1
|
Luo Y, Li J, Zheng L, Reyimjan Y, Ma Y, Huang S, Liu H, Zhou G, Bai J, Zhu Y, Sun Y, Zou X, Hou Y, Fu X. Procyanidin B2 improves developmental capacity of bovine oocytes via promoting PPARγ/UCP1-mediated uncoupling lipid catabolism during in vitro maturation. Cell Prolif 2024; 57:e13687. [PMID: 38864666 PMCID: PMC11533046 DOI: 10.1111/cpr.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/13/2024] Open
Abstract
Metabolic balance is essential for oocyte maturation and acquisition of developmental capacity. Suboptimal conditions of in vitro cultures would lead to lipid accumulation and finally result in disrupted oocyte metabolism. However, the effect and mechanism underlying lipid catabolism in oocyte development remain elusive currently. In the present study, we observed enhanced developmental capacity in Procyanidin B2 (PCB2) treated oocytes during in vitro maturation. Meanwhile, reduced oxidative stress and declined apoptosis were found in oocytes after PCB2 treatment. Further studies confirmed that oocytes treated with PCB2 preferred to lipids catabolism, leading to a notable decrease in lipid accumulation. Subsequent analyses revealed that mitochondrial uncoupling was involved in lipid catabolism, and suppression of uncoupling protein 1 (UCP1) would abrogate the elevated lipid consumption mediated by PCB2. Notably, we identified peroxisome proliferator-activated receptor gamma (PPARγ) as a potential target of PCB2 by docking analysis. Subsequent mechanistic studies revealed that PCB2 improved oocyte development capacity and attenuated oxidative stress by activating PPARγ mediated mitochondrial uncoupling. Our findings identify that PCB2 intricately improves oocyte development capacity through targeted activation of the PPARγ/UCP1 pathway, fostering uncoupling lipid catabolism while concurrently mitigating oxidative stress.
Collapse
Affiliation(s)
- Yuwen Luo
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical CenterThe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Lv Zheng
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yizaitiguli Reyimjan
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yan Ma
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Shuaixiang Huang
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Hongyu Liu
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Guizhen Zhou
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Jiachen Bai
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yixiao Zhu
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yidan Sun
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xinhua Zou
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yunpeng Hou
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiangwei Fu
- State Key Laboratory of Animal Biotech BreedingChina Agricultural UniversityBeijingChina
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- State Key Laboratory of Sheep Genetic Improvement and Healthy BreedingXinjiang Academy of Agricultural and Reclamation SciencesShihezi, XinjiangChina
| |
Collapse
|
2
|
Li Z, Zhang Y, Cao J, Xing X, Liang Y, Zhang Y, Tang X, Lin S, Wu Z, Li Z, Huang S. Supplementation of SkQ1 Increases Mouse In Vitro Oocyte Maturation and Subsequent Embryonic Development by Reducing Oxidative Stress. Pharmaceuticals (Basel) 2024; 17:455. [PMID: 38675415 PMCID: PMC11054663 DOI: 10.3390/ph17040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
In vitro oocyte maturation (IVM) technology is important for assisted animal and human reproduction. However, the maturation rates and developmental potential of in vitro-matured oocytes are usually lower than those of in vivo-matured oocytes. Oxidative stress is a main factor that causes the lower maturation rates and quality of in vitro-matured oocytes. The purpose of this study was to investigate the effects of treatment with SkQ1, a mitochondria-targeted antioxidant, on mouse IVM and subsequent embryonic development. The results demonstrated that the supplementation of SkQ1 during IVM improves the maturation rates of mouse oocytes and the subsequent developmental competence of in vitro-fertilized embryos. The addition of SkQ1 to the IVM medium also decreased oxidative stress and apoptosis, and increased mitochondrial membrane potential in matured mouse oocytes. This study provides a new method through which to enhance the maturation rates and the quality of in vitro-matured mouse oocytes, thus promoting the application and development of assisted animal and human reproductive technology.
Collapse
Affiliation(s)
- Zheng Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Z.L.); zyqhah-@stu.scau.edu.cn (Y.Z.); (J.C.); (X.X.); (Y.L.); (Y.Z.); (X.T.); (S.L.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yiqian Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Z.L.); zyqhah-@stu.scau.edu.cn (Y.Z.); (J.C.); (X.X.); (Y.L.); (Y.Z.); (X.T.); (S.L.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Jinping Cao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Z.L.); zyqhah-@stu.scau.edu.cn (Y.Z.); (J.C.); (X.X.); (Y.L.); (Y.Z.); (X.T.); (S.L.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Xupeng Xing
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Z.L.); zyqhah-@stu.scau.edu.cn (Y.Z.); (J.C.); (X.X.); (Y.L.); (Y.Z.); (X.T.); (S.L.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yalin Liang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Z.L.); zyqhah-@stu.scau.edu.cn (Y.Z.); (J.C.); (X.X.); (Y.L.); (Y.Z.); (X.T.); (S.L.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yuxing Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Z.L.); zyqhah-@stu.scau.edu.cn (Y.Z.); (J.C.); (X.X.); (Y.L.); (Y.Z.); (X.T.); (S.L.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Xiaopeng Tang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Z.L.); zyqhah-@stu.scau.edu.cn (Y.Z.); (J.C.); (X.X.); (Y.L.); (Y.Z.); (X.T.); (S.L.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Shengyi Lin
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Z.L.); zyqhah-@stu.scau.edu.cn (Y.Z.); (J.C.); (X.X.); (Y.L.); (Y.Z.); (X.T.); (S.L.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Z.L.); zyqhah-@stu.scau.edu.cn (Y.Z.); (J.C.); (X.X.); (Y.L.); (Y.Z.); (X.T.); (S.L.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Z.L.); zyqhah-@stu.scau.edu.cn (Y.Z.); (J.C.); (X.X.); (Y.L.); (Y.Z.); (X.T.); (S.L.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Z.L.); zyqhah-@stu.scau.edu.cn (Y.Z.); (J.C.); (X.X.); (Y.L.); (Y.Z.); (X.T.); (S.L.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Tsopp E, Kilk K, Taalberg E, Pärn P, Viljaste-Seera A, Kavak A, Jaakma Ü. Associations of the Single Bovine Embryo Growth Media Metabolome with Successful Pregnancy. Metabolites 2024; 14:89. [PMID: 38392981 PMCID: PMC10890179 DOI: 10.3390/metabo14020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
This study investigated whether metabolomic fingerprints of bovine embryo growth media improve the prediction of successful embryo implantation. In this prospective cohort study, the metabolome from in vitro-produced day 7 blastocysts with successful implantation (n = 11), blastocysts with failed implantation (n = 10), and plain culture media without embryos (n = 5) were included. Samples were analyzed using an AbsoluteIDQ® p180 Targeted Metabolomics Kit with LC-MS/MS, and a total of 189 metabolites were analyzed from each sample. Blastocysts that resulted in successful embryo implantation had significantly higher levels of methionine sulfoxide (p < 0.001), DOPA (p < 0.05), spermidine (p < 0.001), acetylcarnitine-to-free-carnitine ratio (p < 0.05), C2 + C3-to-free-carnitine ratio (p < 0.05), and lower levels of threonine (nep < 0.001) and phosphatidylcholine PC ae C30:0 (p < 0.001) compared to control media. However, when compared to embryos that failed to implant, only DOPA, spermidine, C2/C0, (C2 + C3)/C0, and PC ae C30:0 levels differentiated significantly. In summary, our study identifies a panel of differential metabolites in the culture media of bovine blastocysts that could act as potential biomarkers for the selection of viable blastocysts before embryo transfer.
Collapse
Affiliation(s)
- Elina Tsopp
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Kalle Kilk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Egon Taalberg
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Pille Pärn
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Anni Viljaste-Seera
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Ants Kavak
- Chair of Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Ülle Jaakma
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| |
Collapse
|
4
|
Bai J, Li J, Wang L, Hao S, Guo Y, Liu Y, Zhang Z, Li H, Sun WQ, Shi G, Wan P, Fu X. Effect of Antioxidant Procyanidin B2 (PCB2) on Ovine Oocyte Developmental Potential in Response to in Vitro Maturation (IVM) and Vitrification Stress. CRYOLETTERS 2023. [DOI: 10.54680/fr23210110412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND: It was demonstrated that external stress, such as in vitro maturation (IVM) and vitrification process can induce significantly reduced development capacity in oocytes. Previous studies indicated that antioxidants play a pivotal part in the acquisition of adaptation
in changed conditions. At present, the role of the natural potent antioxidant PCB2 in response to IVM and vitrification during ovine oocyte manipulation has not been explored. OBJECTIVE: To investigate whether PCB2 treatment could improve the developmental potential of ovine oocytes
under IVM and vitrification stimuli. MATERIALS AND METHODS: The experiment was divided into two parts. Firstly, the effect of PCB2 on the development of oocytes during IVM was evaluated. Unsupplem ented and 5 μg/mL PCB2 -supplemented in the IVM solution were considered as control
and experimental groups (C + 5 μg/mL PCB2). The polar body extrusion (PBE) rate, mitochondrial membrane potential (MMP), ATP, reactive oxygen species (ROS) levels and early apoptosis of oocytes were measured after IVM. Secondly, we further determine whether PCB2 could improve oocyte quality
under vitrification stress. The survival rate, PBE rate and early apoptosis of oocytes were compared between fresh group, vitrified group and 5 μg/mL PCB2 -supplemented in the IVM solution after vitrification (V + 5μg/mL PCB2). RESULTS: Compared to the control group, adding PCB2
significantly increased PBE rate (79.4% vs. 62.8%, P < 0.01) and MMP level (1.9 ± 0.08 vs. 1.3 ± 0.04, P < 0.01), and decreased ROS level (47.1 ± 6.3 vs. 145.3 ± 8.9, P < 0.01). However, there was no significant difference
in ATP content and early apoptosis. Compared to the fresh group, vitrification significantly reduced oocytes viability (43.0% vs. 90.8%, P < 0.01) as well as PBE rate (24.2% vs. 60.6%, P < 0.05). However, 5 μg/mL PCB2-supplemention during maturation had
no effect on survival, PBE or early apoptosis in vitrified oocytes. CONCLUSION: PCB2 could effectively antagonise the oxidative stress during IVM and promote oocyte development.
Collapse
Affiliation(s)
- Jiachen Bai
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang 050031, China
| | - Longfei Wang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shaopeng Hao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Yanhua Guo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Yucheng Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Zhenliang Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Houru Li
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Wendell Q. Sun
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guoqing Shi
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Leal CLV, Cañón-Beltrán K, Cajas YN, Hamdi M, Yaryes A, Millán de la Blanca MG, Beltrán-Breña P, Mazzarella R, da Silveira JC, Gutiérrez-Adán A, González EM, Rizos D. Extracellular vesicles from oviductal and uterine fluids supplementation in sequential in vitro culture improves bovine embryo quality. J Anim Sci Biotechnol 2022; 13:116. [PMID: 36280872 PMCID: PMC9594899 DOI: 10.1186/s40104-022-00763-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022] Open
Abstract
Background In vitro production of bovine embryos is a well-established technology, but the in vitro culture (IVC) system still warrants improvements, especially regarding embryo quality. This study aimed to evaluate the effect of extracellular vesicles (EVs) isolated from oviductal (OF) and uterine fluid (UF) in sequential IVC on the development and quality of bovine embryos. Zygotes were cultured in SOF supplemented with either BSA or EVs-depleted fetal calf serum (dFCS) in the presence (BSA-EV and dFCS-EV) or absence of EVs from OF (D1 to D4) and UF (D5 to D8), mimicking in vivo conditions. EVs from oviducts (early luteal phase) and uterine horns (mid-luteal phase) from slaughtered heifers were isolated by size exclusion chromatography. Blastocyst rate was recorded on days 7–8 and their quality was assessed based on lipid contents, mitochondrial activity and total cell numbers, as well as survival rate after vitrification. Relative mRNA abundance for lipid metabolism-related transcripts and levels of phosphorylated hormone-sensitive lipase (pHSL) proteins were also determined. Additionally, the expression levels of 383 miRNA in OF- and UF-EVs were assessed by qRT-PCR. Results Blastocyst yield was lower (P < 0.05) in BSA treatments compared with dFCS treatments. Survival rates after vitrification/warming were improved in dFCS-EVs (P < 0.05). EVs increased (P < 0.05) blastocysts total cell number in dFCS-EV and BSA-EV compared with respective controls (dFCS and BSA), while lipid content was decreased in dFCS-EV (P < 0.05) and mitochondrial activity did not change (P > 0.05). Lipid metabolism transcripts were affected by EVs and showed interaction with type of protein source in medium (PPARGC1B, LDLR, CD36, FASN and PNPLA2, P < 0.05). Levels of pHSL were lower in dFCS (P < 0.05). Twenty miRNA were differentially expressed between OF- and UF-EVs and only bta-miR-148b was increased in OF-EVs (P < 0.05). Conclusions Mimicking physiological conditions using EVs from OF and UF in sequential IVC does not affect embryo development but improves blastocyst quality regarding survival rate after vitrification/warming, total cell number, lipid content, and relative changes in expression of lipid metabolism transcripts and lipase activation. Finally, EVs miRNA contents may contribute to the observed effects. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00763-7.
Collapse
Affiliation(s)
- Cláudia Lima Verde Leal
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain ,grid.11899.380000 0004 1937 0722Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (FZEA-USP), Pirassununga, Brazil
| | - Karina Cañón-Beltrán
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain ,grid.442066.20000 0004 0466 9211Facultad de Ciencias Agrarias y Ambientales, Programa de Medicina Veterinaria, Fundación Universitaria Juan de Castellanos, Tunja, Colombia
| | - Yulia N. Cajas
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain ,grid.442123.20000 0001 1940 3465Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca (UC), EC010205 Cuenca, Ecuador
| | - Meriem Hamdi
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - Aracelli Yaryes
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - María Gemma Millán de la Blanca
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - Paula Beltrán-Breña
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - Rosane Mazzarella
- grid.11899.380000 0004 1937 0722Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (FZEA-USP), Pirassununga, Brazil
| | - Juliano Coelho da Silveira
- grid.11899.380000 0004 1937 0722Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (FZEA-USP), Pirassununga, Brazil
| | - Alfonso Gutiérrez-Adán
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - Encina M González
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain ,grid.4795.f0000 0001 2157 7667Department of Anatomy and Embryology, Veterinary Faculty-Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Dimitrios Rizos
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| |
Collapse
|
6
|
Approaches to Measuring the Activity of Major Lipolytic and Lipogenic Enzymes In Vitro and Ex Vivo. Int J Mol Sci 2022; 23:ijms231911093. [PMID: 36232405 PMCID: PMC9570359 DOI: 10.3390/ijms231911093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Since the 1950s, one of the goals of adipose tissue research has been to determine lipolytic and lipogenic activity as the primary metabolic pathways affecting adipocyte health and size and thus representing potential therapeutic targets for the treatment of obesity and associated diseases. Nowadays, there is a relatively large number of methods to measure the activity of these pathways and involved enzymes, but their applicability to different biological samples is variable. Here, we review the characteristics of mean lipogenic and lipolytic enzymes, their inhibitors, and available methodologies for assessing their activity, and comment on the advantages and disadvantages of these methodologies and their applicability in vivo, ex vivo, and in vitro, i.e., in cells, organs and their respective extracts, with the emphasis on adipocytes and adipose tissue.
Collapse
|
7
|
Zhuan Q, Li J, Du X, Zhang L, Meng L, Luo Y, Zhou D, Liu H, Wan P, Hou Y, Fu X. Antioxidant procyanidin B2 protects oocytes against cryoinjuries via mitochondria regulated cortical tension. J Anim Sci Biotechnol 2022; 13:95. [PMID: 35971139 PMCID: PMC9380387 DOI: 10.1186/s40104-022-00742-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Irreversible cryodamage caused by oocyte vitrification limited its wild application in female fertility preservation. Antioxidants were always used to antagonist the oxidative stress caused by vitrification. However, the comprehensive mechanism underlying the protective role of antioxidants has not been studied. Procyanidin B2 (PCB2) is a potent natural antioxidant and its functions in response to vitrification are still unknown. In this study, the effects of PCB2 on vitrified-thawed oocytes and subsequent embryo development were explored, and the mechanisms underlying the protective role of PCB2 were systematically elucidated. RESULTS Vitrification induced a marked decline in oocyte quality, while PCB2 could improve oocyte viability and further development after parthenogenetic activation. A subsequent study indicated that PCB2 effectively attenuated vitrification-induced oxidative stress, rescued mitochondrial dysfunction, and improved cell viability. Moreover, PCB2 also acts as a cortical tension regulator apart from strong antioxidant properties. Increased cortical tension caused by PCB2 would maintain normal spindle morphology and promote migration, ensure correct meiosis progression and finally reduce the aneuploidy rate in vitrified oocytes. Further study reveals that ATP biosynthesis plays a crucial role in cortical tension regulation, and PCB2 effectively increased the cortical tension through the electron transfer chain pathway. Additionally, PCB2 would elevate the cortical tension in embryo cells at morula and blastocyst stages and further improve blastocyst quality. What's more, targeted metabolomics shows that PCB2 has a beneficial effect on blastocyst formation by mediating saccharides and amino acids metabolism. CONCLUSIONS Antioxidant PCB2 exhibits multi-protective roles in response to vitrification stimuli through mitochondria-mediated cortical tension regulation.
Collapse
Affiliation(s)
- Qingrui Zhuan
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Jun Li
- grid.452458.aDepartment of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| | - Xingzhu Du
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Luyao Zhang
- grid.22935.3f0000 0004 0530 8290State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Meng
- grid.22935.3f0000 0004 0530 8290State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuwen Luo
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Dan Zhou
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Hongyu Liu
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Pengcheng Wan
- grid.469620.f0000 0004 4678 3979State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, China
| | - Yunpeng Hou
- grid.22935.3f0000 0004 0530 8290State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China. .,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, China.
| |
Collapse
|
8
|
Li J, Wang R, Chen Q, Tian Y, Gao L, Lei A. Salidroside improves porcine oocyte maturation and subsequent embryonic development by promoting lipid metabolism. Theriogenology 2022; 192:89-96. [DOI: 10.1016/j.theriogenology.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022]
|
9
|
Zhou D, Zhuan Q, Luo Y, Liu H, Meng L, Du X, Wu G, Hou Y, Li J, Fu X. Mito-Q promotes porcine oocytes maturation by maintaining mitochondrial thermogenesis via UCP2 downregulation. Theriogenology 2022; 187:205-214. [PMID: 35644089 DOI: 10.1016/j.theriogenology.2022.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 12/30/2022]
Abstract
Mitochondrial thermogenesis is an adaptive response of cells to their surrounding stress. Oxidative stress is one of the common stresses during in vitro maturation (IVM) of oocytes, which leads to mitochondrial dysfunction. This study aimed to probe the effects of the mitochondria-targeted antioxidant Mito-Q on oocyte development and unravel the role of Mito-Q in mitochondrial ATP production and thermogenesis regulation. Our results showed that Mito-Q had a positive effect on porcine oocytes maturation and subsequent embryo development. During oocytes IVM, Mito-Q could reduce ATP levels and ROS, increase lipid droplets accumulation, induce autophagy, and maintain mitochondrial temperature stability. Moreover, in metaphase II (MII) oocytes, Mito-Q would induce mitochondrial uncoupling manifested by decreased ATP, attenuated mitochondrial membrane potential (MMP), and increased mitochondrial thermogenesis. Notably, the expression of mitochondrial uncoupling protein (UCP2) was significantly reduced in oocytes treated with Mito-Q. Further study indicated that specific depletion of UCP2 in oocytes also resulted in increased thermogenesis, decreased ATP and declined MMP, suggesting that UCP2 downregulation may participate in Mito-Q-induced mitochondrial uncoupling. In summary, our data demonstrate that Mito-Q promotes oocyte maturation in vitro and maintains the stability of mitochondrial thermogenesis by inhibiting UCP2 expression.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Qingrui Zhuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Yuwen Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Hongyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Lin Meng
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xingzhu Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China
| | - Guoquan Wu
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, 650224, China
| | - Yunpeng Hou
- State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050031, China.
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science, Beijing, 100193, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
10
|
Mostafa S, Nader N, Machaca K. Lipid Signaling During Gamete Maturation. Front Cell Dev Biol 2022; 10:814876. [PMID: 36204680 PMCID: PMC9531329 DOI: 10.3389/fcell.2022.814876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/30/2022] [Indexed: 01/24/2023] Open
Abstract
Cell lipids are differentially distributed in distinct organelles and within the leaflets of the bilayer. They can further form laterally defined sub-domains within membranes with important signaling functions. This molecular and spatial complexity offers optimal platforms for signaling with the associated challenge of dissecting these pathways especially that lipid metabolism tends to be highly interconnected. Lipid signaling has historically been implicated in gamete function, however the detailed signaling pathways involved remain obscure. In this review we focus on oocyte and sperm maturation in an effort to consolidate current knowledge of the role of lipid signaling and set the stage for future directions.
Collapse
Affiliation(s)
- Sherif Mostafa
- Medical Program, WCMQ, Education City, Qatar Foundation, Doha, Qatar
| | - Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar (WCMQ), Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar (WCMQ), Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Khaled Machaca,
| |
Collapse
|
11
|
Jin JX, Sun JT, Jiang CQ, Cui HD, Bian Y, Lee S, Zhang L, Lee BC, Liu ZH. Melatonin Regulates Lipid Metabolism in Porcine Cumulus-Oocyte Complexes via the Melatonin Receptor 2. Antioxidants (Basel) 2022; 11:687. [PMID: 35453372 PMCID: PMC9027243 DOI: 10.3390/antiox11040687] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Previous studies suggest that the inclusion of melatonin (MTn) in in vitro maturation protocols improves the developmental competence of oocytes by scavenging reactive oxygen species (ROS). However, the molecular mechanisms integrating melatonin receptor (MT)-mediated lipid metabolism and redox signaling during in vitro cumulus-oocyte complex (COC) development still remain unclear. Here, we aimed to elucidate the potential role of MTn receptors in lipid metabolic adjustments during in vitro porcine COC development. We observed that MTn-mediated Gsα-cAMP/PKA signaling facilitated lipolysis primarily through the MT2 receptor and subsequently increased fatty acid (FA) release by hydrolyzing intracellular triglycerides (TGs) in cumulus cells. Furthermore, CD36 was a critical FA transporter that transported available FAs from cumulus cells to oocytes and promoted de novo TG synthesis in the latter. In addition, MTn regulated lipogenesis and intracellular lipolysis to maintain lipid homeostasis and limit ROS production, thereby supporting oocyte cytoplasmic maturation and the subsequent embryo development. Taken together, these findings provide insight into the possible mechanism integrating MT2-mediated lipid homeostasis and redox signaling, which limits ROS production during in vitro COC development. Therefore, understanding the dynamics of the interactions between lipid homeostasis and redox signaling driven by MT2 is necessary in order to predict drug targets and the effects of therapeutics used to improve female reproductive health.
Collapse
Affiliation(s)
- Jun-Xue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.L.); (B.C.L.)
| | - Jing-Tao Sun
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
| | - Chao-Qian Jiang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
| | - Hong-Di Cui
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
| | - Ya Bian
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
| | - Sanghoon Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.L.); (B.C.L.)
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Lianjin Zhang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.L.); (B.C.L.)
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.-T.S.); (C.-Q.J.); (H.-D.C.); (Y.B.)
| |
Collapse
|
12
|
Hao T, Xu X, Hao H, Du W, Pang Y, Zhao S, Zou H, Yang S, Zhu H, Yang Y, Zhao X. Melatonin improves the maturation and developmental ability of bovine oocytes by up-regulating GJA4 to enhance gap junction intercellular communication. Reprod Fertil Dev 2021; 33:760-771. [PMID: 34585659 DOI: 10.1071/rd21145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 01/03/2023] Open
Abstract
Melatonin (MT) increases oocyte maturation by reducing reactive oxygen species level and enhancing oocyte antioxidant capacity. However, the mechanisms via which MT works are still poorly understood. In the present study, the effects of MT on the maturation rate and development ability of bovine oocytes were investigated. Then, the transcriptome of oocytes treated by MT was sequenced. Finally, the expression of gap junction protein alpha 4 (GJA4) protein and cAMP level were detected in bovine oocytes, and isoprenaline (enhancer of gap junctional intercellular communication (GJIC)) and heptanol (inhibitor of GJIC) were used to investigate the effect of MT on GJIC activity in bovine oocytes. Our results showed that MT significantly improved the maturation, developmental ability and mRNA expression of GJA4 of bovine oocytes. Meanwhile, MT significantly increased GJA4 protein level and cAMP level in bovine oocytes. In contrast to heptanol, both isoproterenol and MT significantly increased GJIC activity, nuclear maturation and the development ability of bovine oocytes. However, MT significantly restored the nuclear maturation and developmental ability of oocytes treated by heptanol. In conclusion, our results showed that MT improves the maturation and developmental ability of bovine oocytes by enhancing GJIC activity via up-regulating GJA4 protein expression in IVM progress.
Collapse
Affiliation(s)
- Tong Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Xi Xu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Sha Yang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Yuze Yang
- Beijing General Station of Animal Husbandry, Beijing 100101, PR China
| | - Xueming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| |
Collapse
|
13
|
Zhuan Q, Li J, Du X, Zhang L, Meng L, Cheng K, Zhu S, Hou Y, Fu X. Nampt affects mitochondrial function in aged oocytes by mediating the downstream effector FoxO3a. J Cell Physiol 2021; 237:647-659. [PMID: 34318928 DOI: 10.1002/jcp.30532] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/22/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022]
Abstract
Maternal aging can impair the quality and decrease the developmental competence of ovulated oocytes. In this study, compromised germinal vesicle breakdown (GVBD) was found in aged mice oocytes. Furthermore, we observed increased reactive oxygen species (ROS) and mitochondrial Ca2+ levels, along with reduced mitochondrial temperature in aged oocytes. Maternal aging also changed the crotonylation level in oocytes. Forkhead box O3 (FoxO3a), a member of the forkhead protein family involved in the regulation of cell survival and life span reached a peak level in the metaphase II stage. Compared with a younger group, FoxO3a expression increased in aged oocytes. Intracellular localization of FoxO3a changed from the cytoplasm to chromatin in response to aging. The expression of the upstream regulator nicotinamide-phosphoribosyltransferase (Nampt) peaked in the GVBD stage. Moreover, Nampt expression was increased in aged oocytes, and more intense staining of Nampt was found in aged mice ovary. To further study the role of Nampt in mitochondrial function, specific agonist P7C3 and inhibitor FK866 were applied to aged oocytes, and FK866 significantly decreased adenosine triphosphate and mitochondrial membrane potential. In conclusion, mitochondrial dysfunction in aged oocytes was associated with elevated FoxO3a, and suppression of Nampt could further impair mitochondrial function.
Collapse
Affiliation(s)
- Qingrui Zhuan
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jun Li
- Department of Reproducitve Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xingzhu Du
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Luyao Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Meng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Keren Cheng
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Shien Zhu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, China
| |
Collapse
|
14
|
Xingzhu D, Qingrui Z, Keren C, Yuxi L, Yunpeng H, Shien Z, Xiangwei F. Cryopreservation of Porcine Embryos: Recent Updates and Progress. Biopreserv Biobank 2021; 19:210-218. [PMID: 33625892 DOI: 10.1089/bio.2020.0074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cryopreservation of embryos is important for long-distance embryo transfer and conservation of genetic resources. Porcine research is important for animal husbandry and biomedical research. However, porcine embryos are difficult to cryopreserve because of their high cytoplasmic lipid content and sensitivity to chilling stress. Vitrification is more efficient than slow freezing, and vitrification is mostly used in embryo cryopreservation. So far, the vitrification process of porcine embryos has been continuously improved, resulting in improved survival rates of warmed embryos and farrowing rates after the transplant procedure. It is worth noting that automatic vitrification has made great progress, which is expected to promote the standardization and application of vitrification. In this article, the vitrification process of porcine embryos at the blastula stage and early development stages is reviewed in detail. In addition, the efficiency of different vitrification systems was compared. In addition, we summarize technology that can improve the survival rate of cryopreserved porcine embryos, such as delipidation methods (including physical delipidation and chemical delipidation) and medium improvements (including chemically defined media and adding antioxidants). Meanwhile, gene expression changes during cryopreservation are also elaborated.
Collapse
Affiliation(s)
- Du Xingzhu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhuan Qingrui
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cheng Keren
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Luo Yuxi
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hou Yunpeng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhu Shien
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fu Xiangwei
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|