1
|
Ma R, Zhao X, Zhao J, Yi Y, Jian S, Ma X, Su Z. PrG protects postovulatory oocytes aging in mice through the putrescine pathway. Biochem Biophys Res Commun 2024; 733:150350. [PMID: 39053107 DOI: 10.1016/j.bbrc.2024.150350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Postovulatory aging of oocytes involves a series of deleterious molecular and cellular changes, which adversely affect oocyte maturation, fertilization, and early embryonic development. Petunidin-3-O-(6-O-pcoumaroyl)-rutinoside-5-O-glucoside (PrG), the main active ingredient of anthocyanin, exerts antioxidant effects. This study investigated whether PrG supplementation could delay postovulatory oocyte aging by alleviating oxidative stress. Our results showed that PrG supplementation decreased the number of abnormal morphology oocytes and improved the oxidative stress of aged oocytes by facilitating the reduction of the reactive oxygen species, the increase in glutathione content, and the recovery of expression of antioxidant-related gene expression. In addition, PrG treatment recovered mitochondrial dysfunction, including mitochondrial distribution, mitochondrial membrane potential and adenosine triphosphate in aged oocytes. PrG-treated oocytes returned to normal levels of cytoplasmic and mitochondrial calcium. Notably, PrG inhibited early apoptosis in aged oocytes. RNA-seq and qRT-PCR results revealed that PrG ameliorated oxidative stress injury in postovulatory aging oocytes of mice via the putrescine pathway. In conclusion, in vitro PrG supplementation is a potential therapy for delaying postovulatory oocyte aging.
Collapse
Affiliation(s)
- Ronghua Ma
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, 810016, China; Qinghai Provincial People's Hospital, Xining, 810000, China
| | - Xi Zhao
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jing Zhao
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, 810016, China; Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China
| | - Yi Yi
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China
| | - Shengyan Jian
- Qinghai Provincial People's Hospital, Xining, 810000, China
| | - Xueman Ma
- Department of Traditional Chinese Medicine, Qinghai University Medical College, Xining, 810001, China
| | - Zhanhai Su
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, 810016, China; Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China.
| |
Collapse
|
2
|
Li Z, Liang Y, Wang Y, Lin Y, Zeng L, Zhang Y, Zhu L. Zuogui Pills alleviate cyclophosphamide-induced ovarian aging by reducing oxidative stress and restoring the stemness of oogonial stem cells through the Nrf2/HO-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118505. [PMID: 38945466 DOI: 10.1016/j.jep.2024.118505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuogui Pill (ZGP) is a traditional herbal formula of Chinese Medicine with a long history of use in alleviating ovarian aging. AIM OF THE STUDY To examine the impact of ZGP on oxidative stress and the stemness of oogonial stem cells (OSCs) in cyclophosphamide (CTX)-induced ovarian aging, as well as its molecular mechanisms involving the nuclear factor erythroid 2-related factor 2 (Nrf2, NFE2L2)/heme oxygenase-1 (HO-1, Hmox1) pathway. MATERIALS AND METHODS Female Sprague-Dawley (SD) rats were randomly divided into seven groups: control, model (CTX), estradiol valerate (EV, 0.103 mg/kg), ZGP-L (low dose Zuogui Pill, 1.851 g/kg), ZGP-H (high dose Zuogui Pill, 3.702 g/kg), ML385 (30 mg/kg), and ML385+ZGP-L. After CTX modeling, the EV, ZGP-L, ZGP-H, and ML385+ZGP-L groups were treated by gavage for 8 weeks, while the ML385 and ML385+ZGP-L groups were administered the Nrf2 antagonist ML385 twice a week. OSCs were isolated after modeling and then treated with drug serum containing 10% ZGP or 10 μM ML385. The general conditions of the rats, including body weight, ovarian weight/body weight ratio, and estrous cycle, were observed. Ovarian ultrastructure, follicle and corpus luteum counts were assessed via hematoxylin and eosin (H&E) staining. Serum hormone levels were measured using enzyme-linked immunosorbent assay (ELISA). Nrf2/HO-1 pathway, stem cell, germ cell, and cell cycle biomarkers were analyzed by qPCR and Western blot. Cell viability was assessed by cell counting kit-8 (CCK-8) assay. Oxidative stress biomarkers were evaluated using flow cytometry and assay kits. Immunofluorescence was employed to detect and locate OSCs in the ovary, quantify the average fluorescence intensity, and identify OSCs. RESULTS After ZGP treatment, rats with CTX-induced ovarian aging exhibited improved general condition, increased body weight, higher total ovarian weight to body weight ratio, and a restoration of the estrous cycle similar to the control group. Serum levels of estradiol (E2) and follicle stimulating hormone (FSH), two sex hormones, were also improved. Ovarian ultrastructure and follicle count at all stages showed improvement. Moreover, the viability and proliferation capacity of OSCs were enhanced following ZGP intervention. The Nrf2/HO-1 pathway was found to be down-regulated in CTX-induced aging ovarian OSCs. However, ZGP reversed this effect by activating the expression of Nrf2, HO-1, and NAD(P)H oxidoreductase 1 (NQO1), increasing the activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reducing the accumulation of malonaldehyde (MDA) and reactive oxygen species (ROS), thus restoring resistance to oxidative stress. Additionally, ZGP improved the cell cycle of OSCs, up-regulated the expression of Cyclin D1 and Cyclin E1, restored cell stemness, promoted proliferation, enhanced the expression of cell stemness markers octamer-binding transcription factor 4 (Oct4) and mouse VASA homolog (MVH), and down-regulated the expression of P21, thereby inhibiting apoptosis. The therapeutic effects of ZGP against oxidative stress and restoration of cell stemness were attenuated following inhibition of the Nrf2 signaling pathway using ML385. CONCLUSIONS ZGP protected against CTX-induced ovarian aging by restoring normal ovarian function, alleviating oxidative stress in aging OSCs, promoting OSCs proliferation, and restoring their stemness in rats, possibly through regulating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Zuang Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yunyi Liang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yixuan Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuewei Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lihua Zeng
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuying Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ling Zhu
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Oocyte maturation, blastocyst and embryonic development are mediated and enhanced via hormesis. Food Chem Toxicol 2024; 192:114941. [PMID: 39153727 DOI: 10.1016/j.fct.2024.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The present paper provides the first integrative assessment of the capacity of dietary, endogenous and other agents to induce hormetic dose responses in oocytes, their supportive cells such as granulosa cells, blastocyst formation and early stage embryo development with the goal of improving fertility and reproductive success. The analysis showed that numerous agents enhance oocyte maturation and blastocyst/embryonic development in an hormetic fashion. These findings indicate that numerous agents improve oocyte-related biological functioning under normal conditions as well as enhancing its capacity to prevent damage from numerous chemical toxins and related stressor agents, including heat and age-related processes in pre-post conditioning and concurrent exposures. The present assessment suggests that hormetic-based lifestyles and dietary interventions may offer the potential to enhance healthy reproductive performance with applications to animal husbandry and human biology. The present findings also significantly extend the generality of the hormesis dose response concept to multiple fundamental biological processes (i.e., oocyte maturation, fertilization and blastocyst/embryo development).
Collapse
Affiliation(s)
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
4
|
Lang LI, Wang ZZ, Liu B, Chang-Qing SHEN, Jing-Yi TU, Shi-Cheng WANG, Rui-Ling LEI, Si-Qi PENG, Xiong XIAO, Yong-Ju ZHAO, Qiu XY. The effects and mechanisms of heat stress on mammalian oocyte and embryo development. J Therm Biol 2024; 124:103927. [PMID: 39153259 DOI: 10.1016/j.jtherbio.2024.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
The sum of nonspecific physiological responses exhibited by mammals in response to the disruption of thermal balance caused by high-temperature environments is referred to as heat stress (HS). HS affects the normal development of mammalian oocyte and embryos and leads to significant economic losses. Therefore, it is of great importance to gain a deep understanding of the mechanisms underlying the effects of HS on oocyte and embryonic development and to explore strategies for mitigating or preventing its detrimental impacts in the livestock industry. This article provides an overview of the negative effects of HS on mammalian oocyte growth, granulosa cell maturation and function, and embryonic development. It summarizes the mechanisms by which HS affects embryonic development, including generation of reactive oxygen species (ROS), endocrine disruption, the heat shock system, mitochondrial autophagy, and molecular-level alterations. Furthermore, it discusses various measures to ameliorate the effects of HS, such as antioxidant use, enhancement of mitochondrial function, gene editing, cultivating varieties possessing heat-resistant genes, and optimizing the animals'rearing environment. This article serves as a valuable reference for better understanding the relationship between HS and mammalian embryonic development as well as for improving the development of mammalian embryos and economic benefits under HS conditions in livestock production.
Collapse
Affiliation(s)
- L I Lang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Zhen-Zhen Wang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Bin Liu
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - S H E N Chang-Qing
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - T U Jing-Yi
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - W A N G Shi-Cheng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - L E I Rui-Ling
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - P E N G Si-Qi
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - X I A O Xiong
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Z H A O Yong-Ju
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Xiao-Yan Qiu
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China.
| |
Collapse
|
5
|
Bao M, Ma Y, Liang M, Sun X, Ju X, Yong Y, Liu X. Research progress on pharmacological effects and new dosage forms of baicalin. Vet Med Sci 2022; 8:2773-2784. [DOI: 10.1002/vms3.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Minglong Bao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Yunfei Ma
- College of Veterinary Medicine, China Agricultural University Beijing P. R. China
| | - Mei Liang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xinyi Sun
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang P. R. China
| |
Collapse
|
6
|
Zhuang Z, Wu J, Xu C, Ruan D, Qiu Y, Zhou S, Ding R, Quan J, Yang M, Zheng E, Wu Z, Yang J. The Genetic Architecture of Meat Quality Traits in a Crossbred Commercial Pig Population. Foods 2022; 11:foods11193143. [PMID: 36230219 PMCID: PMC9563986 DOI: 10.3390/foods11193143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022] Open
Abstract
Meat quality is of importance in consumer acceptance and purchasing tendency of pork. However, the genetic architecture of pork meat quality traits remains elusive. Herein, we conducted genome-wide association studies to detect single nucleotide polymorphisms (SNPs) and genes affecting meat pH and meat color (L*, lightness; a*, redness; b*, yellowness) in 1518 three-way crossbred pigs. All individuals were genotyped using the GeneSeek Porcine 50K BeadChip. In sum, 30 SNPs and 20 genes are found to be associated with eight meat quality traits. Notably, we detect one significant quantitative trait locus (QTL) on SSC15 with a 143 kb interval for meat pH (pH_12h), together with the most promising candidate TNS1. Interestingly, two newly identified SNPs located in the TTLL4 gene demonstrate the highest phenotypic variance of pH_12h in this QTL, at 2.67%. The identified SNPs are useful for the genetic improvement of meat quality traits in pigs by assigning higher weights to associated SNPs in genomic selection.
Collapse
Affiliation(s)
- Zhanwei Zhuang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Cineng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Donglin Ruan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yibin Qiu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shenping Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Rongrong Ding
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Zhongxin Breeding Technology Co., Ltd., Guangzhou 511466, China
| | - Jianping Quan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ming Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527400, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
7
|
Tan Z, Hung SW, Zheng X, Wang CC, Chung JPW, Zhang T. What We Have Learned from Animal Models to Understand the Etiology and Pathology of Endometrioma-Related Infertility. Biomedicines 2022; 10:biomedicines10071483. [PMID: 35884788 PMCID: PMC9313443 DOI: 10.3390/biomedicines10071483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Endometrioma (OMA) is the most common subtype of endometriosis, in which the endometriotic lesions are implanted in the ovary. Women with OMA are usually associated with infertility, presenting with reduced ovarian reserve, low oocyte quantity and quality, and poor fertility outcomes. However, the underlying pathological mechanisms in OMA-related infertility are still unclear. Due to the limitations and ethical issues of human studies in reproduction, animal models that recapitulate OMA characteristics and its related infertility are critical for mechanistic studies and subsequent drug development, preclinical testing, and clinical trials. This review summarized the investigations of OMA-related infertility based on previous and latest endometrioma models, providing the possible pathogenesis and potential therapeutic targets for further studies.
Collapse
Affiliation(s)
- Zhouyurong Tan
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
| | - Sze-Wan Hung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
| | - Xu Zheng
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
| | - Chi-Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
- Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
- Sichuan University-Chinese University of Hong Kong Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Jacqueline Pui-Wah Chung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
- Correspondence: ; Tel.: +852-3505-3099
| |
Collapse
|
8
|
Fan H, He J, Bai Y, He Q, Zhang T, Zhang J, Yang G, Xu Z, Hu J, Yao G. Baicalin improves the functions of granulosa cells and the ovary in aged mice through the mTOR signaling pathway. J Ovarian Res 2022; 15:34. [PMID: 35300716 PMCID: PMC8932175 DOI: 10.1186/s13048-022-00965-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Background The mammalian follicle is the basic functional unit of the ovary, and its normal development is required to obtaining oocytes capable of fertilization. As women get older or decline in ovarian function due to certain pathological factors, the growth and development of follicles becomes abnormal, which ultimately leads to infertility and other related female diseases. Kuntai capsules are currently used in clinical practice to improve ovarian function, and they contain the natural compound Baicalin, which is a natural compound with important biological activities. At present, the role and mechanism of Baicalin in the development of ovarian follicles is unclear. Methods Human primary granulosa cells collected from follicular fluid, and then cultured and treated with Baicalin or its normal control, assessed for viability, subjected to RT-PCR, western blotting, flow cytometry, and hormone analyses. The estrus cycle and oocytes of CD-1 mice were studied after Baicalin administration and compared with controls. Ovaries were collected from the mice and subjected to hematoxylin-eosin staining and immunohistochemistry analysis. Results We showed that Baicalin had a dose-dependent effect on granulosa cells cultured in vitro. A low concentration of Baicalin (for example, 10 μM) helped to maintain the viability of granulosa cells; however, at a concentration exceeding 50 μM, it exerted a toxic effect. A low concentration significantly improved the viability of granulosa cells and inhibited cell apoptosis, which may be related to the resultant upregulation of Bcl-2 expression and downregulation of Bax and Caspase 3. By constructing a hydrogen peroxide-induced cell oxidative stress damage model, we found that Baicalin reversed the cell damage caused by hydrogen peroxide. In addition, Baicalin increased the secretion of estradiol and progesterone by upregulating P450arom and stAR. The results of the in vivo experiment showed that the intragastric administration of Baicalin to aged mice improved the estrous cycle and oocyte quality. Furthermore, we observed that Baicalin enhanced the viability of granulosa cells through the mTOR pathway, which in turn improve ovarian function. Conclusion These results indicate that Baicalin could improve the viability of ovarian granulosa cells and the secretion of steroid hormones and thus could help to improve degenerating ovarian function and delay ovarian aging. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-00965-7.
Collapse
Affiliation(s)
- Huiying Fan
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiahuan He
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yucheng Bai
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qina He
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tongwei Zhang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junya Zhang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guang Yang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ziwen Xu
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingyi Hu
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guidong Yao
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
9
|
Li H, Cong X, Sui J, Jiang Z, Fu K, Huan Y, Cao R, Tian W, Feng Y. Baicalin enhances the thermotolerance of mouse blastocysts by activating the ERK1/2 signaling pathway and preventing mitochondrial dysfunction. Theriogenology 2022; 178:85-94. [PMID: 34808561 DOI: 10.1016/j.theriogenology.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Heat stress causes oxidative damage and induces excessive cell apoptosis and thus affects the development and/or even causes the death of preimplantation embryos. The effects of baicalin on the developmental competence of heat-stressed mouse embryos were investigated in this experiment. Two-cell embryos were cultured in the presence of baicalin and subjected to heat stress (42 °C for 1 h) at their blastocyst stage followed by continuous culture at 37 °C until examination. The results showed that heat stress (H group) increased reactive oxygen species (ROS) production, apoptosis and even embryo death, along with reductions in both mitochondrial activity and membrane potential (ΔΨm). Both heat stress (H group) and inhibition of the ERK1/2 signaling pathway (U group) led to significantly reduced expression levels of the genes c-fos, AP-1 and ERK2, and the phosphorylation of ERK1/2 and c-Fos, along with significantly increased c-Jun mRNA expression and phosphorylation levels. These negative effects of heat stress on the ERK1/2 signaling pathway were neutralized by baicalin treatment. To explore the signal transduction mechanism of baicalin in improving embryonic tolerance to heat stress, mitochondrial quality and apoptosis rate in the mouse blastocysts were also examined. Baicalin was found to up-regulate the expression of mtDNA and TFAM mRNA, increased mitochondria activity and ΔΨm, and improved the cellular mitochondria quality of mouse blastocysts undergoing heat stress. Moreover, baicalin decreased Bax transcript abundance in blastocyst, along with an increase in the blastocyst hatching rate, which were negatively affected by heat stress. Our findings suggest that baicalin improves the developmental capacity and quality of heat-stressed mouse embryos via a mechanism whereby mitochondrial quality is improved by activating the ERK1/2 signaling pathway and inducing anti-cellular apoptosis.
Collapse
Affiliation(s)
- Huatao Li
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Xia Cong
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Junxia Sui
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Zhongling Jiang
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Kaiqiang Fu
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yanjun Huan
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Rongfeng Cao
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Wenru Tian
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| | - Yanni Feng
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
10
|
Wang L, Tang J, Wang L, Tan F, Song H, Zhou J, Li F. Oxidative stress in oocyte aging and female reproduction. J Cell Physiol 2021; 236:7966-7983. [PMID: 34121193 DOI: 10.1002/jcp.30468] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
In a healthy body, reactive oxygen species (ROS) and antioxidants remain balanced. When the balance is broken toward an overabundance of ROS, oxidative stress appears and may lead to oocyte aging. Oocyte aging is mainly reflected as the gradual decrease of oocyte quantity and quality. Here, we aim to review the relationship between oxidative stress and oocyte aging. First, we introduced that the defective mitochondria, the age-related ovarian aging, the repeated ovulation, and the high-oxygen environment were the ovarian sources of ROS in vivo and in vitro. And we also introduced other sources of ROS accumulation in ovaries, such as overweight and unhealthy lifestyles. Then, we figured that oxidative stress may act as the "initiator" for oocyte aging and reproductive pathology, which specifically causes follicular abnormally atresia, abnormal meiosis, lower fertilization rate, delayed embryonic development, and reproductive disease, including polycystic ovary syndrome and ovary endometriosis cyst. Finally, we discussed current strategies for delaying oocyte aging. We introduced three autophagy antioxidant pathways like Beclin-VPS34-Atg14, adenosine 5'-monophosphate (AMP)-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR), and p62-Keap1-Nrf2. And we also describe the different antioxidants used to combat oocyte aging. In addition, the hypoxic (5% O2 ) culture environment for oocytes avoiding oxidative stress in vitro. So, this review not only contribute to our general understanding of oxidative stress and oocyte aging but also lay the foundations for the therapies to treat premature ovarian failure and oocyte aging in women.
Collapse
Affiliation(s)
- Ling Wang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China
| | - Jinhua Tang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China
| | - Lei Wang
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China
| | - Feng Tan
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China
| | - Huibin Song
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China
| | - Jiawei Zhou
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fenge Li
- Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, PR China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| |
Collapse
|
11
|
Abstract
In vitro culture of the embryo is a useful method to treat infertility that shows embryo potential for selecting the best one to transfer and successfully implantation. However, embryo development in vitro is affected by oxidative stresses such as reactive oxygen species that may damage embryo development. Antioxidants are molecules found in fruits, vegetables, and fish that play an important role in reducing oxidative processes. In the natural environment, there is a physiological antioxidant system that protects embryos against oxidative damage. This antioxidant system does not exist in vitro. Antioxidants act as free radical scavengers and protect cells or repair damage done by free radicals. Various studies have shown that adding antioxidants into embryo culture medium improves embryo development in vitro. This review article emphasizes different aspects of various antioxidants, including types, functions and mechanisms, on the growth improvement of different species of embryos in vitro.
Collapse
|
12
|
Cyanidin improves oocyte maturation and the in vitro production of pig embryos. In Vitro Cell Dev Biol Anim 2020; 56:577-584. [PMID: 32754855 DOI: 10.1007/s11626-020-00485-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
Abstract
The objective of this study was to reduce the negative effects of oxidative stress by decreasing the levels of reactive oxygen species (ROS) through supplementation of the major antioxidants present in elderberries: kuromanin and cyanidin. Oocytes (n = 1150) were supplemented with 100 or 200 μM of kuromanin or cyanidin during maturation, and then evaluated for ROS levels or fertilized and evaluated for penetration, polyspermic penetration, male pronucleus formation, and embryonic development. The ROS levels and incidence of polyspermic penetration were lower (P < 0.05) in oocytes supplemented with 100 μM cyanidin when compared with other treatments. Supplementation of 100 μM cyanidin increased (P < 0.05) MPN and blastocyst formation compared with other treatments. However, supplementation of 100 μM kuromanin did not have significant effects on the criteria evaluated, and supplementation of 200 μM kuromanin had significant (P < 0.05) detrimental effects for each criterion. Additional oocytes (n = 1438) were supplemented with 100 μM cyanidin during maturation and evaluated for glutathione, glutathione peroxidase, catalase, and superoxide dismutase activity. Supplementation of 100 μM cyanidin increased (P < 0.05) catalase activity and intracellular GSH levels compared with no supplementation of cyanidin. These results indicate that supplementing cyanidin during maturation reduces oxidative stress by reducing ROS levels and increasing GSH concentrations within the oocyte.
Collapse
|
13
|
In vitro Production of Porcine Embryos: Current Status and Possibilities – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This paper presents the current possibilities, state of knowledge and prospects of in vitro production (IVP) of pig embryos, which consists of in vitro oocyte maturation, in vitro fertilization and in vitro embryo culture. In pigs, oocyte maturation is one of the most important stages in the embryo IVP process. It determines the oocyte’s fertilization ability as well as its embryonic development. Through many research studies of the proper selection of oocytes and appropriate maturation medium composition (especially the addition of various supplements), the in vitro maturation of pig oocytes has been significantly improved. Recent studies have demonstrated that modifications of the diluents and in vitro fertilization media can reduce polyspermy. Furthermore, several adjustments of the porcine culture media with the addition of some supplements have enhanced the embryo quality and developmental competence. These updates show the progress of IVP in pigs that has been achieved; however, many problems remain unsolved.
Collapse
|
14
|
Kim EH, Kim GA, Taweechaipaisankul A, Ridlo MR, Lee SH, Ra K, Ahn C, Lee BC. Phytanic acid-derived peroxisomal lipid metabolism in porcine oocytes. Theriogenology 2020; 157:276-285. [PMID: 32823023 DOI: 10.1016/j.theriogenology.2020.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Lipid metabolism plays an important role in oocyte maturation. The peroxisome is the fundamental mediator for this mechanism. In this study, we investigated the peroxisomal lipid metabolism in porcine oocytes. Phytanic acid (PA) was chosen as an activator of alpha-oxidation in peroxisomes. Oocyte maturation, embryo development, immunocytochemistry of peroxisomal lipid activities, and staining of mitochondrial potentials were assessed. We found that 40 μM PA not only increased porcine oocyte maturation and embryonic development, but also upregulated the expression of genes and proteins related to activities of the peroxisomal lipid metabolism (PHYH, PEX19, and PEX subfamilies) and mitochondrial potentials (NRF1 and PGC1α). Moreover, PA upregulated the lipid droplet and fatty acid content in the oocytes. Moreover, mitochondria were activated and the mitochondrial membrane potential was increased after PA treatment, resulting in the production of more ATPs in the oocytes. Our findings suggest that the degradation of PA via alpha-oxidation in the peroxisome may potentiate oocyte maturation processes, peroxisomal lipid oxidation, and mitochondria activities.
Collapse
Affiliation(s)
- Eui Hyun Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Anukul Taweechaipaisankul
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Muhammad Rosyid Ridlo
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Department of Bioresource Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Seok Hee Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kihae Ra
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Curie Ahn
- Division of Nephrology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|