair of DSBs during meiotic recombination. In addition, we found defective oocytes were prone to undergo apoptosis. Notably, this defect could be remarkably ameliorated by the addition of MLT via a reduction of the levels of reactive oxygen species and an inhibition of apoptosis. In conclusion, our data revealed that MLT had a protective action against the meiotic deterioration of fetal oocytes induced by DEHP in the mouse in vitro.
Collapse
|
27
|
Tu Z, Mu X, Chen X, Geng Y, Zhang Y, Li Q, Gao R, Liu T, Wang Y, He J. Dibutyl phthalate exposure disrupts the progression of meiotic prophase I by interfering with homologous recombination in fetal mouse oocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:388-398. [PMID: 31158667 DOI: 10.1016/j.envpol.2019.05.107] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/05/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Dibutyl phthalate (DBP), one of the most widely used plasticizers, is a known environmental endocrine disruptor that impairs male and female fertility. In this study, oral administration of DBP was given to pregnant mice on 14.5 days post coitus (dpc) for 3 days; and additionally, DBP was added into the culture of 14.5 dpc fetal ovaries for 3 days. DBP exposure during gestation disturbed the progression of meiotic prophase I of mouse oocytes, specifically from the zygotene to pachytene stages. Meanwhile, the DBP-exposed pachytene oocytes showed increased homologous recombination sites and unrepaired DNA damage. Furthermore, DBP caused DNA damage by increasing oxidative stress, decreased the expression of multiple critical meiotic regulators, and consequently induced oocyte apoptosis. Moreover, the effect of DBP on meiosis I prophase involved estrogen receptors α and β. Collectively, these results demonstrated a set of meiotic defects in DBP-exposed fetal oocytes. As aberrations in homologous recombination can result in aneuploid gametes and embryos, this study provides new support for the deleterious effects of phthalates.
Collapse
Affiliation(s)
- Zhihan Tu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yan Zhang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qingying Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Taihang Liu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
28
|
Ge W, Li L, Dyce PW, De Felici M, Shen W. Establishment and depletion of the ovarian reserve: physiology and impact of environmental chemicals. Cell Mol Life Sci 2019; 76:1729-1746. [PMID: 30810760 PMCID: PMC11105173 DOI: 10.1007/s00018-019-03028-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 01/09/2023]
Abstract
The reproductive life span in women starts at puberty and ends at menopause, following the exhaustion of the follicle stockpile termed the ovarian reserve. Increasing data from experimental animal models and epidemiological studies indicate that exposure to a number of ubiquitously distributed reproductively toxic environmental chemicals (RTECs) can contribute to earlier menopause and even premature ovarian failure. However, the causative relationship between environmental chemical exposure and earlier menopause in women remains poorly understood. The present work, is an attempt to review the current evidence regarding the effects of RTECs on the main ovarian activities in mammals, focusing on how such compounds can affect the ovarian reserve at any stages of ovarian development. We found that in rodents, strong evidence exists that in utero, neonatal, prepubescent and even adult exposure to RTECs leads to impaired functioning of the ovary and a shortening of the reproductive lifespan. Regarding human, data from cross-sectional surveys suggest that human exposure to certain environmental chemicals can compromise a woman's reproductive health and in some cases, correlate with earlier menopause. In conclusion, evidences exist that exposure to RTECs can compromise a woman's reproductive health. However, human exposures may date back to the developmental stage, while the adverse effects are usually diagnosed decades later, thus making it difficult to determine the association between RTECs exposure and human reproductive health. Therefore, epidemiological surveys and more experimental investigation on humans, or alternatively primates, are needed to determine the direct and indirect effects caused by RTECs exposure on the ovary function, and to characterize their action mechanisms.
Collapse
Affiliation(s)
- Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
29
|
Rattan S, Brehm E, Gao L, Flaws JA. Di(2-Ethylhexyl) Phthalate Exposure During Prenatal Development Causes Adverse Transgenerational Effects on Female Fertility in Mice. Toxicol Sci 2019; 163:420-429. [PMID: 29471507 DOI: 10.1093/toxsci/kfy042] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant and endocrine disrupting chemical, but little is known about its effects on female reproduction. Thus, we tested the hypothesis that prenatal exposure to DEHP accelerates the onset of puberty, disrupts estrous cyclicity, disrupts birth outcomes, and reduces fertility in the F1, F2, and F3 generations of female mice. Pregnant CD-1 mice were orally dosed with corn oil (vehicle control) or DEHP (20 and 200 µg/kg/day and 500 and 750 mg/kg/day) from gestation day 10.5 until birth. F1 females were mated with untreated males to obtain the F2 generation. F2 females were mated with untreated males to produce the F3 generation. In all generations, the onset of puberty, estrous cyclicity, select birth outcomes, and fertility-related indices were evaluated. In the F1 generation, prenatal DEHP exposure (200 µg/kg/day) accelerated the onset of puberty, it (200 µg and 500 mg/kg/day) disrupted estrous cyclicity, and it (20 and 200 µg/kg/day) decreased fertility-related indices. In the F2 generation, ancestral DEHP exposure (500 mg/kg/day) accelerated the onset of puberty, it (20 and 200 µg/kg/day) disrupted estrous cyclicity, it (20 µg and 500 mg/kg/day) increased litter size, and it (500 mg/kg/day) decreased fertility-related indices. In the F3 generation, ancestral DEHP exposure (20, 200 µg, and 500 mg/kg/day) accelerated the onset of puberty, it (20 µg/kg/day) disrupted estrous cyclicity, and it (750 mg/kg/day) decreased female pup anogenital index. Collectively, these data indicate that prenatal DEHP exposure causes female reproductive problems in a multigenerational and transgenerational manner.
Collapse
Affiliation(s)
- Saniya Rattan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Liying Gao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| |
Collapse
|
30
|
Zhang Y, Mu X, Gao R, Geng Y, Liu X, Chen X, Wang Y, Ding Y, Wang Y, He J. Foetal-neonatal exposure of Di (2-ethylhexyl) phthalate disrupts ovarian development in mice by inducing autophagy. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:101-112. [PMID: 29990796 DOI: 10.1016/j.jhazmat.2018.06.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 05/21/2023]
Abstract
The female reproductive lifespan is largely determined by the size of the primordial follicle pool, which is established early in life. We previously reported that Di (2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor and a widely-spreading plasticizer, impairs primordial folliculogenesis. In the present study, we found DEHP significantly altered the number and sex ratio of the offspring of neonatal-exposed mice. Furthermore, by a neonatal exposure model and an ovary culture model, it showed that DEHP activated autophagy in the ovary, with increased autophagy-related gene expression and recognizable autophagosomes, while inhibition of autophagy by 3-MA attenuated the adverse impact of DEHP on primordial folliculogenesis. Moreover, key components of AMPK-SKP2-CARM1 signalling were up-regulated by DEHP in the ovary, and AMPK inhibitor Compound C reduced autophagy-related gene expression and partially recovered primordial follicle assembly. Collectively, this study demonstrates that DEHP induces autophagy by activating AMPK-SKP2-CARM1 signalling in mice perinatal ovaries, which results in disrupted primordial folliculogenesis and reduced female fertility.
Collapse
Affiliation(s)
- Yan Zhang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xinyi Mu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuheng Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
31
|
Zhang T, Zhou Y, Li L, Zhao Y, De Felici M, Reiter RJ, Shen W. Melatonin protects prepuberal testis from deleterious effects of bisphenol A or diethylhexyl phthalate by preserving H3K9 methylation. J Pineal Res 2018; 65:e12497. [PMID: 29655234 DOI: 10.1111/jpi.12497] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/30/2018] [Indexed: 12/13/2022]
Abstract
A growing number of couples experience fertility issues with almost half being due to malefactors. The exposure to toxic environmental contaminants, such as endocrine disruptors (EDs), has been shown to negatively affect male fertility. EDs are present in the environment, and exposure to these toxins results in the failure of spermatogenesis. The deleterious effects of EDs on spermatogenesis have been well documented, whereas improvement of infertility associated with spermatogenesis defects remains a great challenge. Herein, we report that in vitro exposure of prepuberal mouse testes to two well-known endocrine disruptors (EDs), bisphenol A (BPA) or diethylhexyl phthalate (DEHP), impairs spermatogenesis with perturbing self-renewal, spermatogonia activity, and meiosis. Evidence indicates that such effects are likely due, at least in part, to decreased G9a-dependent H3K9 di-methylation. Of note, we found that melatonin (MLT) protected the testis from the negative ED impacts with preserving spermatogonia stem and meiotic cells, along with maintaining normal H3K9 di-methylation in these cells. Taken together, this work documents that BPA and EDHP adversely affect prepuberal spermatogenesis and perturb crucial epigenetic activities in male germ cells and highlight the protective ability of MLT.
Collapse
Affiliation(s)
- Teng Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yang Zhou
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong Zhao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX, USA
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
32
|
Du YY, Guo N, Wang YX, Hua X, Deng TR, Teng XM, Yao YC, Li YF. Urinary phthalate metabolites in relation to serum anti-Müllerian hormone and inhibin B levels among women from a fertility center: a retrospective analysis. Reprod Health 2018; 15:33. [PMID: 29471860 PMCID: PMC5824533 DOI: 10.1186/s12978-018-0469-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Background Phthalates, a class of endocrine disruptors, have been demonstrated to accelerate loss of ovarian follicle pool via disrupting folliculogenesis, and lead to diminished ovarian reserve. However, human data are limited. Here, we aimed to examine whether urinary phthalate metabolites are correlated with markers of ovarian reserve among women attending a fertility clinic. Methods We measured eight phthalate metabolites in urine samples collected from 415 women seeking infertility treatment at the Reproductive Medicine Center of Tongji Hospital, Wuhan, China. Data on measures of ovarian reserve, as indicated by serum anti-Müllerian hormone (AMH) and inhibin B (INHB) levels, were retrieved retrospectively through electronic medical charts. Multivariate linear models were performed to estimate the associations of urinary phthalate metabolites and serum AMH and INHB. We further explored the potential nonlinearity of the relationships with restricted cubic spline analysis. Results Overall, we found largely null associations between urinary phthalate metabolites and serum AMH. The multivariable adjusted differences in serum INHB levels comparing the highest quartile of urinary MEHP to the lowest were − 18.29% (95% CI: − 31.89%, − 1.98%; P-trend = 0.04). Women in the second to fourth quartiles of MEOHP had a significant decrease of − 23.74% (95% CI: −35.85%, − 9.24%), − 19.91% (95% CI: −33.30%, − 3.82%) and − 20.23% (95% CI: −34.43%, − 2.96%), respectively, in INHB levels compared to the first quartile. In the spline analysis, we identified a nonlinear relationship between MEOHP exposure and serum INHB. Conclusions We provided evidence for a negative association between urinary concentrations of certain phthalate metabolites and serum INHB levels, suggesting an adverse effect of phthalates exposure on growing antral follicles. Whether phthalates exposure at environmentally level will pose a risk for ovarian reserve needs further investigation. Electronic supplementary material The online version of this article (10.1186/s12978-018-0469-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yao-Yao Du
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei, People's Republic of China
| | - Na Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei, People's Republic of China
| | - Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiang Hua
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei, People's Republic of China
| | - Tao-Ran Deng
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei, People's Republic of China
| | - Xue-Mei Teng
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei, People's Republic of China
| | - Yang-Cheng Yao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei, People's Republic of China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
33
|
Di (2-ethylhexyl) phthalate exposure impairs meiotic progression and DNA damage repair in fetal mouse oocytes in vitro. Cell Death Dis 2017; 8:e2966. [PMID: 28771232 PMCID: PMC5596541 DOI: 10.1038/cddis.2017.350] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/26/2017] [Accepted: 07/02/2017] [Indexed: 12/03/2022]
Abstract
Di (2-ethylhexyl) phthalate (DEHP), is the most common member of the class of phthalates that are used as plasticizers and have become common environmental contaminants. A number of studies have shown that DEHP exposure impacts reproductive health in both male and female mammals by acting as an estrogen analog. Here, we investigated the effects of DEHP on meiotic progression of fetal mouse oocytes by using an in vitro model of ovarian tissue culture. The results showed that 10 or 100 μM DEHP exposure inhibited the progression of oocytes throughout meiotic prophase I, specifically from the pachytene to diplotene stages. DEHP possibly impairs the ability to repair DNA double-strand breaks induced by meiotic recombination and as a consequence activates a pachytene check point. At later stages, such defects led to an increased number of oocytes showing apoptotic markers (TUNEL staining, expression of pro-apoptotic genes), resulting in reduced oocyte survival, gap junctions, and follicle assembly in the ovarian tissues. Microarray analysis of ovarian tissues exposed to DEHP showed altered expression of several genes including some involved in apoptosis and gonad development. The expression changes of some genes clustered in cell-cell communication and signal transduction, along with plasma membrane, extracellular matrix and ion channel function classes, were dependent on the DEHP concentration. Together, these results bring new support to the notion that exposure to DEHP during gestation might exert deleterious effects on ovary development, perturbing germ cell meiosis and the expression of genes involved in a wide range of biological processes including ovary development.
Collapse
|
34
|
Johansson HKL, Svingen T, Fowler PA, Vinggaard AM, Boberg J. Environmental influences on ovarian dysgenesis - developmental windows sensitive to chemical exposures. Nat Rev Endocrinol 2017; 13:400-414. [PMID: 28450750 DOI: 10.1038/nrendo.2017.36] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A woman's reproductive health and ability to have children directly affect numerous aspects of her life, from personal well-being and socioeconomic standing, to morbidity and lifespan. In turn, reproductive health depends on the development of correctly functioning ovaries, a process that starts early during fetal life. Early disruption to ovarian programming can have long-lasting consequences, potentially manifesting as disease much later in adulthood. A growing body of evidence suggests that exposure to chemicals early in life, including endocrine-disrupting chemicals, can cause a range of disorders later in life, such as those described in the ovarian dysgenesis syndrome hypothesis. In this Review, we discuss four specific time windows during which the ovary is particularly sensitive to disruption by exogenous insults: gonadal sex determination, meiotic division, follicle assembly and the first wave of follicle recruitment. To date, most evidence points towards the germ cell lineage being the most vulnerable to chemical exposure, particularly meiotic division and follicle assembly. Environmental chemicals and pharmaceuticals, such as bisphenols or mild analgesics (including paracetamol), can also affect the somatic cell lineages. This Review summarizes our current knowledge pertaining to environmental chemicals and pharmaceuticals, and their potential contributions to the development of ovarian dysgenesis syndrome. We also highlight knowledge gaps that need addressing to safeguard female reproductive health.
Collapse
Affiliation(s)
- Hanna Katarina Lilith Johansson
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
35
|
Zhou C, Gao L, Flaws JA. Exposure to an Environmentally Relevant Phthalate Mixture Causes Transgenerational Effects on Female Reproduction in Mice. Endocrinology 2017; 158:1739-1754. [PMID: 28368545 PMCID: PMC5460945 DOI: 10.1210/en.2017-00100] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/17/2017] [Indexed: 02/08/2023]
Abstract
Phthalates are used in consumer products and are known endocrine-disrupting chemicals. However, limited information is available on the effects of phthalate mixtures on female reproduction. Previously, we developed a phthalate mixture made of 35% diethyl phthalate, 21% di(2-ethylhexyl) phthalate, 15% dibutyl phthalate, 15% di-isononyl phthalate, 8% di-isobutyl phthalate, and 5% benzylbutyl phthalate that mimics human exposure. We tested the effects of prenatal exposure to this mixture on reproductive outcomes in first-filial-generation (F1) female mice and found that it impaired reproductive outcomes. However, the impact of this exposure on second-filial-generation (F2) and third-filial-generation (F3) females was unknown. Thus, we hypothesized that prenatal exposure to the phthalate mixture induces multigenerational and transgenerational effects on female reproduction. Pregnant CD-1 dams were orally dosed with vehicle (tocopherol-stripped corn oil) or a phthalate mixture (20 and 200 µg/kg/d, 200 and 500 mg/kg/d) daily from gestational day 10 to birth. Adult F1 females born to these dams were used to generate the F2 generation and adult F2 females born to F1 females were used to generate the F3 generation. F2 and F3 females were subjected to tissue collections and fertility tests. Prenatal phthalate mixture exposure increased uterine weight, anogenital distance, and body weight; induced cystic ovaries; and caused fertility complications in the F2 generation. It also increased uterine weight, decreased anogenital distance, and caused fertility complications in the F3 generation. These data suggest that prenatal exposure to the phthalate mixture induces multigenerational and transgenerational effects on female reproduction.
Collapse
Affiliation(s)
- Changqing Zhou
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| | - Liying Gao
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| |
Collapse
|
36
|
Liu KH, Sun XF, Feng YZ, Cheng SF, Li B, Li YP, Shen W, Li L. The impact of Zearalenone on the meiotic progression and primordial follicle assembly during early oogenesis. Toxicol Appl Pharmacol 2017; 329:9-17. [PMID: 28552778 DOI: 10.1016/j.taap.2017.05.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/28/2017] [Accepted: 05/22/2017] [Indexed: 01/24/2023]
Abstract
Zearalenone (ZEA) is a mycotoxin produced by fusarium graminearum. It can cause abnormal reproductive function by acting as an environmental estrogen. Research has traditionally focused on acute and chronic injury on mammalian reproductive capacity after ZEA treatment. Little research has been done studying the effects of ZEA exposure on early oogenesis. In this study, we investigate the effects of ZEA exposure on meiotic entry, DNA double-strand breaks (DSBs), and primordial follicle assembly during murine early oogenesis. The results show that ZEA exposure significantly decreased the percentage of diplotene stage germ cells, and made more germ cells remain at zygotene or pachytene stages. Moreover, the mRNA expression level of meiosis-related genes was significantly reduced after ZEA treatment. ZEA exposure significantly increased DNA-DSBs at the diplotene stage. Meanwhile, DNA damage repair genes such as RAD51 and BRCA1 were activated. Furthermore, maternal exposure to ZEA significantly decreased the number of primordial follicles in newborn mouse ovaries. In conclusion, ZEA exposure impairs mouse female germ cell meiotic progression, DNA-DSBs, and primordial follicle assembly.
Collapse
Affiliation(s)
- Ke-Han Liu
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan-Zhong Feng
- Institute of Animal Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Shun-Feng Cheng
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bo Li
- Chengguo Station of Animal Husbandry and Veterinary, Laizhou 261437, China
| | - Ya-Peng Li
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
37
|
Liu H, Ren C, Liu W, Jiang X, Wang L, Zhu B, Jia W, Lin J, Tan J, Liu X. Embryotoxicity estimation of commonly used compounds with embryonic stem cell test. Mol Med Rep 2017; 16:263-271. [PMID: 28487962 PMCID: PMC5482095 DOI: 10.3892/mmr.2017.6552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 02/27/2017] [Indexed: 01/05/2023] Open
Abstract
The embryonic stem cell test (EST), an alternative model to animal studies, is a reliable and scientifically validated in vitro system for testing embryotoxicity. In contrast to most in vivo animal tests, two permanent cell lines, murine fibroblasts (BALB/c-3T3 cells) and murine embryonic stem cells (mES-D3 cells), are used in EST instead of animals in standard tests of toxicity. The embryotoxic potential of compounds (non, weak or strong embryotoxicity) may be obtained with a biostatistics-based prediction model and calculated from three different experimental endpoint values: The potency to inhibit growth of i) BALB/c-3T3 cells and ii) mES-D3 cells (IC503T3 and IC50ES) as presented using a cell cytotoxicity assay, and iii) the potency to inhibit differentiation of mES-D3 cells into contracting cardiomyocytes (ID50 D3) as demonstrated in a mES-D3 cell differentiation assay. In the present study, a model of EST with mES-D3 cells and BALB/c-3T3 cells was established, according to the standard EST system of the EU Center for the Validation of Alternative Methods, and verified it with 5-fluorouracil (strong embryotoxicity) as a positive control and penicillin G (non-embryotoxic) as a negative control. In addition, the authors further assessed the embryotoxicity of four compounds (eugenol, carnosic acid, procyanidin and dioctyl phthalate) with this model. The embryotoxic potentials of the four compounds were successfully classified by the EST system. Eugenol exhibited strong embryotoxicity, carnosic acid and dioctyl phthalate exhibited weak embryotoxicity, while procyanidin exhibited non-embryotoxicity.
Collapse
Affiliation(s)
- Hui Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, P.R. China
| | - Caiping Ren
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, P.R. China
| | - Weidong Liu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lei Wang
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, P.R. China
| | - Bin Zhu
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, P.R. China
| | - Wei Jia
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jianxing Lin
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiuying Liu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
38
|
Vabre P, Gatimel N, Moreau J, Gayrard V, Picard-Hagen N, Parinaud J, Leandri RD. Environmental pollutants, a possible etiology for premature ovarian insufficiency: a narrative review of animal and human data. Environ Health 2017; 16:37. [PMID: 28388912 PMCID: PMC5384040 DOI: 10.1186/s12940-017-0242-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/22/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Because only 25% of cases of premature ovarian insufficiency (POI) have a known etiology, the aim of this review was to summarize the associations and mechanisms of the impact of the environment on this pathology. Eligible studies were selected from an electronic literature search from the PUBMED database from January 2000 to February 2016 and associated references in published studies. Search terms included ovary, follicle, oocyte, endocrine disruptor, environmental exposure, occupational exposure, environmental contaminant, pesticide, polyaromatic hydrocarbon, polychlorinated biphenyl PCB, phenol, bisphenol, flame retardant, phthalate, dioxin, phytoestrogen, tobacco, smoke, cigarette, cosmetic, xenobiotic. The literature search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We have included the human and animal studies corresponding to the terms and published in English. We have excluded articles that included results that did not concern ovarian pathology and those focused on ovarian cancer, polycystic ovary syndrome, endometriosis or precocious puberty. We have also excluded genetic, auto-immune or iatrogenic causes from our analysis. Finally, we have excluded animal data that does not concern mammals and studies based on results from in vitro culture. Data have been grouped according to the studied pollutants in order to synthetize their impact on follicular development and follicular atresia and the molecular pathways involved. Ninety-seven studies appeared to be eligible and were included in the present study, even though few directly address POI. Phthalates, bisphenol A, pesticides and tobacco were the most reported substances having a negative impact on ovarian function with an increased follicular depletion leading to an earlier age of menopause onset. These effects were found when exposure occured at different times throughout the lifetime from the prenatal to the adult period, possibly due to different mechanisms. The main mechanism seemed to be an increase in atresia of pre-antral follicles. CONCLUSION Environmental pollutants are probably a cause of POI. Health officials and the general public must be aware of this environmental effect in order to implement individual and global preventive actions.
Collapse
Affiliation(s)
- Pauline Vabre
- Médecine de la Reproduction, CHU de Toulouse, Hôpital Paule de Viguier, 330 avenue de Grande Bretagne, F-31059 Toulouse Cedex, France
| | - Nicolas Gatimel
- Médecine de la Reproduction, CHU de Toulouse, Hôpital Paule de Viguier, 330 avenue de Grande Bretagne, F-31059 Toulouse Cedex, France
- Université de Toulouse; UPS; Groupe de Recherche en Fertilité Humaine (EA 3694, Human Fertility Research Group), F-31059 Toulouse, France
| | - Jessika Moreau
- Médecine de la Reproduction, CHU de Toulouse, Hôpital Paule de Viguier, 330 avenue de Grande Bretagne, F-31059 Toulouse Cedex, France
| | - Véronique Gayrard
- Institut National de Recherche Agronomique, Unité Mixte de Recherche 1331, Toxalim, Research Center in Food Toxicology, F-31027 Toulouse, France
- Université de Toulouse, Institut National Polytechnique de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Ecole d’Ingénieurs de Purpan, Université Paul Sabatier, F-31076 Toulouse, France
| | - Nicole Picard-Hagen
- Institut National de Recherche Agronomique, Unité Mixte de Recherche 1331, Toxalim, Research Center in Food Toxicology, F-31027 Toulouse, France
- Université de Toulouse, Institut National Polytechnique de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Ecole d’Ingénieurs de Purpan, Université Paul Sabatier, F-31076 Toulouse, France
| | - Jean Parinaud
- Médecine de la Reproduction, CHU de Toulouse, Hôpital Paule de Viguier, 330 avenue de Grande Bretagne, F-31059 Toulouse Cedex, France
- Université de Toulouse; UPS; Groupe de Recherche en Fertilité Humaine (EA 3694, Human Fertility Research Group), F-31059 Toulouse, France
| | - Roger D. Leandri
- Médecine de la Reproduction, CHU de Toulouse, Hôpital Paule de Viguier, 330 avenue de Grande Bretagne, F-31059 Toulouse Cedex, France
- Université de Toulouse; UPS; Groupe de Recherche en Fertilité Humaine (EA 3694, Human Fertility Research Group), F-31059 Toulouse, France
| |
Collapse
|
39
|
Zhang T, Shen W, De Felici M, Zhang XF. Di(2-ethylhexyl)phthalate: Adverse effects on folliculogenesis that cannot be neglected. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:579-588. [PMID: 27530864 DOI: 10.1002/em.22037] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
Primordial follicle formation and the subsequent transition of follicles through primary and secondary stages constitute crucial events of oogenesis. In particular, in mammals, defects in the processes that precede and accompany the formation of the primordial follicle pool can affect the size of this population significantly, while alterations in follicle activation, growth and maturation can result in premature depletion of the follicle reserve or cause follicle arrest at immature stages. Over the last decade, in vitro and in vivo approaches have been used to provide evidence that exposure to di(2-ethylhexyl)phthalate(DEHP), the most widely used plasticizer, has a deleterious effect on various stages of folliculogenesis in rodents. There is growing concern, supported by epidemiological and experimental data, that DEHP may have similar effects in women. This article reviews the evidence, with particular reference to our own findings, that DEHP may actually exert a variety of adverse effects on mammalian folliculogenesis from early to final stages of oogenesis, including altered development of the primordial germ cells, impaired fetal oocyte survival and meiotic progression, reduced oocyte nest breakdown, acceleration of primordial follicle activation, altered follicle steroidogenesis and increased follicle atresia. These effects can cause serious complications for reproductive and nonreproductive women's health. In addition, emerging data indicate that phthalates, including DEHP, may cause subtle epigenetic changes in germ cells that can be transmitted to subsequent generations, with potential negative effects on human health. Environ. Mol. Mutagen. 57:589-604, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Teng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata,", Rome, 00133, Italy.
| | - Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
40
|
Zhao Y, Chen J, Wang X, Song Q, Xu HH, Zhang YH. Third trimester phthalate exposure is associated with DNA methylation of growth-related genes in human placenta. Sci Rep 2016; 6:33449. [PMID: 27653773 PMCID: PMC5031987 DOI: 10.1038/srep33449] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022] Open
Abstract
Strong evidence implicates maternal phthalate exposure during pregnancy in contributing to adverse birth outcomes. Recent research suggests these effects might be mediated through the improper regulation of DNA methylation in offspring tissue. In this study, we examined associations between prenatal phthalate exposure and DNA methylation in human placenta. We recruited 181 mother-newborn pairs (80 fetal growth restriction newborns, 101 normal newborns) in Wenzhou, China and measured third trimester urinary phthalate metabolite concentrations and placental DNA methylation levels of IGF2 and AHRR. We found urinary concentrations of mono (2-ethyl-5- hydroxyhexyl) phthalate (MEHHP), and mono (2-ethyl-5-oxohexyl) phthalate (MEOHP) were significantly inversely associated with placental IGF2 DNA methylation. The associations were much more evident in fetal growth restriction (FGR) newborns than those in normal newborns. These findings suggest that changes in placental DNA methylation might be part of the underlying biological pathway between prenatal phthalate exposure and adverse fetal growth.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Jiao Chen
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Xiu Wang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Qi Song
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Hui-Hui Xu
- Shanghai Municipal Center for Disease Control &Prevention, Shanghai, China
| | - Yun-Hui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Lai FN, Liu JC, Li L, Ma JY, Liu XL, Liu YP, Zhang XF, Chen H, De Felici M, Dyce PW, Shen W. Di (2-ethylhexyl) phthalate impairs steroidogenesis in ovarian follicular cells of prepuberal mice. Arch Toxicol 2016; 91:1279-1292. [DOI: 10.1007/s00204-016-1790-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/05/2016] [Indexed: 11/30/2022]
|
42
|
Di (2-ethylhexyl) Phthalate Exposure Impairs Growth of Antral Follicle in Mice. PLoS One 2016; 11:e0148350. [PMID: 26845775 PMCID: PMC4741416 DOI: 10.1371/journal.pone.0148350] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a widely used plastic additive. As an environmental endocrine disruptor, it has been shown to be harmful to the mammalian reproductive system. Previous studies indicated that DEHP inhibited the development of mouse ovarian follicles. However, the mechanisms by which DEHP affects ovarian antral follicle development during the pre-puberty stage are poorly understand. Thus, we investigated the effects of direct DEHP exposure on antral follicle growth in pre-pubescent mice by use of intraperitoneal injection. Our results demonstrated that the percentage of large antral follicles was significantly reduced when mice were exposed to 20 or 40 μg/kg DEHP every 5 days from postnatal day 0 (0 dpp) to 15 dpp. In 20 dpp, we performed microarray of these ovaries. The microarray results indicated that mRNA levels of apoptosis related genes were increased. The mRNA levels of the apoptosis and cell proliferation (negative) related genes Apoe, Agt, Glo1 and Grina were increased after DEHP exposure. DEHP induced the differential gene expression of Hsp90ab1, Rhoa, Grina and Xdh which may play an important role in this process. In addition, TUNEL staining and immunofluorescence showed that DEHP exposure significantly increased the number of TUNEL, Caspase3 and γH2AX positive ovarian somatic cells within the mouse ovaries. Flow cytometer analyses of redox-sensitive probes showed that DEHP caused the accumulation of reactive oxygen species. Moreover, the mRNA expression of ovarian somatic cell antioxidative enzymes was down-regulated both in vivo and in vitro. In conclusion, our data here demonstrated that DEHP exposure induced oxidative stress and ovarian somatic cell apoptosis, and thus may impact antral follicle enlargement during the pre-pubertal stage in mice.
Collapse
|
43
|
Zhang XF, Park JH, Choi YJ, Kang MH, Gurunathan S, Kim JH. Silver nanoparticles cause complications in pregnant mice. Int J Nanomedicine 2015; 10:7057-71. [PMID: 26622177 PMCID: PMC4654536 DOI: 10.2147/ijn.s95694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Silver nanoparticles (AgNPs) have attracted much interest and have been used for antibacterial, antifungal, anticancer, and antiangiogenic applications because of their unique properties. The increased usage of AgNPs leads to a potential hazard to human health. However, the potential effects of AgNPs on animal models are not clear. This study was designed to investigate the potential impact of AgNPs on pregnant mice. Methods The synthesis of AgNPs was performed using culture extracts of Bacillus cereus. The synthesized AgNPs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. AgNPs were administrated into pregnant mice via intravenous infusion at 1.0 mg/kg doses at 6.5 days postcoitum (dpc). At 13.5, 15.5, and 17.5 dpc, the pregnant mice were euthanized, and the embryo and placenta were isolated. The meiotic status of oocytes was evaluated. DNA methylation studies were performed, and aberrant imprinting disrupted fetal, placental, and postnatal development. Quantitative real-time polymerase chain reaction analysis and Western blot were used to analyze various gene expressions. Results The synthesized AgNPs were uniformly distributed and were spherical in shape with an average size of 8 nm. AgNPs exposure increased the meiotic progression of female germ cells in the fetal mouse ovaries, and maternal AgNP exposure significantly disrupted imprinted gene expression in 15.5 dpc embryos and placentas, such as Ascl2, Snrpn, Kcnq1ot1, Peg3, Zac1, H19, Igf2r, and Igf2; DNA methylation studies revealed that AgNPs exposure significantly altered the methylation levels of differentially methylated regions of Zac1. Conclusion The results from this study indicated that early exposure to AgNPs has the potential to disrupt fetal and postnatal health through epigenetic changes in the embryo and abnormal development of the placenta. These results can contribute to research involved in the safe use of various biomedical applications of AgNPs and improves the understanding of the development of AgNPs in biomedical applications.
Collapse
Affiliation(s)
- Xi-Feng Zhang
- Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea ; College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Jung-Hyun Park
- Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Yun-Jung Choi
- Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Min-Hee Kang
- Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea
| | | | - Jin-Hoi Kim
- Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Pelosi E, Forabosco A, Schlessinger D. Genetics of the ovarian reserve. Front Genet 2015; 6:308. [PMID: 26528328 PMCID: PMC4606124 DOI: 10.3389/fgene.2015.00308] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/24/2015] [Indexed: 11/13/2022] Open
Abstract
Primordial follicles or non-growing follicles (NGFs) are the functional unit of reproduction, each comprising a single germ cell surrounded by supporting somatic cells. NGFs constitute the ovarian reserve (OR), prerequisite for germ cell ovulation and the continuation of the species. The dynamics of the reserve is determined by the number of NGFs formed and their complex subsequent fates. During the reproductive lifespan, the OR progressively diminishes due to follicle atresia as well as recruitment, maturation, and ovulation. The depletion of the OR is the major determining driver of menopause, which ensues when the number of primordial follicles falls below a threshold of ∼1,000. Therefore, genes and processes involved in follicle dynamics are particularly important to understand the process of menopause, both in the typical reproductive lifespan and in conditions like primary ovarian insufficiency, defined as menopause before age 40. Genes and their variants that affect the timing of menopause thereby provide candidates for diagnosis of and intervention in problems of reproductive lifespan. We review the current knowledge of processes and genes involved in the development of the OR and in the dynamics of ovarian follicles.
Collapse
Affiliation(s)
- Emanuele Pelosi
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - David Schlessinger
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
45
|
Rosenfeld CS. Bisphenol A and phthalate endocrine disruption of parental and social behaviors. Front Neurosci 2015; 9:57. [PMID: 25784850 PMCID: PMC4347611 DOI: 10.3389/fnins.2015.00057] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/09/2015] [Indexed: 11/24/2022] Open
Abstract
Perinatal exposure to endocrine disrupting chemicals (EDCs) can induce promiscuous neurobehavioral disturbances. Bisphenol A and phthalates are two widely prevalent and persistent EDCs reported to lead to such effects. Parental and social behaviors are especially vulnerable to endocrine disruption, as these traits are programmed by the organizational-activational effects of testosterone and estrogen. Exposure to BPA and other EDCs disrupts normal maternal care provided by rodents and non-human primates, such as nursing, time she spends hunched over and in the nest, and grooming her pups. Paternal care may also be affected by BPA. No long-term study has linked perinatal exposure to BPA or other EDC and later parental behavioral deficits in humans. The fact that the same brain regions and neural hormone substrates govern parental behaviors in animal models and humans suggests that this suite of behaviors may also be vulnerable in the latter. Social behaviors, such as communication, mate choice, pair bonding, social inquisitiveness and recognition, play behavior, social grooming, copulation, and aggression, are compromised in animal models exposed to BPA, phthalates, and other EDCs. Early contact to these chemicals is also correlated with maladaptive social behaviors in children. These behavioral disturbances may originate by altering the fetal or adult gonadal production of testosterone or estrogen, expression of ESR1, ESR2, and AR in the brain regions governing these behaviors, neuropeptide/protein hormone (oxytocin, vasopressin, and prolactin) and their cognate neural receptors, and/or through epimutations. Robust evidence exists for all of these EDC-induced changes. Concern also exists for transgenerational persistence of such neurobehavioral disruptions. In sum, evidence for social and parental deficits induced by BPA, phthalates, and related chemicals is strongly mounting, and such effects may ultimately compromise the overall social fitness of populations to come.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, Genetics Area Program, Biomedical Sciences, University of Missouri Columbia, MO, USA
| |
Collapse
|