1
|
Li J, Huang X, Luo L, Sun J, Guo Q, Yang X, Zhang C, Ni B. The role of p53 in male infertility. Front Endocrinol (Lausanne) 2024; 15:1457985. [PMID: 39469578 PMCID: PMC11513281 DOI: 10.3389/fendo.2024.1457985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The tumor suppressor p53 is a transcription factor involved in a variety of crucial cellular functions, including cell cycle arrest, DNA repair and apoptosis. Still, a growing number of studies indicate that p53 plays multiple roles in spermatogenesis, as well as in the occurrence and development of male infertility. The representative functions of p53 in spermatogenesis include the proliferation of spermatogonial stem cells (SSCs), spermatogonial differentiation, spontaneous apoptosis, and DNA damage repair. p53 is involved in various male infertility-related diseases. Innovative therapeutic strategies targeting p53 have emerged in recent years. This review focuses on the role of p53 in spermatogenesis and male infertility and analyses the possible underlying mechanism involved. All these conclusions may provide a new perspective on drug intervention targeting p53 for male infertility treatment.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Huang
- Department of Human Resource, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Luo
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jialin Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Yang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanzhou Zhang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Beibei Ni
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Lu C, Zhang D, Zhang J, Li L, Qiu J, Gou K, Cui S. Casein kinase 1α regulates murine spermatogenesis via p53-Sox3 signaling. Development 2022; 149:275697. [DOI: 10.1242/dev.200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 05/31/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Casein kinase 1α (CK1α), acting as one member of the β-catenin degradation complex, negatively regulates the Wnt/β-catenin signaling pathway. CK1α knockout usually causes both Wnt/β-catenin and p53 activation. Our results demonstrated that conditional disruption of CK1α in spermatogonia impaired spermatogenesis and resulted in male mouse infertility. The progenitor cell population was dramatically decreased in CK1α conditional knockout (cKO) mice, while the proliferation of spermatogonial stem cells (SSCs) was not affected. Furthermore, our molecular analyses identified that CK1α loss was accompanied by nuclear stability of p53 protein in mouse spermatogonia, and dual-luciferase reporter and chromatin immunoprecipitation assays revealed that p53 directly targeted the Sox3 gene. In addition, the p53 inhibitor pifithrin α (PFTα) partially rescued the phenotype observed in cKO mice. Collectively, our data suggest that CK1α regulates spermatogenesis and male fertility through p53-Sox3 signaling, and they deepen our understanding of the regulatory mechanism underlying the male reproductive system.
Collapse
Affiliation(s)
- Chenyang Lu
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Jinglin Zhang
- Institute of Reproduction and Metabolism, Yangzhou University 2 , Yangzhou 225009, Jiangsu , People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University 3 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Liuhui Li
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Jingtao Qiu
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Kemian Gou
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University 2 , Yangzhou 225009, Jiangsu , People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses 4 , Yangzhou 225009, Jiangsu , People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University 1 , Yangzhou 225009, Jiangsu , People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University 2 , Yangzhou 225009, Jiangsu , People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses 4 , Yangzhou 225009, Jiangsu , People's Republic of China
| |
Collapse
|