1
|
Liu H, Zhang X, Hu Y, Zhao X. Association analysis of mitochondrial genome polymorphisms with backfat thickness in pigs. Anim Biotechnol 2023; 35:2272172. [PMID: 37966129 DOI: 10.1080/10495398.2023.2272172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Mitochondrial DNA (mtDNA) variations and associated effects on economic traits have been widely reported in farm animals, as these genetic polymorphisms can affect the efficiency of energy production and cell metabolism. In studies related to metabolism, the deposition of fat was highly correlated with mitochondria. However, the effect of mtDNA polymorphisms on porcine backfat thickness (BFT) remained unclear. In this study, 243 pigs were collected to analyse the relationship between BFT and mtDNA polymorphisms. There were considerable differences in BFT, ranging from 5 mm to 18 mm. MtDNA D-loop sequencing discovered 48 polymorphic sites. Association analysis revealed that 30 variations were associated with BFT (P < 0.05). The polymorphism m.794A > G showed the maximum difference in BFT between A and G carriers, which differed at ∼2.5 mm (P < 0.001). The 48 polymorphic sites generated 22 haplotypes (H1-H22), which clustered into 4 haplogroups (HG1-HG4). HG1 had a lower BFT value than other three haplogroups (P < 0.01), whereas H4 in HG1 exhibited the lowest BFT of all haplotypes analyzed (P < 0.01). The results of this study highlight an association between mtDNA polymorphisms and BFT, and suggest the potential application of mtDNA in pig molecular breeding practices.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xing Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; School of Life Science and Engineering, Foshan University, Foshan, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yaning Hu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Xingbo Zhao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Mardani P, Foroutanifar S, Abdolmohammadi A, Hajarian H. The ND1 and CYTB genes polymorphisms associated with in vitro early embryo development of Sanjabi sheep. Anim Biotechnol 2021:1-5. [PMID: 34928775 DOI: 10.1080/10495398.2021.2016431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aimed to investigate the association between polymorphisms of ND1 and CYTB genes and in vitro early embryo development of Sanjabi sheep. Blood and ovarian samples were collected from a local slaughterhouse. The cumulus-oocyte complexes with a diameter greater than 3 mm were aspirated from follicles, and in vitro maturation (IVM) and in vitro culture (IVC) rates of them were recorded. A respective 1200 bp and 980 bp fragments of ND1 and CYTB genes were genotyped using a modified single strand conformation polymorphism (SSCP) method. The results of this study revealed that four different patterns, named as A, B, C, and D were observed for both ND1 and CYTB genes. The ND1 gene polymorphisms had significant effects on the IVM and IVC rate (p < 0.05). The pattern C of the ND1 gene significantly increased the IVM rate compared to the patterns A, B and D. For the IVC, the highest and lowest means were related to the C and B patterns, respectively. The CYTB gene polymorphisms also had significant effects on IVC (p < 0.01), but the IVM did not affected (p = 0.07). Here, the pattern D had the highest and the pattern C had the lowest means for both IVM and IVC rates.
Collapse
Affiliation(s)
- Pejman Mardani
- Department of Animal Sciences, Razi University, Kermanshah, Iran
| | | | | | - Hadi Hajarian
- Department of Animal Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
3
|
Wang D, Yang L, Ning C, Liu JF, Zhao X. Breed-specific reference sequence optimized mapping accuracy of NGS analyses for pigs. BMC Genomics 2021; 22:736. [PMID: 34641784 PMCID: PMC8507312 DOI: 10.1186/s12864-021-08030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background Reference sequences play a vital role in next-generation sequencing (NGS), impacting mapping quality during genome analyses. However, reference genomes usually do not represent the full range of genetic diversity of a species as a result of geographical divergence and independent demographic events of different populations. For the mitochondrial genome (mitogenome), which occurs in high copy numbers in cells and is strictly maternally inherited, an optimal reference sequence has the potential to make mitogenome alignment both more accurate and more efficient. In this study, we used three different types of reference sequences for mitogenome mapping, i.e., the commonly used reference sequence (CU-ref), the breed-specific reference sequence (BS-ref) and the sample-specific reference sequence (SS-ref), respectively, and compared the accuracy of mitogenome alignment and SNP calling among them, for the purpose of proposing the optimal reference sequence for mitochondrial DNA (mtDNA) analyses of specific populations Results Four pigs, representing three different breeds, were high-throughput sequenced, subsequently mapping reads to the reference sequences mentioned above, resulting in a largest mapping ratio and a deepest coverage without increased running time when aligning reads to a BS-ref. Next, single nucleotide polymorphism (SNP) calling was carried out by 18 detection strategies with the three tools SAMtools, VarScan and GATK with different parameters, using the bam results mapping to BS-ref. The results showed that all eighteen strategies achieved the same high specificity and sensitivity, which suggested a high accuracy of mitogenome alignment by the BS-ref because of a low requirement for SNP calling tools and parameter choices. Conclusions This study showed that different reference sequences representing different genetic relationships to sample reads influenced mitogenome alignment, with the breed-specific reference sequences being optimal for mitogenome analyses, which provides a refined processing perspective for NGS data. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08030-1.
Collapse
Affiliation(s)
- Dan Wang
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Liu Yang
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Ning
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xingbo Zhao
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Teymouri F, Foroutanifar S, Abdolmohammadi A, Hajarian H. The relationship between mitochondrial ND5 gene polymorphisms and in vitro embryo production in Sanjabi sheep. ZYGOTE 2021; 30:1-3. [PMID: 34588087 DOI: 10.1017/s096719942100071x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of this study was to investigate mitochondrial ND5 gene polymorphisms and their relationship with in vitro maturation (IVM) and in vitro culture (IVC) of Sanjabi sheep. Blood and ovarian samples of adult ewes were obtained from a local slaughterhouse. For each ovarian sample, cumulus-oocyte complexes larger than 3 mm in diameter were aspirated from follicles, and their IVM and IVC rates were recorded. A 666-bp fragment of the ND5 gene was amplified using the polymerase chain reaction. The samples were genotyped using a modified single-stranded conformation polymorphism (SSCP) method, and an association study was conducted with IVM and IVC rates. Six different SSCP patterns, designated A, B, C, D, E and F with respective frequencies of 8, 47, 4, 4, 32 and 5%, respectively, were observed. According to the results of association analysis, there was no significant association between the ND1 gene polymorphisms and the IVM and IVC rates (P > 0.05).
Collapse
Affiliation(s)
| | | | | | - Hadi Hajarian
- Department of Animal Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
5
|
Liu H, Wang J, Wang D, Kong M, Ning C, Zhang X, Xiao J, Zhang X, Liu J, Zhao X. Cybrid Model Supports Mitochondrial Genetic Effect on Pig Litter Size. Front Genet 2020; 11:579382. [PMID: 33384712 PMCID: PMC7770168 DOI: 10.3389/fgene.2020.579382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
In pigs, mitochondrial DNA (mtDNA) polymorphism and the correlation to reproductive performance across breeds and individuals have been largely reported, however, experimental proof has never been provided. In this study, we analyzed 807 sows for correlation of total number born (TNB) and mitotype, which presented the maximum of 1.73 piglets for mtDNA contribution. Cybrid models representing different mitotypes were generated for identification of the mtDNA effect. Results indicated significant differences on cellular and molecular characteristics among cybrids, including energy metabolic traits, mtDNA copy numbers and transcriptions, mRNA and protein expressions on mitochondrial biogenesis genes and reproduction-related genes. Referring to mitotypes, the cybrids with prolific mitotypes presented significantly higher oxygen consumption rate (OCR) productions, mtDNA transcriptions and copy numbers than those with common mitotypes, while both mRNA and protein expressions of PPARA, TFAM, ER1, ER2, and ESRRG in prolific cybrids were significantly higher than those with common mitotypes. Cybrid models reflected the mtDNA effect on pig litter size, suggesting the potential application of mtDNA polymorphism in pig selection and breeding practices.
Collapse
Affiliation(s)
- Hao Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Wenshang Professor Workstation of China Agricultural University, Jining, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
| | - Dan Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Minghua Kong
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Ning
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xing Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Wenshang Professor Workstation of China Agricultural University, Jining, China
| | - Jinlong Xiao
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Wenshang Professor Workstation of China Agricultural University, Jining, China
| | - Xin Zhang
- Wenshang Professor Workstation of China Agricultural University, Jining, China.,Jining Animal Husbandry Station, Jining, China
| | - Jianfeng Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xingbo Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Wenshang Professor Workstation of China Agricultural University, Jining, China
| |
Collapse
|
6
|
Identifying Pig Mitochondrial TSS: Structure and Functional Features. Mitochondrion 2019; 49:19-24. [PMID: 31279875 DOI: 10.1016/j.mito.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/12/2019] [Accepted: 07/03/2019] [Indexed: 11/23/2022]
Abstract
The transcription start sites (TSSs) of porcine mitochondrial genome were firstly identified in this study, including heavy-strand promoter 1 and 2 (HSP1 and HSP2) harbored at nt 903 and nt 1369 in H strand, respectively, and light-strand promoter (LSP) located at nt 166 in L strand. HSP1 structure and expression features were investigated by analyzing mtDNA copy number, expression of 11 nucleoplasmic genes, mtDNA methylation levels, and gene expression levels of methyl-modifying enzymes, DNMT1 and TETs. The mtDNA copy number presented large differences among 15 organs/tissues, and the largest disparity, nearly 17 times, was found between pancreas (~1890 relative copy numbers) and spleen (~110 relative copy numbers, P < .01). The expression levels of HSP1 strand in these organs/tissues presented similar trends with mtDNA copy number (P < .05), and all of 11 nucleoplasmic genes (POLG, POLRMT, TERT, TFAM, TFB1M, TFB2M, NRF-1, PPARα, ESRRA, SP1 and TUFM) detected in this study displayed significantly higher expression values in pancreas than those in spleen (P < .05). Besides, bisulfite sequencing showed that all cytosine residues in the detected region (D-loop) existed methylation with different levels, and the methylation level in spleen was significantly higher than that in pancreas (P < .05). Unlike nuclear DNA, the tested region contained four types of methylation mode (CA, CC, CT, and CG). In addition, the expression of TET1 in pancreas was significantly higher than that in spleen (P < .05). Collectively, our findings indicated that mtDNA TSSs had correlation to mtDNA copy number, expression of nucleoplasmic gene, and mtDNA methylation level.
Collapse
|
7
|
Transcriptomic Pattern of Genes Regulating Protein Response and Status of Mitochondrial Activity Are Related to Oocyte Maturational Competence-A Transcriptomic Study. Int J Mol Sci 2019; 20:ijms20092238. [PMID: 31067669 PMCID: PMC6539048 DOI: 10.3390/ijms20092238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 01/22/2023] Open
Abstract
This paper aims to identify and describe new genetic markers involved in the processes of protein expression and modification reflected in the change of mitochondrial activity before and after in vitro maturation of the oocyte. Porcine oocytes collected from the ovaries of slaughtered landrace gilts were subjected to the process of in vitro maturation. Transcriptomic changes in the expression profile of oocyte genes involved in response to hypoxia, the transmembrane protein receptor serine threonine kinase signaling pathway, the “transforming growth factor β receptor signaling pathway”, “response to protein stimulus”, and “response to organic substance” were investigated using microarrays. The expression values of these genes in oocytes was analyzed before (immature) and after (mature) in vitro maturation, with significant differences found. All the significantly altered genes showed downregulation after the maturation process. The most changed genes from these gene ontologies, FOS, ID2, VEGFA, BTG2, CYR61, ESR1, AR, TACR3, CCND2, CHRDL1, were chosen to be further validated, described and related to the literature. Additionally, the mitochondrial activity of the analyzed oocytes was measured using specific dyes. We found that the mitochondrial activity was higher before the maturation process. The analysis of these results and the available literature provides a novel insight on the processes that occur during in vitro oocyte maturation. While this knowledge may prove to be useful in further research of the procedures commonly associated with in vitro fertilization procedures, it serves mostly as a basic reference for further proteomic, in vivo, and clinical studies that are necessary to translate it into practical applications.
Collapse
|