1
|
Igonina T, Lebedeva D, Tsybko A, Rozhkova I, Babochkina T, Levinson A, Amstislavsky S. Chronic psychosocial stress affects insulin-like growth factor 1 and its receptors in mouse ovaries. Reprod Fertil Dev 2024; 36:RD24101. [PMID: 39466740 DOI: 10.1071/rd24101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Context Chronic psychosocial stress negatively affects folliculogenesis and oogenesis. Intraovarian mechanisms mediating these effects are poorly understood. Aims This work aimed to find out how chronic psychosocial stress affects ovarian IGF1 and its receptor (IGF1R), as well as Igf1 and Igf1r gene expression in cumulus-oocyte complexes (COCs). It also aimed to address possible protective effects of gonadotropin stimulation on IGF1 ovarian signalling. Methods Female CD1 mice experienced chronic psychosocial stress of 11-day isolation followed by overcrowding for 10days. To verify the model, blood corticosterone levels and the quality of oocytes were evaluated in stressed females. The levels of IGF1/IGF1R, blood IGF1 concentration, and expression of Igf1 /Igf1r in the ovaries were compared in stressed and unstressed females. Key results Psychosocial stress caused an elevation of corticosterone level, which was alleviated by gonadotropin treatment. The stressed mice showed a decreased IGF1 level in the ovaries and a decreased expression of Igf1 and Igf1r in COCs. In the unstressed females, gonadotropin injection decreased the expression of Igf1 and Igf1r ; in the stressed females, the same treatment increased Igf1r expression. Neither stress nor ovarian stimulation with gonadotropins affected the serum IGF1 level. Conclusions Psychosocial stress suppresses IGF1 signalling in the ovaries. Gonadotropin treatment modulates these effects differently in stressed and unstressed animals. Implications The results may have translational value for human reproduction. Ovarian IGF1 can be considered a candidate for further improvement of IVF results in women under conditions of chronic stress.
Collapse
Affiliation(s)
- Tatyana Igonina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Siberia, Russia
| | - Daria Lebedeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Siberia, Russia
| | - Anton Tsybko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Siberia, Russia
| | - Irina Rozhkova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Siberia, Russia
| | - Tatyana Babochkina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Siberia, Russia
| | - Alisa Levinson
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Siberia, Russia
| | - Sergei Amstislavsky
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Siberia, Russia
| |
Collapse
|
2
|
Auer KE, Kolbe T, Laschalt C, Rülicke T. Comparison of unilateral and bilateral embryo transfer in mice. Lab Anim 2023; 57:424-431. [PMID: 36734260 DOI: 10.1177/00236772221149844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Surgical embryo transfer in mice is a key technique in assisted reproduction and applied for different purposes in biomedical research. Due to its frequent application in rodent facilities across the world, further improvement of the procedure can substantially contribute to fulfil the principles of the 3Rs. Here, we investigated the effect of bilateral and unilateral left- or right-sided oviduct transfers on the success of embryo transfers. In total, we performed 223 embryo transfers (56 unilateral left, 56 unilateral right, 111 bilateral), in which we transferred 10-14 two-cell embryos each. We found that the type of transfer significantly influenced both the pregnancy rate of recipients and the survival rate of transferred embryos. Bilateral transfers yielded higher pregnancy and survival rates than left-sided unilateral transfers. Right-sided unilateral transfers yielded higher pregnancy rates than left-sided unilateral transfers and did not differ in embryo survival rates from bilateral transfers. We found no evidence that the number of transferred embryos affected the pregnancy rate. However, the number of born pups increased with the number of transferred embryos. In conclusion, unilateral embryo transfers into the right reproductive tract yield equally high pregnancy and embryo survival rates as bilateral transfers. Given that a second abdominal incision can be prevented and the time of surgery can be reduced, we recommend applying unilateral right-sided transfers, as this would reduce postoperative pain and lower the impact on recipients.
Collapse
Affiliation(s)
- Kerstin E Auer
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Austria
| | - Thomas Kolbe
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Austria
- Department IFA-Tulln, University of Natural Resources and Life Sciences, Austria
| | - Claudia Laschalt
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|
3
|
Kolbe T, Lassnig C, Poelzl A, Palme R, Auer KE, Rülicke T. Effect of Different Ambient Temperatures on Reproductive Outcome and Stress Level of Lactating Females in Two Mouse Strains. Animals (Basel) 2022; 12:ani12162141. [PMID: 36009730 PMCID: PMC9405067 DOI: 10.3390/ani12162141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The optimal temperature for laboratory mice has been under discussion for some time. Current standard temperature is 20 °C–24 °C but it has been suggested to elevate the standard to 30 °C, which is the thermoneutral zone for mice. In this study, the effect of different cage temperatures (20 °C, 25 °C, 30 °C) on reproduction and stress hormone metabolite excretion was evaluated in lactating females of two commonly used mouse strains. Pup loss was higher, and weights of mothers and pups were reduced at 30 °C compared to the lower temperatures. In addition, pups showed increased tail length at weaning under the high temperature (30 °C). There was no difference in stress hormone metabolite excretion in mice between temperature groups. We could not show any detrimental effects of the lower or higher cage temperature on stress hormone metabolite excretion, but found decreased reproductive outcome under the higher temperature. Abstract Ambient temperature is an important non-biotic environmental factor influencing immunological and oncological parameters in laboratory mice. It is under discussion which temperature is more appropriate and whether the commonly used room temperature in rodent facilities of about 21 °C represents a chronic cold stress or the 30 °C of the thermoneutral zone constitutes heat stress for the animals. In this study, we selected the physiological challenging period of lactation to investigate the influence of a cage temperature of 20 °C, 25 °C, and 30 °C, respectively, on reproductive performance and stress hormone levels in two frequently used mouse strains. We found that B6D2F1 hybrid mothers weaned more pups compared to C57BL/6N mothers, and that the number of weaned pups was reduced when mothers of both strains were kept at 30 °C. Furthermore, at 30 °C, mothers and pups showed reduced body weight at weaning and offspring had longer tails. Despite pronounced temperature effects on reproductive parameters, we did not find any temperature effects on adrenocortical activity in breeding and control mice. Independent of the ambient temperature, however, we found that females raising pups showed elevated levels of faecal corticosterone metabolites (FCMs) compared to controls. Peak levels of stress hormone metabolites were measured around birth and during the third week of lactation. Our results provide no evidence of an advantage for keeping lactating mice in ambient temperatures near the thermoneutral zone. In contrast, we found that a 30 °C cage temperature during lactation reduced body mass in females and their offspring and declined female reproductive performance.
Collapse
Affiliation(s)
- Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department IFA-Tulln, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
- Correspondence:
| | - Caroline Lassnig
- Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Andrea Poelzl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Kerstin E. Auer
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
4
|
3R measures in facilities for the production of genetically modified rodents. Lab Anim (NY) 2022; 51:162-177. [PMID: 35641635 DOI: 10.1038/s41684-022-00978-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 04/22/2022] [Indexed: 12/30/2022]
Abstract
Sociocultural changes in the human-animal relationship have led to increasing demands for animal welfare in biomedical research. The 3R concept is the basis for bringing this demand into practice: Replace animal experiments with alternatives where possible, Reduce the number of animals used to a scientifically justified minimum and Refine the procedure to minimize animal harm. The generation of gene-modified sentient animals such as mice and rats involves many steps that include various forms of manipulation. So far, no coherent analysis of the application of the 3Rs to gene manipulation has been performed. Here we provide guidelines from the Committee on Genetics and Breeding of Laboratory Animals of the German Society for Laboratory Animal Science to implement the 3Rs in every step during the generation of genetically modified animals. We provide recommendations for applying the 3Rs as well as success/intervention parameters for each step of the process, from experiment planning to choice of technology, harm-benefit analysis, husbandry conditions, management of genetically modified lines and actual procedures. We also discuss future challenges for animal welfare in the context of developing technologies. Taken together, we expect that our comprehensive analysis and our recommendations for the appropriate implementation of the 3Rs to technologies for genetic modifications of rodents will benefit scientists from a wide range of disciplines and will help to improve the welfare of a large number of laboratory animals worldwide.
Collapse
|
5
|
Mariotti FFN, Gonçalves BSM, Pimpão G, Mônico-Neto M, Antunes HKM, Viana MDB, Céspedes IC, Le Sueur-Maluf L. A single ovarian stimulation, as performed in assisted reproductive technologies, can modulate the anxiety-like behavior and neuronal activation in stress-related brain areas in rats. Horm Behav 2020; 124:104805. [PMID: 32531398 DOI: 10.1016/j.yhbeh.2020.104805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 10/24/2022]
Abstract
Infertility affects about 8 to 12% of couples of childbearing age around the world, and is recognized as a global public health issue by the WHO. From a psychosocial perspective, infertile individuals experience intense psychological distress, related to emotional disorders, which have repercussions on marital and social relationships. The symptoms persist even after seeking specialized treatment, such as assisted reproductive technologies (ART). While the stress impact of ART outcome has been comprehensively studied, the role of supraphysiological concentrations of gonadal hormones on stress response, remains to be elucidated. This study aimed to evaluate the effect of a single ovarian stimulation on the stress response in rats. To mimic the context of ART in rodents, female rats were submitted to the superovulation (150 UI/kg of PMSG and 75 UI/kg of hCG) and then to psychogenic stress (restraint stress for 30 min/day, repeated for three days). Anxiety-like behavior was evaluated in the elevated plus-maze, and neuronal activation in the stress-related brain areas assessed by Fos protein immunoreactivity. Corticosterone, estradiol, progesterone and corpora lutea were quantified. Data were analyzed using Generalized Linear Model (GzLM). Our findings indicate anxiolytic-like and protective effects of supraphysiological concentrations of gonadal hormones induced by a single ovarian stimulation on stress response. An activation of hypothalamus-pituitary-adrenal response inhibitory pathways, with participation of the prefrontal cortex, basomedial amygdala, lateral septum, medial preoptic area, dorsomedial and paraventricular hypothalamus, was detected.
Collapse
MESH Headings
- Animals
- Anti-Anxiety Agents/pharmacology
- Anxiety/metabolism
- Anxiety/physiopathology
- Anxiety/prevention & control
- Anxiety/psychology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Brain/drug effects
- Brain/pathology
- Brain/physiopathology
- Corticosterone/metabolism
- Female
- Fertility Agents, Female/pharmacology
- Neurons/physiology
- Neuroprotection/drug effects
- Neuroprotection/physiology
- Ovulation Induction
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/pathology
- Prefrontal Cortex/physiopathology
- Rats
- Rats, Wistar
- Reproductive Techniques, Assisted
- Restraint, Physical/adverse effects
- Restraint, Physical/psychology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
Collapse
Affiliation(s)
| | | | - Giovanna Pimpão
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Marcos Mônico-Neto
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil; Departmento de Psicobiologia, Universidade Federal de São Paulo, UNIFESP, 04024-002 São Paulo, SP, Brazil
| | | | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Isabel Cristina Céspedes
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Luciana Le Sueur-Maluf
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil.
| |
Collapse
|
6
|
Daddangadi A, Uppangala S, Kalthur G, Talevi R, Adiga SK. Germinal stage vitrification is superior to MII stage vitrification in prepubertal mouse oocytes. Cryobiology 2020; 93:49-55. [PMID: 32112808 DOI: 10.1016/j.cryobiol.2020.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/17/2023]
Abstract
This study investigated if in vitro maturation (IVM) before or after vitrification would be more successful for prepubertal oocytes. To mimic prepubertal conditions in an experimental setup, oocytes were collected from healthy 14, 21 and 28day old Swiss albino mice. The germinal vesicle (GV) stage oocytes and in vitro matured MII oocytes were subjected to vitrification-warming. Both structural (meiotic spindle morphology, mitochondrial integrity, cortical granules) and functional (sperm zona binding, fertilization) characteristics were assessed in oocytes after warming. This study demonstrated that IVM was more detrimental to prepubertal oocytes than to young adults. Further, vitrification of the IVM oocytes resulted in an increase in the number of abnormal meiotic spindles, a change in the cortical distribution pattern, a reduction in sperm zona binding and the fertilization rate. Importantly, oocyte integrity was better when prepubertal oocytes were vitrified before, rather than after, IVM. The above observations support GV stage vitrification for prepubertal oocytes requiring fertility preservation. Understanding the mechanisms behind the differing outcomes for oocytes from immature females will help in refining current protocol, thereby retaining the oocytes' maximum structural and functional integrity Further investigation is necessary to determine whether human prepubertal oocytes also behave in a similar way. It is to be noted here, with great emphasis, that a major limitation of this study is that the oocytes' abilities were tested only until fertilisation, as a consequence of which the study cannot reveal the developmental potentials of the embryos beyond fertilisation.
Collapse
Affiliation(s)
- Akshatha Daddangadi
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Shubhashree Uppangala
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Riccardo Talevi
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte S Angelo, Napoli, Italy
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, 576 104, India.
| |
Collapse
|
7
|
Ramos-Ibeas P, Heras S, Gómez-Redondo I, Planells B, Fernández-González R, Pericuesta E, Laguna-Barraza R, Pérez-Cerezales S, Gutiérrez-Adán A. Embryo responses to stress induced by assisted reproductive technologies. Mol Reprod Dev 2019; 86:1292-1306. [PMID: 30719806 DOI: 10.1002/mrd.23119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
Assisted reproductive technology (ART) has led to the birth of millions of babies. In cattle, thousands of embryos are produced annually. However, since the introduction and widespread use of ART, negative effects on embryos and offspring are starting to emerge. Knowledge so far, mostly provided by animal models, indicates that suboptimal conditions during ART can affect embryo viability and quality, and may induce embryonic stress responses. These stress responses take the form of severe gene expression alterations or modifications in critical epigenetic marks established during early developmental stages that can persist after birth. Unfortunately, while developmental plasticity allows the embryo to survive these stressful conditions, such insult may lead to adult health problems and to long-term effects on offspring that could be transmitted to subsequent generations. In this review, we describe how in mice, livestock, and humans, besides affecting the development of the embryo itself, ART stressors may also have significant repercussions on offspring health and physiology. Finally, we argue the case that better control of stressors during ART will help improve embryo quality and offspring health.
Collapse
Affiliation(s)
- Priscila Ramos-Ibeas
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Sonia Heras
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Isabel Gómez-Redondo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Benjamín Planells
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Raúl Fernández-González
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Ricardo Laguna-Barraza
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Serafín Pérez-Cerezales
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
8
|
Heykants M, Scherb H, Michel G, Mahabir E. Influence of polygamous versus monogamous mating on embryo production in four different strains of mice after superovulatory treatment. Theriogenology 2018; 114:85-94. [PMID: 29602136 DOI: 10.1016/j.theriogenology.2018.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/11/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
We determined the effect of monogamous or polygamous mating with 2 females on vaginal plug (VP) rate, embryo donors (ED), 2-cell embryo production, and male performance after superovulation of females aging 24d or 45-48d. C57BL/6NCrl (B6N), BALB/cAnCrl (BALB/cN), FVB/NCrl (FVB/N), and Crl:CD1(ICR) (CD-1) females received 5 IU eCG and 5 IU hCG (24d) or 7.5 IU eCG and 7.5 IU hCG (45-48d) 48 h apart. After the hCG injection, females were paired with males, which alternated weekly in monogamous or polygamous mating. Significant differences in the percentage of VP-positive females between monogamous and polygamous mating were observed for B6N (71% vs. 49%), FVB/N (77% vs. 51%), and CD-1 (90% vs. 67%) at 45-48d. BALB/cN and CD-1 showed higher VP rates than B6N and FVB/N. A significantly higher percentage of ED was found for monogamous than for polygamous mating for FVB/N (87% vs. 61%) at 24d and for B6N (91% vs. 53%) and CD-1 (90% vs. 68%) at 45-48d. In all strains of mice and in both age groups, no significant differences were observed in the number of intact 2-cells per VP-positive female, ED or treated female between monogamous and polygamous mating except in the B6N strain where monogamous mating resulted in a significantly higher number of intact 2-cell embryos per treated female than polygamous mating at both ages. The present results imply that polygamous mating can be implemented for 2-cell embryo production in all strains studied except for B6N when all females are euthanized. However, when only VP+ females are sacrificed polygamous mating can be employed for all 4 strains studied.
Collapse
Affiliation(s)
- Malte Heykants
- Comparative Medicine, Center for Molecular Medicine, University of Cologne (CMMC), Robert-Koch-Straße 21, 50931, Cologne, Germany
| | - Hagen Scherb
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Geert Michel
- FEM, Transgenic Technologies Charité, Berlin, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine, University of Cologne (CMMC), Robert-Koch-Straße 21, 50931, Cologne, Germany.
| |
Collapse
|
9
|
Kolbe T, Palme R, Tichy A, Rülicke T. Lifetime Dependent Variation of Stress Hormone Metabolites in Feces of Two Laboratory Mouse Strains. PLoS One 2015; 10:e0136112. [PMID: 26284365 PMCID: PMC4540567 DOI: 10.1371/journal.pone.0136112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/29/2015] [Indexed: 12/26/2022] Open
Abstract
Non-invasive measurement of stress hormone metabolites in feces has become routine practice for the evaluation of distress and pain in animal experiments. Since metabolism and excretion of glucocorticoids may be variable, awareness and adequate consideration of influencing factors are essential for accurate monitoring of adrenocortical activity. Reference values are usually provided by baselines compiled prior to the experiment and by age matched controls. The comparison of stress hormone levels between animals of different ages or between studies looking at hormone levels at the beginning and at the end of a long term study might be biased by age-related effects. In this study we analyzed fecal corticosterone metabolites (FCM) during the lifetime of untreated female mice of the strains C57BL/6NCrl and Crl:CD1. For this purpose feces for each individual mouse were collected every two months over a period of 24 hours, at intervals of four hours, until the age of 26 months. Results of the study revealed that age of the animals had a significant impact on the level and circadian rhythm of stress hormone metabolites. Furthermore, long-term observation of mice revealed a strain specific excretion profile of FCM influenced by strong seasonal variability.
Collapse
Affiliation(s)
- Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
- IFA-Tulln, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexander Tichy
- Bioinformatics and Biostatistics Platform, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|