1
|
Martín-San Juan A, Gala N, Nieto-Cristóbal H, Álvarez-Rodríguez M, de Mercado E. Effect of the addition of exogenous progesterone and the progesterone receptor inhibitor (RU 486) on boar cryopreservation semen extenders. Res Vet Sci 2024; 180:105400. [PMID: 39226854 DOI: 10.1016/j.rvsc.2024.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Cryopreservation of porcine spermatozoa is detrimental due to their high sensitivity to cold shock, leading to changes akin to capacitation, known as cryocapacitation. These changes, including the acrosomal reaction, hypermotility induction, and protein phosphorylation, might be influenced by the presence of progesterone in seminal plasma and egg yolk, used in most freezing extenders. We tested the effect of various progesterone concentrations added to the freezing extenders (1, 10, and 100 μg/mL). At 100 μg/mL, progesterone decreased the proportion of straightness and tended to reduce viability and the proportion of progressive motility (p < 0.1). At 10 μg/mL, it increased reacted acrosomes in dead sperm (p < 0.05), protein phosphorylation rate (p < 0.05), and tended (p < 0.1) to enhance linear movement compared to the control. To counteract the capacitating effect of progesterone, we examined the effect of antiprogesterone mifepristone (RU 486) at concentrations of 5, 10, 20, 50, 100, and 200 μM, and co-incubated 10 μM of RU 486 with 10 μg/mL of progesterone. RU 486 maintained capacitation levels and motility parameters similar to the control, although high concentrations (100 μM) tended (p = 0.152) to increase protein phosphorylation. Co-incubation reduced the acrosome reaction in dead sperm, and RU 486 appeared to prevent hypermotility stabilizing motility and viability parameters compared to samples with progesterone alone. Protein phosphorylation increased and RU 486 could not restore capacitation to control levels due to its competitive antagonism for progesterone receptors, having less affinity than progesterone, which displaces RU 486 at high concentrations, allowing normal sperm capacitation.
Collapse
Affiliation(s)
- Adrián Martín-San Juan
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain
| | - Nerea Gala
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain
| | - Helena Nieto-Cristóbal
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain
| | - Manuel Álvarez-Rodríguez
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain.
| | - Eduardo de Mercado
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain
| |
Collapse
|
2
|
Yang Y, Yang L, Han X, Wu K, Mei G, Wu B, Cheng Y. The regulation role of calcium channels in mammalian sperm function: a narrative review with a focus on humans and mice. PeerJ 2024; 12:e18429. [PMID: 39469589 PMCID: PMC11514763 DOI: 10.7717/peerj.18429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Mammalian sperm are characterized as specialized cells, as their transcriptional and translational processes are largely inactive. Emerging researches indicate that Ca2+ serves as a crucial second messenger in the modulation of various sperm physiological processes, such as capacitation, hyperactivation, and the acrosome reaction. Specifically, sperm-specific calcium channels, including CatSper, voltage-gated calcium channels (VGCCs), store-operated calcium channels (SOCCs), and cyclic nucleotide-gated (CNG) channels, are implicated in the regulation of calcium signaling in mammalian sperm. Calcium stores located in the sperm acrosomes, along with the IP3 receptors in the neck of the redundant nuclear envelope and the mitochondria in the tail, play significant roles in modulating intracellular Ca2+ levels in sperm. However, the functions and mechanisms of these calcium channels in modulating mammalian sperm physiological functions have not yet been well elucidated. Therefore, by focusing on humans and mice, this study aims to provide a comprehensive review of the current advancements in research regarding the roles of calcium signaling and associated calcium channels in regulating sperm function. This endeavor seeks to enhance the understanding of calcium signaling in sperm regulation and to facilitate the development of drugs for the treatment of infertility or as non-hormonal male contraceptives.
Collapse
Affiliation(s)
- Yebin Yang
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China
| | - Liu Yang
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China
| | - Xiaoqun Han
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Kuaiying Wu
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Guangquan Mei
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China
| | - Baojian Wu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yimin Cheng
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Hwang JY. Sperm hyperactivation and the CatSper channel: current understanding and future contribution of domestic animals. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:443-456. [PMID: 38975583 PMCID: PMC11222122 DOI: 10.5187/jast.2023.e133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 07/09/2024]
Abstract
In female tract, mammalian sperm develop hyperactivated motility which is a key physiological event for sperm to fertilize eggs. This motility change is triggered by Ca2+ influx via the sperm-specific Ca2+ channel, CatSper. Although previous studies in human and mice largely contributed to understanding CatSper and Ca2+ signaling for sperm hyperactivation, the differences on their activation mechanisms are not well understood yet. There are several studies to examine expression and significance of the CatSper channel in non-human and non-mouse models, such as domestic animals. In this review, I summarize key knowledge for the CatSper channel from previous studies and propose future aspects for CatSper study using sperm from domestic animals.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| |
Collapse
|
4
|
Mahé C, Pranomphon T, Reynaud K, Laffont L, Meylheuc T, Schoen J, Mermillod P, Saint-Dizier M. Sperm-fluid-cell interplays in the bovine oviduct: glycosaminoglycans modulate sperm binding to the isthmic reservoir. Sci Rep 2023; 13:10311. [PMID: 37365288 DOI: 10.1038/s41598-023-37469-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023] Open
Abstract
When entering the oviduct for fertilisation, spermatozoa come into contact with the oviduct fluid (OF) and can bind to luminal epithelial cells in the isthmus to form a sperm reservoir. The objective of this study was to examine how the OF modulates sperm adhesion to the oviduct reservoir using an in vitro model of oviduct epithelial spheroids (OES). Bovine oviducts from a local slaughterhouse were used to collect OF and isthmic fragments for the in vitro incubation of OES. Compared to a non-capacitating control medium, the pre-ovulatory OF significantly decreased by 80-90% the density of spermatozoa bound to OES without affecting sperm motility, membrane integrity, or sperm-cilia interactions. This effect on sperm binding was reproduced with (1) OF from different cycle stages and anatomical regions of the oviduct; (2) OF fractions of more than 3 kDa; (3) modified OF in which proteins were denatured or digested and (4) heparan sulphate but not hyaluronic acid, two glycosaminoglycans present in the OF. In conclusion, the OF significantly decreased the number of spermatozoa that bind to oviduct epithelial cells without affecting sperm motility and this effect was due to macromolecules, including heparan sulphate.
Collapse
Affiliation(s)
- Coline Mahé
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France.
| | - Thanya Pranomphon
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
- School of Biotechnology, Embryo Technology and Stem Cell Research Center, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Karine Reynaud
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Ludivine Laffont
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Jennifer Schoen
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Pascal Mermillod
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Marie Saint-Dizier
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
- Faculty of Sciences and Techniques, Tours University, Tours, France
| |
Collapse
|
5
|
Soto-Heras S, Sakkas D, Miller DJ. Sperm selection by the oviduct: perspectives for male fertility and assisted reproductive technologies†. Biol Reprod 2023; 108:538-552. [PMID: 36625382 PMCID: PMC10106845 DOI: 10.1093/biolre/ioac224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
The contribution of sperm to embryogenesis is gaining attention with up to 50% of infertility cases being attributed to a paternal factor. The traditional methods used in assisted reproductive technologies for selecting and assessing sperm quality are mainly based on motility and viability parameters. However, other sperm characteristics, including deoxyribonucleic acid integrity, have major consequences for successful live birth. In natural reproduction, sperm navigate the male and female reproductive tract to reach and fertilize the egg. During transport, sperm encounter many obstacles that dramatically reduce the number arriving at the fertilization site. In humans, the number of sperm is reduced from tens of millions in the ejaculate to hundreds in the Fallopian tube (oviduct). Whether this sperm population has higher fertilization potential is not fully understood, but several studies in animals indicate that many defective sperm do not advance to the site of fertilization. Moreover, the oviduct plays a key role in fertility by modulating sperm transport, viability, and maturation, providing sperm that are ready to fertilize at the appropriate time. Here we present evidence of sperm selection by the oviduct with emphasis on the mechanisms of selection and the sperm characteristics selected. Considering the sperm parameters that are essential for healthy embryonic development, we discuss the use of novel in vitro sperm selection methods that mimic physiological conditions. We propose that insight gained from understanding how the oviduct selects sperm can be translated to assisted reproductive technologies to yield high fertilization, embryonic development, and pregnancy rates.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - David J Miller
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
6
|
Cimini C, Ramal-Sanchez M, Taraschi A, Della Pelle F, Scroccarello A, Belda-Perez R, Valbonetti L, Lanuti P, Marchisio M, D’Atri M, Ortolani C, Papa S, Capacchietti G, Bernabò N, Compagnone D, Barboni B. Catechin versus MoS 2 Nanoflakes Functionalized with Catechin: Improving the Sperm Fertilizing Ability-An In Vitro Study in a Swine Model. Int J Mol Sci 2023; 24:ijms24054788. [PMID: 36902221 PMCID: PMC10003105 DOI: 10.3390/ijms24054788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Nowadays, the adoption of In Vitro Fertilization (IVF) techniques is undergoing an impressive increase. In light of this, one of the most promising strategies is the novel use of non-physiological materials and naturally derived compounds for advanced sperm preparation methods. Here, sperm cells were exposed during capacitation to MoS2/Catechin nanoflakes and catechin (CT), a flavonoid with antioxidant properties, at concentrations of 10, 1, 0.1 ppm. The results showed no significant differences in terms of sperm membrane modifications or biochemical pathways among the groups, allowing the hypothesis that MoS2/CT nanoflakes do not induce any negative effect on the parameters evaluated related to sperm capacitation. Moreover, the addition of CT alone at a specific concentration (0.1 ppm) increased the spermatozoa fertilizing ability in an IVF assay by increasing the number of fertilized oocytes with respect to the control group. Our findings open interesting new perspectives regarding the use of catechins and new materials obtained using natural or bio compounds, which could be used to implement the current strategies for sperm capacitation.
Collapse
Affiliation(s)
- Costanza Cimini
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Marina Ramal-Sanchez
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Angela Taraschi
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Flavio Della Pelle
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annalisa Scroccarello
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Ramses Belda-Perez
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Luca Valbonetti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Mario D’Atri
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
- Sharp Solutions Software di D’Atri Mario, Via Udine, 2, Buttrio, 33042 Udine, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Giulia Capacchietti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nicola Bernabò
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
- Correspondence:
| | - Dario Compagnone
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
7
|
Solanki S, Kumar V, Kashyap P, Kumar R, De S, Datta TK. Beta-defensins as marker for male fertility: a comprehensive review†. Biol Reprod 2023; 108:52-71. [PMID: 36322147 DOI: 10.1093/biolre/ioac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
Bovine male fertility in animals has a direct impact on the productivity of dairy herds. The epididymal sperm maturations involve extensive sperm surface modifications to gain the fertilizing ability, especially by absorptions of the plethora of biomolecules, including glycoprotein beta-defensins (BDs), enzymes, organic ions, protein, and phospholipids. Defensins are broad-range nonspecific antimicrobial peptides that exhibit strong relations with innate and adaptive immunity, but their roles in male fertility are relatively recently identified. In the course of evolution, BD genes give rise to different clusters with specific functions, especially reproductive functions, by undergoing duplications and nonsynonymous mutations. BD polymorphisms have been reported with milk compositions, disease resistance, and antimicrobial activities. However, in recent decades, the link of BD polymorphisms with fertility has emerged as an appealing improvement of reproductive performance such as sperm motility, membrane integrity, cervical mucus penetration, evading of uterus immunosurveillance, oviduct cell attachment, and egg recognition. The reproductive-specific glycosylated BD class-A BDs (CA-BDs) have shown age- and sex-specific expressions in male reproductive organs, signifying their physiological pleiotropism, especially in the sperm maturation and sperm transport in the female reproductive tract. By considering adult male reproductive organ-specific BD expressions, importance in sperm functionalities, and bioinformatic analysis, we have selected two bovine BBD126 and BBD129 genes as novel potential biomarkers of bovine male fertility. Despite the importance of BDs, however, genomic characterization of most BD genes across most livestock and nonmodel organisms remains predictive/incomplete. The current review discusses our understanding of BD pleiotropic functions, polymorphism, and genomic structural attributes concerning the fertilizability of the male gamete in dairy animals.
Collapse
Affiliation(s)
- Subhash Solanki
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Vijay Kumar
- NMR lab-II, National Institute of immunology, New Delhi, India
| | - Poonam Kashyap
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Sachinandan De
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India.,ICAR- Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
8
|
Štiavnická M, Hošek P, Abril-Parreño L, Kenny DA, Lonergan P, Fair S. Membrane remodulation and hyperactivation are impaired in frozen-thawed sperm of low-fertility bulls. Theriogenology 2023; 195:115-121. [DOI: 10.1016/j.theriogenology.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
|
9
|
ProAKAP4 Concentration Is Related to Sperm Motility and Motile Sperm Subpopulations in Frozen-Thawed Horse Semen. Animals (Basel) 2022; 12:ani12233417. [PMID: 36496938 PMCID: PMC9738597 DOI: 10.3390/ani12233417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/10/2022] Open
Abstract
ProAKAP4 is the precursor of AKAP4 (A-kinase Anchor protein 4), the main structural protein of the fibrous sheath of sperm. The amount of proAKAP4 reflects the ability of spermatozoa to maintain the flagellum activity and functionality up to the site of fertilization and is positively correlated with progressive motility in several mammalian species. The aim of this study was to investigate the relationship between proAKAP4 concentration with horse sperm motility descriptors and spermatic motile subpopulations. For this purpose, a total of 48 ejaculates from 13 different stallions were analyzed. Spermatic motility descriptors were obtained by the CASA system, and four motile subpopulations (SP) with specific motility patterns were statistically identified. ProAKAP4 concentrations were evaluated by ELISA. The relationship between motility descriptors of sperm subpopulations and proAKAP4 concentrations was evaluated. Following a hierarchical cluster statistical analysis, ejaculates were divided into two groups according to their proAKAP4 concentrations, either having low proAKAP4 concentrations (5.06−35.61 ng/10M spz; n = 23) or high (39.92−82.23 ng/10M spz; n = 25) proAKAP4 concentrations (p < 0.001). ProAKAP4 concentrations were positively correlated (p < 0.05) with total and progressive motility, as well as with parameters of velocity. ProAKAP4 amount also showed a negative correlation (p < 0.05) with sperm motile subpopulation number 3, which was the subpopulation with the lowest velocity parameters. In conclusion, proAKAP4 concentration in stallion semen positively reflects sperm progressive motility with the functional velocity kinematic descriptors. Concentrations of proAKAP4 higher than 37.77 ng/10M spz were correlated with a very good quality frozen/thawed stallion semen.
Collapse
|
10
|
Assessment of sperm motility in livestock: Perspectives based on sperm swimming conditions in vivo. Anim Reprod Sci 2022; 246:106849. [PMID: 34556397 DOI: 10.1016/j.anireprosci.2021.106849] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Evaluation of sperm motility is well-established in farm animals for quickly selecting ejaculates for semen processing into insemination doses and for evaluating the quality of preserved semen. Likewise, sperm motility is a fundamental parameter used by spermatologists in basic and applied science. Motility is commonly assessed using computer-assisted semen analysis (CASA). Recent increases in computational power, as well as utilization of mobile CASA systems and open-source CASA programs, broaden the possibilities for motility evaluation. Despite this technological progress, the potential of computer-generated motility data to assess male fertility remains challenging and may be limited. Relevance for fertility assessment could be improved if measurement conditions would more closely mimic the in vivo situation. Hence, this review is focused on the current trends of automated semen assessment in livestock and explores perspectives for future use with respect to the physiological and physical conditions encountered by sperm in the female reproductive tract. Validation of current CASA systems with more complex, microfluidic-based devices mimicking the female reproductive tract environment could improve the value of sperm kinematic data for assessing the fertilizing capacity of semen samples, not only for application in livestock but also for use in conducting assisted reproduction techniques in other species.
Collapse
|
11
|
Tsuru A, Yoshie M, Kojima J, Yonekawa R, Azumi M, Kusama K, Nishi H, Tamura K. PGRMC1 Regulates Cellular Senescence via Modulating FOXO1 Expression in Decidualizing Endometrial Stromal Cells. Biomolecules 2022; 12:biom12081046. [PMID: 36008941 PMCID: PMC9405960 DOI: 10.3390/biom12081046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
The appropriate differentiation of endometrial stromal cells (ESCs) into decidual cells is required for embryo implantation and subsequent placentation into humans. Decidualization is accompanied by the appearance of senescent-like cells. We recently reported the secretory phase-specific downregulation of endometrial progesterone receptor membrane component 1 (PGRMC1) and enhanced decidualization upon PGRMC1 knockdown and inhibition in cultured ESCs. However, it remains unknown whether PGRMC1 is involved in cellular senescence during decidualization. Here, we showed that the small interfering RNA (siRNA)-mediated knockdown of PGRMC1 and the inhibition of PGRMC1 by AG-205 increased the expression of the transcription factor forkhead box protein O1 (FOXO1) and the senescence-associated β-galactosidase activity in cAMP analog- and progesterone-treated ESCs. Furthermore, the knockdown of FOXO1 repressed the decidual senescence induced by siRNA-based PGRMC1 knockdown or AG-205 treatment. Taken together, the decreased PGRMC1 expression in ESCs may accelerate decidualization and cellular senescence via the upregulation of FOXO1 expression for appropriate endometrial remodeling and embryo implantation during the secretory phase.
Collapse
Affiliation(s)
- Atsuya Tsuru
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (A.T.); (R.Y.); (M.A.); (K.K.); (K.T.)
| | - Mikihiro Yoshie
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (A.T.); (R.Y.); (M.A.); (K.K.); (K.T.)
- Correspondence: ; Tel.: +81-42-676-4536
| | - Junya Kojima
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan; (J.K.); (H.N.)
| | - Ryo Yonekawa
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (A.T.); (R.Y.); (M.A.); (K.K.); (K.T.)
| | - Mana Azumi
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (A.T.); (R.Y.); (M.A.); (K.K.); (K.T.)
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (A.T.); (R.Y.); (M.A.); (K.K.); (K.T.)
| | - Hirotaka Nishi
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo 160-0023, Japan; (J.K.); (H.N.)
| | - Kazuhiro Tamura
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (A.T.); (R.Y.); (M.A.); (K.K.); (K.T.)
| |
Collapse
|
12
|
Heparin and Progesterone Exert Synergistic Effects to Improve the In-Vitro Fertilization Rate of Bovine Sperm Bound to Oviduct Cell Aggregates from the Isthmus. Vet Sci 2022; 9:vetsci9070372. [PMID: 35878389 PMCID: PMC9318521 DOI: 10.3390/vetsci9070372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary After mating, sperm starts its long journey with the ultimate goal of fertilizing the oocyte. Inside the oviduct, sperm is attached to the surface of epithelial cells. The intact and good-quality sperm are elected and stored. Many infertility-related problems are related to the short life span of the sperm and/or the delay of the capacitation process of sperm attached to the oviduct. Thus, the elongation of the life span of the sperm would be very helpful in overcoming such problems. We hereby aimed to evaluate the fertilization ability of sperm that bind to cell aggregates oviduct (infundibulum-ampulla-isthmus), and assess the effect of heparin and or progesterone on the in-vitro fertilization ability of sperm co-incubated with isthmus cells aggregates. The sperm bound to isthmus aggregates improved the rate of in-vitro fertilization compared to infundibulum and ampulla. Moreover, pre-treatment of mature oocytes with heparin and progesterone plays a coactive role that improves the in-vitro fertilization of sperm bound to cell aggregates from isthmus. In conclusion, binding to isthmus aggregates improves the in-vitro fertilization of bovine sperm. Additionally, heparin together with progesterone, exerts a synergistic action that improves the in-vitro fertilizing potential of sperm attached to isthmus aggregates. Abstract After the copulation process, some sperm start the long journey with an ultimate goal of fertilizing the oocyte. Inside the oviduct, sperm are stored, waiting for the ovulated oocyte where they bind to the apical surface of the oviduct cells, which in turn hold sperm to form a sperm nest. The essential functions of the sperm reservoir include attaching spermatozoa to oviduct epithelial cells, selecting intact, good-quality sperm with an end result of extending sperm life expectancy. The current study aimed to evaluate the fertilization ability of sperm that bind to cell aggregates from different parts of the oviduct (infundibulum-ampulla-isthmus), and to assess the effect of heparin and or progesterone (P4) on the in-vitro fertilization ability of sperm co-incubated with cell aggregates from the isthmus. In-vitro fertilization was identified as a cleaved oocyte to two cells or more. The sperm bound to cell aggregates from the isthmus improved the rate of in-vitro fertilization (48.09%) compared to aggregates from the infundibulum (36.90%) and ampulla (37.61%). Moreover, pre-treatment of mature COCs with heparin (40 μg/mL) and P4 (80 nanomolar) play a coactive role that improves the in-vitro fertilization ability of sperm bound to cell aggregates from isthmus (63.33%), compared to 42.61% in the absence of cells aggregates. In conclusion, binding to cell aggregates from isthmus improves the in-vitro fertilization ability of Bovine sperm. Additionally, heparin, together with P4, exerts a synergistic action that improves the in-vitro fertilizing potential of sperm attached to cell aggregates from the isthmus of the bovine oviduct.
Collapse
|
13
|
Mirihagalle S, Hughes JR, Miller DJ. Progesterone-Induced Sperm Release from the Oviduct Sperm Reservoir. Cells 2022; 11:1622. [PMID: 35626659 PMCID: PMC9139440 DOI: 10.3390/cells11101622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
In mammalian females, after sperm are deposited in the reproductive tract, a fraction of sperm migrates to the lower oviduct (isthmus) and forms a sperm storage site known as the functional sperm reservoir. The interactions between sperm membrane proteins and oviduct epithelial cells facilitate sperm binding to the oviductal epithelium and retention in the reservoir. Sperm are bound by glycans that contain specific motifs present on isthmic epithelial cells. Capacitated sperm are released from the reservoir and travel further in the oviduct to the ampulla where fertilization occurs. For decades, researchers have been studying the molecules and mechanisms of sperm release from the oviductal sperm reservoir. However, it is still not clear if the release of sperm is triggered by changes in sperm, oviduct cells, oviduct fluid, or a combination of these. While there is a possibility that more than one of these events are involved in the release of sperm from the reservoir, one activator of sperm release has the largest accumulation of supporting evidence. This mechanism involves the steroid hormone, progesterone, as a signal that induces the release of sperm from the reservoir. This review gathers and synthesizes evidence for the role of progesterone in inducing sperm release from the oviduct functional sperm reservoir.
Collapse
Affiliation(s)
| | | | - David Joel Miller
- Department of Animal Sciences, Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA; (S.M.); (J.R.H.)
| |
Collapse
|
14
|
Cimini C, Moussa F, Taraschi A, Ramal-Sanchez M, Colosimo A, Capacchietti G, Mokh S, Valbonetti L, Tagaram I, Bernabò N, Barboni B. Pre-Treatment of Swine Oviductal Epithelial Cells with Progesterone Increases the Sperm Fertilizing Ability in an IVF Model. Animals (Basel) 2022; 12:ani12091191. [PMID: 35565617 PMCID: PMC9103098 DOI: 10.3390/ani12091191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/21/2022] Open
Abstract
Mammalian spermatozoa are infertile immediately after ejaculation and need to undergo a functional modification, called capacitation, in order to acquire their fertilizing ability. Since oviductal epithelial cells (SOECs) and progesterone (P4) are two major modulators of capacitation, here we investigated their impact on sperm functionality by using an IVF swine model. To that, we treated SOECs with P4 at 10, 100, and 1000 ng/mL before the coincubation with spermatozoa, thus finding that P4 at 100 ng/mL does not interfere with the cytoskeleton dynamics nor the cells’ doubling time, but it promotes the sperm capacitation by increasing the number of spermatozoa per polyspermic oocyte (p < 0.05). Moreover, we found that SOECs pre-treatment with P4 100 ng/mL is able to promote an increase in the sperm fertilizing ability, without needing the hormone addition at the time of fertilization. Our results are probably due to the downregulation in the expression of OVGP1, SPP1 and DMBT1 genes, confirming an increase in the dynamism of our system compared to the classic IVF protocols. The results obtained are intended to contribute to the development of more physiological and efficient IVF systems.
Collapse
Affiliation(s)
- Costanza Cimini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Fadl Moussa
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
- Doctoral School of Science, Technology Lebanese University, Beirut 1107, Lebanon
| | - Angela Taraschi
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
- Istituto Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Alessia Colosimo
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Giulia Capacchietti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Samia Mokh
- National Council for Scientific Research (CNRS), Lebanese Atomic Energy Commission (LAEC), Laboratory for Analysis of Organic Compound (LACO), Beirut 8281, Lebanon;
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
| | - Israiel Tagaram
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Nicola Bernabò
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
- Correspondence:
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| |
Collapse
|
15
|
Hyperactivation is sufficient to release porcine sperm from immobilized oviduct glycans. Sci Rep 2022; 12:6446. [PMID: 35440797 PMCID: PMC9019019 DOI: 10.1038/s41598-022-10390-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
Fertilizing sperm are retained by adhesion to specific glycans on the epithelium of the oviduct forming a reservoir before sperm are released from the reservoir so fertilization can ensue. Capacitated sperm lose affinity for the oviduct epithelium but the components of capacitation that are important for sperm release are uncertain. One important correlate of capacitation is the development of hyperactivated motility. Hyperactivation is characterized by asymmetrical flagellar beating with high beat amplitude. We tested whether the development of full-type asymmetrical motility was sufficient to release sperm from immobilized oviduct glycans. Sperm hyperactivation was induced by four different compounds, a cell-permeable cAMP analog (cBiMPS), CatSper activators (4-aminopyridine and procaine), and an endogenous steroid (progesterone). Using standard analysis (CASA) and direct visualization with high-speed video microscopy, we first confirmed that all four compounds induced hyperactivation. Subsequently, sperm were allowed to bind to immobilized oviduct glycans, and compounds or vehicle controls were added. All compounds caused sperm release from immobilized glycans, demonstrating that hyperactivation was sufficient to release sperm from oviduct cells and immobilized glycans. Pharmacological inhibition of the non-genomic progesterone receptor and CatSper diminished sperm release from oviduct glycans. Inhibition of the proteolytic activities of the ubiquitin-proteasome system (UPS), implicated in the regulation of sperm capacitation, diminished sperm release in response to all hyperactivation inducers. In summary, induction of sperm hyperactivation was sufficient to induce sperm release from immobilized oviduct glycans and release was dependent on CatSper and the UPS.
Collapse
|
16
|
Mammalian sperm hyperactivation regulates navigation via physical boundaries and promotes pseudo-chemotaxis. Proc Natl Acad Sci U S A 2021; 118:2107500118. [PMID: 34716265 DOI: 10.1073/pnas.2107500118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
Mammalian sperm migration within the complex and dynamic environment of the female reproductive tract toward the fertilization site requires navigational mechanisms, through which sperm respond to the tract environment and maintain the appropriate swimming behavior. In the oviduct (fallopian tube), sperm undergo a process called "hyperactivation," which involves switching from a nearly symmetrical, low-amplitude, and flagellar beating pattern to an asymmetrical, high-amplitude beating pattern that is required for fertilization in vivo. Here, exploring bovine sperm motion in high-aspect ratio microfluidic reservoirs as well as theoretical and computational modeling, we demonstrate that sperm hyperactivation, in response to pharmacological agonists, modulates sperm-sidewall interactions and thus navigation via physical boundaries. Prior to hyperactivation, sperm remained swimming along the sidewalls of the reservoirs; however, once hyperactivation caused the intrinsic curvature of sperm to exceed a critical value, swimming along the sidewalls was reduced. We further studied the effect of noise in the intrinsic curvature near the critical value and found that these nonthermal fluctuations yielded an interesting "Run-Stop" motion on the sidewall. Finally, we observed that hyperactivation produced a "pseudo-chemotaxis" behavior, in that sperm stayed longer within microfluidic chambers containing higher concentrations of hyperactivation agonists.
Collapse
|
17
|
Donnellan EM, O'Brien MB, Meade KG, Fair S. Comparison of the uterine inflammatory response to frozen-thawed sperm from high and low fertility bulls. Theriogenology 2021; 176:26-34. [PMID: 34564014 DOI: 10.1016/j.theriogenology.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 12/29/2022]
Abstract
Some bulls with apparently normal semen quality yield unacceptably low pregnancy rates. We hypothesised that a differential uterine immunological response to sperm from high and low fertility bulls may contribute to these differences. The experimental model used was heifer follicular phase uterine explants incubated with frozen-thawed sperm from high and low fertility bulls (3-5 replicates per experiment). Inflammatory gene expression of IL1A, IL1B, IL6, TNFA and CXCL8 were assessed by qPCR and IL1-β and IL-8 were quantified in explant supernatants by ELISA. Neutrophil binding affinity to sperm from high and low fertility bulls was also assessed. There was a significant up-regulation of IL1A, IL1B and TNFA from frozen-thawed sperm, irrespective of fertility status, compared to the unstimulated control. This response was confirmed at the protein level, with an increase of IL-1β and IL-8 protein concentrations by 5 and 2.7 fold, respectively (P < 0.05). Although no significant differences in the inflammatory response at the gene or protein level were evident between high and low fertility bulls, more sperm from low compared to high fertility bulls bound to neutrophils (P < 0.05). Using bulls of unknown fertility, cauda epididymal sperm (CES) plus seminal plasma (SP) upregulated IL6 (P < 0.05) but there was no upregulation of any inflammatory gene expression for CES alone. Overall, this ex vivo study demonstrated an upregulation of inflammatory gene expression in the uterus in response to frozen-thawed bull sperm. While there was no difference between sperm from high and low fertility bulls, there was a greater binding affinity of low fertility sperm by neutrophils.
Collapse
Affiliation(s)
- E M Donnellan
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - M B O'Brien
- Teagasc Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - K G Meade
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - S Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
| |
Collapse
|
18
|
Gonzalez De Acevedo M, Gelsleichter J. Female sperm storage in the bonnethead Sphyrna tiburo oviducal gland: Immunolocalization of steroid hormone receptors in sperm storage tubules. Gen Comp Endocrinol 2021; 310:113827. [PMID: 34058188 DOI: 10.1016/j.ygcen.2021.113827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/27/2022]
Abstract
Female sperm storage (FSS) has been demonstrated to occur in representatives from all major vertebrate groups and has been hypothesized to have several possible adaptive benefits that may maximize reproductive success of its practitioners. However, while the range of taxa that exhibit FSS and its possible evolutionary benefits have received significant attention in past years, the physiological mechanisms by which FSS occurs in vertebrates have only recently been explored. In this study, we examined the potential role of gonadal steroid hormones in regulating FSS in the bonnethead Sphyrna tiburo, a small hammerhead species in which females have been shown to be capable of storing male spermatozoa for up to 6 - 7 months following copulation. Like past studies on this species, we observed associations between plasma concentrations of the gonadal steroids 17β-estradiol, testosterone, and progesterone with FSS in female bonnetheads, suggesting roles for these hormones in regulating this process. Using immunohistochemistry, we also observed presence of androgen receptor, estrogen receptor alpha (ERα), and progesterone receptor in epithelial cells of sperm storage tubules in the bonnethead oviducal gland, as well as occurrence of ERα in stored spermatozoa, specifically during the sperm storage period. These results suggest that E2, T, and P4 may regulate certain aspects of FSS in bonnethead indirectly through actions on the female reproductive tract, whereas E2 may also have direct effects on sperm function. This is the first study on the regulation of FSS in sharks and has formed a basis for future work geared towards improving our understanding of this process in chondrichthyans.
Collapse
|
19
|
Mahé C, Zlotkowska AM, Reynaud K, Tsikis G, Mermillod P, Druart X, Schoen J, Saint-Dizier M. Sperm migration, selection, survival, and fertilizing ability in the mammalian oviduct†. Biol Reprod 2021; 105:317-331. [PMID: 34057175 PMCID: PMC8335357 DOI: 10.1093/biolre/ioab105] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/28/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022] Open
Abstract
In vitro fertilization (IVF) gives rise to embryos in a number of mammalian species and is currently widely used for assisted reproduction in humans and for genetic purposes in cattle. However, the rate of polyspermy is generally higher in vitro than in vivo and IVF remains ineffective in some domestic species like pigs and horses, highlighting the importance of the female reproductive tract for gamete quality and fertilization. In this review, the way the female environment modulates sperm selective migration, survival, and acquisition of fertilizing ability in the oviduct is being considered under six aspects: (1) the utero-tubal junction that selects a sperm sub-population entering the oviduct; (2) the presence of sperm binding sites on luminal epithelial cells in the oviduct, which prolong sperm viability and plays a role in limiting polyspermic fertilization; (3) the contractions of the oviduct, which promote sperm migration toward the site of fertilization in the ampulla; (4) the regions of the oviduct, which play different roles in regulating sperm physiology and interactions with oviduct epithelial cells; (5) the time of ovulation, and (6) the steroid hormonal environment which regulates sperm release from the luminal epithelial cells and facilitates capacitation in a finely orchestrated manner.
Collapse
Affiliation(s)
- Coline Mahé
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | - Karine Reynaud
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | | | - Xavier Druart
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Jennifer Schoen
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology, FBN, Dummerstorf, Germany
| | - Marie Saint-Dizier
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- Tours University, Faculty of Sciences and Techniques, Agrosciences Department, Tours, France
| |
Collapse
|
20
|
Sharif M, Kerns K, Sutovsky P, Bovin N, Miller DJ. Progesterone induces porcine sperm release from oviduct glycans in a proteasome-dependent manner. Reproduction 2021; 161:449-457. [PMID: 33589564 DOI: 10.1530/rep-20-0474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/15/2021] [Indexed: 12/30/2022]
Abstract
In mammals, the oviduct retains sperm, forming a reservoir from which they are released in synchrony with ovulation. However, the mechanisms underlying sperm release are unclear. Herein, we first examined in greater detail the release of sperm from the oviduct reservoir by sex steroids, and secondly, if the ubiquitin-proteasome system (UPS) mediates this release in vitro. Sperm were allowed to bind to oviductal cells or immobilized oviduct glycans, either bi-SiaLN or a suLeX, and channeled with steroids in the presence or absence of proteasome inhibitors. Previously, we have demonstrated progesterone-induced sperm release from oviduct cells and immobilized glycans in a steroid-specific manner. Herein, we found that the release of sperm from an immobilized oviduct glycan, a six-sialylated branched structure, and from immobilized fibronectin was inhibited by the CatSper blocker NNC 055-0396, akin to the previously reported ability of NNC 055-0396 to inhibit sperm release from another oviduct glycan, sulfated Lewis-X trisaccharide. Thus, CatSper may be required for release of sperm from a variety of adhesion systems. One possible mechanism for sperm release is that glycan receptors on sperm are degraded by proteasomes or shed from the sperm surface by proteasomal degradation. Accordingly, the inhibition of proteasomal degradation blocked sperm release from oviduct cell aggregates both immobilized oviduct glycans as well as fibronectin. In summary, progesterone-induced sperm release requires both active CatSper channels and proteasomal degradation, suggesting that hyperactivation and proteolysis are vital parts of the mechanism by which sperm move from the oviduct reservoir to the site of fertilization.
Collapse
Affiliation(s)
- Momal Sharif
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Nicolai Bovin
- Shemyakin Institute of Bioorganic Chemistry, Moscow, Russia
| | - David J Miller
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
21
|
Gonzalez De Acevedo M, Frazier BS, Belcher C, Gelsleichter J. Reproductive cycle and fecundity of the bonnethead Sphyrna tiburo L. from the northwest Atlantic Ocean. JOURNAL OF FISH BIOLOGY 2020; 97:1733-1747. [PMID: 32914448 DOI: 10.1111/jfb.14537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
The present study examined temporal changes in plasma sex hormone concentrations and the morphology and histology of reproductive organs in mature northwest Atlantic (NWA) bonnetheads Sphyrna tiburo L. to characterize reproductive cycle, breeding periodicity and fertility in this still poorly studied population. Progressive increases in testis width, epididymis head width, plasma testosterone (T) concentrations, and occurrence of mature spermatozoa were observed in male S. tiburo from June to September, demonstrating that spermatogenesis occurs during the summer. Nonetheless, increases in maximum follicle diameter, oviducal gland width, plasma 17β-estradiol and T concentrations, and occurrence of vitellogenic follicles were not observed in mature females until between October and April, demonstrating non-synchronous patterns of gametogenesis in males and females. Fresh copulatory wounds were observed in females collected during late September along with histological evidence for sperm presence in the oviducal gland between September and April, confirming a 6- to 7 month period of female sperm storage. Ovulation occurred between mid-April and early May in concert with increases in female plasma progesterone concentrations. Gestation occurred during a 4.5- to 5 month period between May and early September, and 97% of mature females collected during this period were gravid, indicating a highly synchronized, annual reproductive periodicity. Brood size was significantly correlated with maternal size and ranged from 1 to 13 pups with a mean ± S.D. of 8.1 ± 2.2, which was significantly lower than reported in Gulf of Mexico (GOM) populations. The occurrence of non-fertile offspring was observed in 17% of broods with a range of 1-7 non-fertile eggs present in individual females. Thus, as previously reported in GOM S. tiburo, this unusual form of infertility also appears to be prevalent in the NWA population and requires further study. This study has demonstrated meaningful differences in reproductive biology of these populations, emphasizing the need for region-specific approaches for population management.
Collapse
Affiliation(s)
| | - Bryan S Frazier
- South Carolina Department of Natural Resources, Charleston, South Carolina, USA
| | - Carolyn Belcher
- Coastal Resources Division, Georgia Department of Natural Resources, Brunswick, Georgia, USA
| | | |
Collapse
|
22
|
Saint-Dizier M, Mahé C, Reynaud K, Tsikis G, Mermillod P, Druart X. Sperm interactions with the female reproductive tract: A key for successful fertilization in mammals. Mol Cell Endocrinol 2020; 516:110956. [PMID: 32712384 DOI: 10.1016/j.mce.2020.110956] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
Sperm migration through the female genital tract is not a quiet journey. Uterine contractions quickly operate a drastic selection, leading to a very restrictive number of sperm reaching the top of uterine horns and finally, provided the presence of key molecules on sperm, the oviduct, where fertilization takes place. During hours and sometimes days before fertilization, subpopulations of spermatozoa interact with dynamic and region-specific maternal components, including soluble proteins, extracellular vesicles and epithelial cells lining the lumen of the female tract. Interactions with uterine and oviductal cells play important roles for sperm survival as they modulate the maternal immune response and allow a transient storage before ovulation. The body of work reported here highlights the importance of sperm interactions with proteins originated from both the uterine and oviductal fluids, as well as hormonal signals around the time of ovulation for sperm acquisition of fertilizing competence.
Collapse
Affiliation(s)
- Marie Saint-Dizier
- INRAE, UMR PRC, 37380, Nouzilly, France; University of Tours, Faculty of Sciences and Techniques, 37000, Tours, France.
| | | | | | | | | | | |
Collapse
|
23
|
Ramal-Sanchez M, Bernabo N, Tsikis G, Blache MC, Labas V, Druart X, Mermillod P, Saint-Dizier M. Progesterone induces sperm release from oviductal epithelial cells by modifying sperm proteomics, lipidomics and membrane fluidity. Mol Cell Endocrinol 2020; 504:110723. [PMID: 31972329 DOI: 10.1016/j.mce.2020.110723] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
The sperm reservoir is formed after insemination in mammals, allowing sperm storage in the oviduct until their release. We previously showed that physiological concentrations of progesterone (P4) trigger in vitro the sperm release from bovine oviductal epithelial cells (BOECs), selecting a subpopulation of spermatozoa with a higher fertilizing competence. Here, by using Western-Blot, confocal microscopy and Intact Cell MALDI-TOF-Mass Spectrometry strategies, we elucidated the changes derived by the P4-induced release on sperm cells (BOEC-P4 spz). Our findings show that, compared to controls, BOEC-P4 spz presented a decrease in the abundance of Binder of Sperm Proteins (BSP) -3 and -5, suggesting one mechanism by which spermatozoa may detach from BOECs, and thus triggering the membrane remodeling with an increase of the sperm membrane fluidity. Furthermore, an interesting number of membrane lipids and proteins were differentially abundant in BOEC-P4 spz compared with controls.
Collapse
Affiliation(s)
- Marina Ramal-Sanchez
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France; Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università degli Studi di Teramo, Italy.
| | - Nicola Bernabo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, Università degli Studi di Teramo, Italy
| | - Guillaume Tsikis
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France
| | - Marie-Claire Blache
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France
| | - Valerie Labas
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France; Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), INRA, CHRU de Tours, Université de Tours, Nouzilly, France
| | - Xavier Druart
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France
| | - Pascal Mermillod
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France
| | - Marie Saint-Dizier
- Physiologie de la Reproduction et des Comportements (PR China) UMR85, INRA, CNRS, 7247, IFCE, Nouzilly, France; Université de Tours, Faculté des Sciences et des Techniques, Tours, France
| |
Collapse
|