1
|
Chen G, Zhou T, Cao J, Li X, Zhu C, Wang L, Zou G, Liang H. Roles of estrogen receptors during sexual reversal in Pelodiscus sinensis. Mol Biol Rep 2024; 51:634. [PMID: 38727746 DOI: 10.1007/s11033-024-09482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/26/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The Chinese soft-shelled turtle, Pelodiscus sinensis, exhibits distinct sexual dimorphism, with the males growing faster and larger than the females. During breeding, all-male offspring can be obtained using 17β-estradiol (E2). However, the molecular mechanisms underlying E2-induced sexual reversal have not yet been elucidated. Previous studies have investigated the molecular sequence and expression characteristics of estrogen receptors (ERs). METHODS AND RESULTS In this study, primary liver cells and embryos of P. sinensis were treated with ER agonists or inhibitors. Cell incubation experiments revealed that nuclear ERs (nERs) were the main pathway for the transmission of estrogen signals. Our results showed that ERα agonist (ERα-ag) upregulated the expression of Rspo1, whereas ERα inhibitor (ERα-Inh) downregulated its expression. The expression of Dmrt1 was enhanced after ERα-Inh + G-ag treatment, indicating that the regulation of male genes may not act through a single estrogen receptor, but a combination of ERs. In embryos, only the ERα-ag remarkably promoted the expression levels of Rspo1, Wnt4, and β-catenin, whereas the ERα-Inh had a suppressive effect. Additionally, Dmrt1, Amh, and Sox9 expression levels were downregulated after ERβ inhibitor (ERβ-Inh) treatment. GPER agonist (G-ag) has a significant promotion effect on Rspo1, Wnt4, and β-catenin, while the inhibitor G-Inh does not affect male-related genes. CONCLUSIONS Overall, these results suggest that ERs play different roles during sexual reversal in P. sinensis and ERα may be the main carrier of estrogen-induced sexual reversal in P. sinensis. Further studies need to be performed to analyze the mechanism of ER action.
Collapse
Affiliation(s)
- Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China
| | - Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China
| | - Jizeng Cao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiang Li
- Anhui Xijia Agricultural Development Co. Ltd, Bengbu, 233700, China
| | - Chengjun Zhu
- Anhui Xijia Agricultural Development Co. Ltd, Bengbu, 233700, China
| | - Long Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, 430223, China.
| |
Collapse
|
2
|
Zhou T, Cao J, Chen G, Wang Y, Zou G, Liang H. Role of Sox3 in Estradiol-Induced Sex Reversal in Pelodiscus sinensis. Int J Mol Sci 2023; 25:248. [PMID: 38203425 PMCID: PMC10779075 DOI: 10.3390/ijms25010248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The Chinese soft-shelled turtle Pelodiscus sinensis, an economically important species in China, exhibits significant sexual dimorphism. Males are more valuable than females owing to their wider calipash and faster growth. Estradiol (E2)-induced sex reversal is used to achieve all-male breeding of turtles; however, the mechanism of this sex reversal remains unclear. In this study, we characterized the Sox3 gene, whose expression level was high in the gonads and brain and exhibited significant sexual dimorphism in the ovary. During embryonic development, Sox3 was highly expressed at the initiation of ovarian differentiation. E2 and Sox3-RNAi treatment before sexual differentiation led to 1352, 908, 990, 1011, and 975 differentially expressed genes in five developmental stages, respectively, compared with only E2 treatment. The differentially expressed genes were clustered into 20 classes. The continuously downregulated and upregulated genes during gonadal differentiation were categorized into Class 0 (n = 271) and Class 19 (n = 606), respectively. KEGG enrichment analysis showed that Sox3 significantly affected sexual differentiation via the Wnt, TGF-β, and TNF signaling pathways and mRNA surveillance pathway. The expression of genes involved in these signaling pathways, such as Dkk4, Nog, Msi1, and Krt14, changed significantly during gonadal differentiation. In conclusion, the deletion of Sox3 may lead to significant upregulation of the mRNA surveillance pathway and TNF and Ras signaling pathways and downregulation of the Wnt and TGF-β signaling pathways, inhibiting E2-induced sex reversal. These findings suggest that Sox3 may play a certain promoting effect during E2-induced sex reversal in P. sinensis.
Collapse
Affiliation(s)
- Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (J.C.); (G.C.); (Y.W.); (G.Z.)
| | - Jizeng Cao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (J.C.); (G.C.); (Y.W.); (G.Z.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (J.C.); (G.C.); (Y.W.); (G.Z.)
| | - Yubin Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (J.C.); (G.C.); (Y.W.); (G.Z.)
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (J.C.); (G.C.); (Y.W.); (G.Z.)
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (J.C.); (G.C.); (Y.W.); (G.Z.)
| |
Collapse
|
3
|
Cao J, Zhou T, Chen G, Zou G, Liang H. Effect of Exogenous Hormone on R-Spondin 2 ( Rspo2) and R-Spondin 3 ( Rspo3) Gene Expression and Embryo Development in Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). Genes (Basel) 2023; 14:1466. [PMID: 37510371 PMCID: PMC10379378 DOI: 10.3390/genes14071466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The Chinese soft-shelled turtle, Pelodiscus sinensis, is an important aquaculture species in China that exhibits distinct sexual dimorphism; male individuals are economically more valuable than females. In vertebrates, several R-spondin family proteins have been associated with sex differentiation mechanisms; however, their involvement in P. sinensis sex differentiation is unclear. Exogenous hormones such as estradiol (E2) also influence the sex differentiation of P. sinensis and induce sexual reversal. In the present study, we investigated the effects of E2 on the embryonic development of P. sinensis and the expression of R-spondin 2 (Rspo2) and R-spondin 3 (Rspo3). We amplified P. sinensis Rspo2 and Rspo3 and analyzed their expression patterns in different tissues. Comparative analyses with protein sequences from other species elucidated that P. sinensis RSPO2 and RSPO3 sequences were conserved. Moreover, phylogenetic analysis revealed that P. sinensis RSPO2 and RSPO3 were closely related to these two proteins from other turtle species. Furthermore, Rspo2 and Rspo3 were highly expressed in the brain and gonads of adult turtles, with significantly higher expression in the ovaries than in the testes (p < 0.05). We also evaluated the expression of Rspo2 and Rspo3 after the administration of three concentrations of E2 (1.0, 5.0, and 10.0 mg/mL) to turtle eggs during embryonic development. The results revealed that E2 upregulated Rspo2 and Rspo3, and the expression trends varied during different embryonic developmental stages (stages 13-20). These findings lay the groundwork for future investigations into the molecular mechanisms involved in the sex differentiation of Chinese soft-shelled turtles.
Collapse
Affiliation(s)
- Jizeng Cao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (G.C.)
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Guobin Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (G.C.)
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Hongwei Liang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (G.C.)
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| |
Collapse
|
4
|
Zheng M, Liu X, Meng Y, Lin X, Li J, Zhu J, Zhao M, Liu L, Geng T, Gong D, Zhang J. Female-Biased Expression of R-spondin 1 in Chicken Embryonic Gonads Is Estrogen-Dependent. Animals (Basel) 2023; 13:2240. [PMID: 37444038 DOI: 10.3390/ani13132240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The mechanism of sex determination in chickens, especially the molecular mechanism of female ovarian development, has not yet been fully elucidated. Previous studies have shown that RSPO1, which is associated with ovarian development in mammals, might have a conserved role in chickens. In this study, we systematically investigated the spatiotemporal expression pattern of RSPO1 in various tissues, especially gonads, of male and female chicken embryos using qPCR and Western blotting, and we explored its correlation with the expression of key genes in the estrogen pathway using drug treatment or gene overexpression in vivo and in vitro. Our results reveal that RSPO1 was widely expressed in all examined tissues of chicken embryos, showing a female bias in gonadal tissues at both the mRNA and protein levels. Surprisingly, RSPO1 was not differentially expressed between male and female gonadal cells with fadrozole-induced estrogen pathway blockades, and furthermore, estradiol-induced estrogen stimulation altered the expression of RSPO1. In addition, overexpression of RSPO1 in gonadal cells induced the mRNA expression of its downstream target genes, Wnt family member 4 (WNT4) and Catenin beta 1 (CTNNB1), and that of estrogen receptor α (ERα), an estrogen pathway gene. In summary, this study provided new evidence for elucidating the role of RSPO1 in ovarian development in poultry.
Collapse
Affiliation(s)
- Mingde Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xikui Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yu Meng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiao Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiahui Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jianguo Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Molecular cloning and characterization of Sirt1 and its role in the follicle of juvenile Chinese soft-shelled turtle (Pelodiscus sinensis). Gene 2023; 860:147211. [PMID: 36708847 DOI: 10.1016/j.gene.2023.147211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
Sirt1 is a member of the Sirtuins family that regulates ovarian senescence, follicular development, and oocyte maturation in vertebrates. To understand its role in the ovary of Pelodiscus sinensis, we cloned the full-length cDNA of Ps-Sirt1 and characterized its potential function by intraperitoneally injecting agonist (resveratrol) and antagonist (EX527) in the female juvenile turtle. The full-length cDNA of Ps-Sirt1 was 2106 bp, comprising 203 bp 5'UTR, a 226 bp 3'UTR, and a 1677 bp ORF encoding 558 amino acids. The calculated molecular weight of predicted protein was 63 kDa, and the isoelectric point was 4.65. The predicted protein comprised a conserved Sir2 domain. Amino acid sequence alignment and phylogenetic analyses showed that Ps-Sirt1 was most closely related to turtles, and distantly related to fish. Expression pattern analysis showed Ps-Sirt1 was highest expressed in ovary, followed by testis, liver, heart, and brain. In the ovarian differentiation processes, Sirt1 showed significantly higher expression at embryonic stage 15 and 21. In the testis differentiation process, Sirt1 expression was downregulated at embryonic stages 15-19. Activated and inactivated Sirt1 decreased the number of primordial follicles in juvenile turtles. Bcl2, Bax, mTOR, and rpS6 expressions were up-regulated, whereas GnRH, Fshb, p50, and p65 were down-regulated after agonist treatment. The inaction of Sirt1 with antagonist up-regulated GnRH, Fshb, p65, p53, Foxo3a, Bcl2, Bax, mTOR, and rpS6, but down-regulated p50. In summary, Sirt1 might be involved in the ovarian follicle development of P. sinensis.
Collapse
|
6
|
Zhou T, Zhang H, Chen M, Zhang Y, Chen G, Zou G, Liang H. Identification and Expression Analysis of Wnt2 Gene in the Sex Differentiation of the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). LIFE (BASEL, SWITZERLAND) 2023; 13:life13010188. [PMID: 36676139 PMCID: PMC9864750 DOI: 10.3390/life13010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis) is an important freshwater aquaculture animal in China. The Wnt gene family plays important regulatory roles in the development and growth of mammals. However, the precise function of these family genes has not been well understood in the sex differentiation of Chinese soft-shelled turtles. Here, we cloned a member of the Wnt family, Wnt2, which obtained a 1077 bp open reading frame that encoded a 358-aa protein. The putative amino acid sequences of proteins are exceeded 80% identical to other turtles. The expression level of Wnt2 peaked at the 14th stage both in female and male embryos during the early gonadal differentiation period of Chinese soft-shelled turtles, which occurred before gonadal differentiation. Wnt2 mRNA was expressed at higher levels in the brains and gonads of mature P. sinensis females compared with those in mature males. Wnt agonists significantly affected the expression level of Wnt2 during the gonadal differentiation period. After Wnt agonists (1.0 μg/μL, 2.5 μg/μL, 5.0 μg/μL) treatment, the expression level of the Wnt2 generally appeared to have an inverted-V trend over time in female embryonic gonads. The results suggested that Wnt2 may participate in the regulation of gonad development in P. sinensis during the early embryonic stages. These results could provide a theoretical basis for the reproduction process of the Chinese soft-shelled turtle.
Collapse
Affiliation(s)
- Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Haiqi Zhang
- Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Meng Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yingping Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence: (G.Z.); (H.L.)
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence: (G.Z.); (H.L.)
| |
Collapse
|
7
|
Expression and Characterization of the Spats1 Gene and Its Response to E2/MT Treatment in the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). Animals (Basel) 2022; 12:ani12141858. [PMID: 35883403 PMCID: PMC9311554 DOI: 10.3390/ani12141858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Spats1 (spermatogenesis-associated, serinerich 1) has been characterized as a male-biased gene which acts an important role in the germ cell differentiation of mammals. Nevertheless, the function of Spats1 in the Chinese soft-shelled turtle (P. sinensis) has not yet been reported. To initially explore the expression of Spats1 in P. sinensis and its response to sex steroid treatment, we cloned the CDS of Spats1 for the first time and analyzed its expression profile in different tissues, including the testes in different seasons. The Spats1 cDNA fragment is 1201 base pairs (bp) in length and contains an open reading frame (ORF) of 849 bp, which codes for 283 amino acids. Spats1 mRNA was highly expressed in the testes (p < 0.01) and barely detectable in other tissues. In P. sinensis, the relative expression of Spats1 also responsive to seasonal changes in testis development. In summer (July) and autumn (October), Spats1 gene expression was significantly higher in the testes than in other seasons (p < 0.05). Spats1 mRNA was found to be specifically expressed in germ cells by chemical in situ hybridization (CISH), and it was mainly located in primary spermatocytes (Sc1), secondary spermatocytes (Sc2) and spermatozoa (St). Spats1 expression in embryos was not significantly changed after 17α-methyltestosterone (MT)and 17β-estradiol (E2) treatment. In adults, MT significantly induced Spats1 expression in male P. sinensis. However, the expression of Spats1 in testes was not responsive to E2 treatment. In addition, the expression of Spats1 in females was not affected by either MT or E2 treatment. These results imply that Spats1 is a male-specific expressed gene that is mainly regulated by MT and is closely linked to spermatogenesis and release in P. sinensis.
Collapse
|
8
|
Zhou T, Chen G, Chen M, Wang Y, Zou G, Liang H. Tandem Mass Tag-Based Quantitative Proteomics Analysis of Gonads Reveals New Insight into Sexual Reversal Mechanism in Chinese Soft-Shelled Turtles. BIOLOGY 2022; 11:biology11071081. [PMID: 36101459 PMCID: PMC9312195 DOI: 10.3390/biology11071081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Chinese soft-shelled turtles display obvious sex dimorphism. The exogenous application of hormones (estradiol and methyltestosterone) can change the direction of gonadal differentiation of P. sinensis to produce sex reversed individuals. However, the molecular mechanism remains unclear. In this study, TMT-based quantitative proteomics analysis of four types of P. sinensis (female, male, pseudo-female, and pseudo-male) gonads were compared. Quantitative analysis of 6107 labeled proteins in the four types of P. sinensis gonads was performed. We identified 440 downregulated and 423 upregulated proteins between pseudo-females and males, as well as 394 downregulated and 959 upregulated proteins between pseudo-males and females. In the two comparisons, the differentially expressed proteins, including K7FKG1, K7GIQ2, COL4A6, K7F2U2, and K7FF80, were enriched in some important pathways, such as focal adhesion, endocytosis, apoptosis, extracellular matrix-receptor interaction, and the regulation of actin cytoskeleton, which were upregulated in pseudo-female vs. male and downregulated in pseudo-male vs. female. In pathways such as ribosome and spliceosome, the levels of RPL28, SRSF3, SNRNP40, and HNRNPK were increased from male to pseudo-female, while they decreased from female to pseudo-male. All differentially expressed proteins after sexual reversal were divided into six clusters, according to their altered levels in the four types of P. sinensis, and associated with cellular processes, such as embryonic development and catabolic process, that were closely related to sexual reversal. These data will provide clues for the sexual reversal mechanism in P. sinensis.
Collapse
Affiliation(s)
- Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
| | - Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
- College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China
| | - Meng Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
| | - Yubin Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
- College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
- Correspondence: (G.Z.); (H.L.); Tel.: +86-27-8178-0097 (H.L.)
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
- Correspondence: (G.Z.); (H.L.); Tel.: +86-27-8178-0097 (H.L.)
| |
Collapse
|
9
|
Zhou T, Chen G, Chen M, Wang Y, Zou G, Liang H. Direct Full-Length RNA Sequencing Reveals an Important Role of Epigenetics During Sexual Reversal in Chinese Soft-Shelled Turtle. Front Cell Dev Biol 2022; 10:876045. [PMID: 35399508 PMCID: PMC8990255 DOI: 10.3389/fcell.2022.876045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
Sex dimorphism is a key feature of Chinese soft-shelled turtle (Pelodiscus sinensis). The males (M) have higher econosmic value than females (F) due to wider calipash and faster growth. Exogenous hormones like estradiol and methyltestosterone can induce sexual reversal to form new phenotypes (pseudo-female, PF; pseudo-male, PM) without changing the genotype. The possibility of inducing sexual reversal is particularly important in aquaculture breeding, but the underlying biological mechanisms remain unclear. Here we applied a direct RNA sequencing method with ultralong reads using Oxford Nanopore Technologies to study the transcriptome complexity in P. sinensis. Nanopore sequencing of the four gender types (M, F, PF, and PM) showed that the distribution of read length and gene expression was more similar between same-sex phenotypes than same-sex genotypes. Compared to turtles with an M phenotype, alternative splicing was more pronounced in F turtles, especially at alternative 3′ splice sites, alternative 5′ splice sites, and alternative first exons. Furthermore, the two RNA methylation modifications m5C and m6A were differentially distributed across gender phenotypes, with the M type having more modification sites in coding sequence regions, but fewer modification sites in 3′UTR regions. Quantitative analysis of enriched m6A RNAs revealed that the N6-methylated levels of Odf2, Pacs2, and Ak1 were significantly higher in M phenotype individuals, while the N6-methylated levels of Ube2o were reduced after sexual reversal from both M and F phenotypes. Taken together, these findings reveal an important role of epigenetics during sexual reversal in Chinese soft-shelled turtles.
Collapse
Affiliation(s)
- Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Meng Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
| | - Yubin Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
- *Correspondence: Guiwei Zou, ; Hongwei Liang,
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan, China
- *Correspondence: Guiwei Zou, ; Hongwei Liang,
| |
Collapse
|
10
|
Wang Y, Luo X, Qu C, Xu T, Zou G, Liang H. The Important Role of Sex-Related Sox Family Genes in the Sex Reversal of the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). BIOLOGY 2022; 11:biology11010083. [PMID: 35053081 PMCID: PMC8773217 DOI: 10.3390/biology11010083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 04/08/2023]
Abstract
The Chinese soft-shelled turtle Pelodiscus sinensis shows obvious sexual dimorphism. The economic and nutrition value of male individuals are significantly higher than those of female individuals. Pseudo-females which are base to all-male breeding have been obtained by estrogen induction, while the gene function and molecular mechanism of sex reversal remain unclear in P. sinensis. Here, comparative transcriptome analyses of female, male, and pseudo-female gonads were performed, and 14,430 genes differentially expressed were identified in the pairwise comparison of three groups. GO and KEGG analyses were performed on the differentially expressed genes (DEGs), which mainly concentrated on steroid hormone synthesis. Furthermore, the results of gonadal transcriptome analysis revealed that 10 sex-related sox genes were differentially expressed in males vs. female, male vs. pseudo-female, and female vs. pseudo-female. Through the differential expression analysis of these 10 sox genes in mature gonads, six sox genes related to sex reversal were further screened. The molecular mechanism of the six sox genes in the embryo were analyzed during sex reversal after E2 treatment. In mature gonads, some sox family genes, such as sox9sox12, and sox30 were highly expressed in the testis, while sox1, sox3, sox6, sox11, and sox17 were lowly expressed. In the male embryos, exogenous estrogen can activate the expression of sox3 and inhibit the expression of sox8, sox9, and sox11. In summary, sox3 may have a role in the process of sex reversal from male to pseudo-female, when sox8 and sox9 are inhibited. Sox family genes affect both female and male pathways in the process of sex reversal, which provides a new insight for the all-male breeding of the Chinese soft-shelled turtle.
Collapse
Affiliation(s)
- Yubin Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China;
| | - Xiangzhong Luo
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China;
| | - Chunjuan Qu
- Bengbu Aquatic Technology Promotion Center, Bengbu 233000, China;
| | - Tao Xu
- College of Biology & Pharmacy, China Three Gorges University, Yichang 443002, China;
| | - Guiwei Zou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China;
- Correspondence: (G.Z.); (H.L.)
| | - Hongwei Liang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China;
- Correspondence: (G.Z.); (H.L.)
| |
Collapse
|
11
|
Zhou T, Sha H, Chen M, Chen G, Zou G, Liang H. MicroRNAs May Play an Important Role in Sexual Reversal Process of Chinese Soft-Shelled Turtle, Pelodiscus sinensis. Genes (Basel) 2021; 12:genes12111696. [PMID: 34828302 PMCID: PMC8620467 DOI: 10.3390/genes12111696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
The Chinese soft-shelled (Pelodiscus sinensis) turtle exhibits obvious sex dimorphism, which leads to the higher economic and nutritional value of male individuals. Exogenous hormones can cause the transformation from male to female phenotype during gonadal differentiation. However, the molecular mechanism related to the sexual reversal process is unclear. In this study, we compared the difference between the small RNAs of male, female, and pseudo-female turtles by small RNA-seq to understand the sexual reversal process of Chinese soft-shelled turtles. A certain dose of estrogen can cause the transformation of Chinese soft-shelled turtles from male to female, which are called pseudo-female individuals. The result of small RNA-seq has revealed that the characteristics of pseudo-females are very similar to females, but are strikingly different from males. The number of the microRNAs (miRNAs) of male individuals was significantly less than the number of female individuals or pseudo-female individuals, while the expression level of miRNAs of male individuals were significantly higher than the other two types. Furthermore, we found 533 differentially expressed miRNAs, including 173 up-regulated miRNAs and 360 down-regulated miRNAs, in the process of transformation from male to female phenotype. Cluster analysis of the total 602 differential miRNAs among females, males, and pseudo-females showed that miRNAs played a crucial role during the sexual differentiation. Among these differential miRNAs, we found 12 miRNAs related to gonadal development and verified their expression by qPCR. The TR-qPCR results confirmed the differential expression of 6 of the 12 miRNAs: miR-26a-5p, miR-212-5p, miR-202-5p, miR-301a, miR-181b-3p and miR-96-5p were involved in sexual reversal process, which was consistent with the results of omics. Using these six miRNAs and some of their target genes, we constructed a network diagram related to gonadal development. We suggest that these miRNAs may play an important role in the process of effective sex reversal, which would contribute to the breeding of all male strains of Chinese soft-shelled turtles.
Collapse
Affiliation(s)
- Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (H.S.); (M.C.); (G.C.); (G.Z.)
| | - Hang Sha
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (H.S.); (M.C.); (G.C.); (G.Z.)
| | - Meng Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (H.S.); (M.C.); (G.C.); (G.Z.)
| | - Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (H.S.); (M.C.); (G.C.); (G.Z.)
- College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (H.S.); (M.C.); (G.C.); (G.Z.)
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China; (T.Z.); (H.S.); (M.C.); (G.C.); (G.Z.)
- Correspondence: ; Tel.: +27-81780097
| |
Collapse
|
12
|
Zhang Y, Xiao L, Sun W, Li P, Zhou Y, Qian G, Ge C. Knockdown of R-spondin1 leads to partial sex reversal in genetic female Chinese soft-shelled turtle Pelodiscus sinensis. Gen Comp Endocrinol 2021; 309:113788. [PMID: 33865850 DOI: 10.1016/j.ygcen.2021.113788] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Chinese soft-shelled turtle Pelodiscus sinensis is an important aquaculture species in China, the male individual being more valuable in aquaculture because of its larger body size, higher growth rate and less fat compared with females. Understanding the mechanism of ovarian differentiation and development is crucial for the production of mono-sex male offspring. However, little is known about the molecular mechanism underlying turtle ovarian differentiation. Here, we characterized the Rspo1 gene, an upstream regulator of vertebrate female sexual differentiation, in P. sinensis. The messenger RNA of Rspo1 was initially expressed at stage 14, preceding gonadal sex differentiation, and exhibited a sexually dimorphic expression pattern throughout the sex determination and gonadal differentiation periods. Rspo1 was rapidly downregulated during aromatase inhibitor-induced female-to-male sex reversal, which occurred prior to gonadal differentiation. Rspo1 loss of function by RNA interference led to partial female-to-male sex reversal, with masculinized changes in the phenotype of gonads, the distribution of germ cells and the expression of testicular regulators. Collectively, these findings suggest that Rspo1 is necessary for primary female sexual differentiation in P. sinensis. This study demonstrates for the first time the functional role of Rspo1 in reptilian sex determination, and is of fundamental significance for the production of fertile pseudo-female parents and mono-sex male offspring of P.sinensis.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Ling Xiao
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Sun
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Pan Li
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yingjie Zhou
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Chutian Ge
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| |
Collapse
|
13
|
Huang G, Cao J, Gao F, Liu Z, Lu M, Chen G. R-spondin1 in loach (Misgurnus anguillicaudatus): Identification, characterization, and analysis of its expression patterns and DNA methylation in response to high-temperature stress. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110569. [PMID: 33515787 DOI: 10.1016/j.cbpb.2021.110569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
With a well-understood function in mammals, R-spondin1 (Rspo1) is an important regulator of ovarian development via the Wnt/β-catenin pathway. Rspo1 deficiency causes retardation of ovarian development in XX fish, and increases Rspo1 function induces femininity and sex reversal in XY fish. In this study, Rspo1 was successfully cloned from loach (Misgurnus anguillicaudatus), and its expression profile was analyzed. The full-length cDNA of Misgurnus anguillicaudatus Rspo1 (MaRspo1) comprised 1322 bp and included an open reading frame (ORF) of 795 bp, which encoded a predicted polypeptide measuring 264 amino acids in length. Phylogenetic and gene structure analyses showed a highly conserved sequence of MaRspo1 (identical to the Rspo1 genes of other species), consisting of an N-terminal signal peptide (SP), two furin-like cysteine-rich domains (FU1 and FU2), a thrombospondin type 1 repeat (TSP1) and a C-terminal region. Real-time PCR revealed the female-biased expression profile of MaRspo1, with the highest expression level among tested tissues detected in ovary. Investigation of MaRspo1 expression levels throughout the early development stage (10-60 days post hatching) under three temperature treatments (25 °C, 28 °C, and 31 °C) revealed significantly differential expression of MaRspo1 among the three temperature groups, with decreased MaRspo1 expression in the high-temperature (31 °C) group. The results of DNA methylation analysis indicated that exposure to high temperature during early development can increase the average promoter methylation level of MaRspo1 in both females and males. Taken together, the results of this study provide the basis for the further investigation of the molecular mechanism of Rspo1 in response to temperature.
Collapse
Affiliation(s)
- Guiyun Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Jianmeng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Fengying Gao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No.1, Guangzhou 510380, China.
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China.
| |
Collapse
|