1
|
Alkan KK, Satilmis F, Sonmez G, Deniz YE, Culha MH, Ciftci MF, Yesilkaya OF, Alkan H. Putrescine supplementation improves the developmental competence of in vitro produced bovine embryos. Theriogenology 2025; 231:133-143. [PMID: 39447374 DOI: 10.1016/j.theriogenology.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
The aim of this study was to investigate the effect of putrescine, anti-apoptotic, antioxidant, and a cell proliferation stimulant, on embryo development and quality by supplementing it to in vitro culture medium. In this study, oocytes were obtained from the ovaries of Holstein cattle. Following maturation and fertilization, the presumptive zygotes were randomly assigned to two groups. The first group (Putrescine, n = 435) was supplemented with putrescine at a concentration of 0.5 mM to in vitro culture. The second group (n = 407) was maintained under standard culture conditions without any supplementations to the medium. Following the determination of the developmental stages of the embryos, only those in the blastocyst stage were subjected to differential staining and the cell numbers of the embryos were determined. Moreover, the TUNEL assay was employed to ascertain the extent of cell death and the apoptotic index in the embryos. Additionally, the levels of ROS were determined in the embryos. Furthermore, gene expression analyses were conducted on blastocyst-stage embryos to ascertain the potential of putrescine supplementation in embryo development along specific pathways. Following in vitro culture, the blastocyst formation rate was 44.37 % in the putrescine group and 32.97 % in the control group (P < 0.05). The counts of ICM (60.60 ± 15.79 vs 50.73 ± 16.74), TE (117.70 ± 23.67 vs 94.0 ± 22.46), and TCC (178.30 ± 26.15 vs 144.73 ± 26.86) were found to be statistically higher in blastocysts developing after putrescine supplementation compared to the control group. Furthermore, the number of apoptotic cells (7.69 ± 2.17 vs 9.96 ± 3.99) and the apoptotic index (5.07 % vs 8.01 %) were found to be lower in the putrescine group in comparison to the control group. Nevertheless, it was established that the ROS level in the control group was approximately two-fold higher than in the putrescine group (P < 0.05). The findings also revealed that putrescine up-regulated the gene expression of SOD, GPX4, CAT, BCL2, NANOG and GATA3 while simultaneously down-regulating the BAX expression level. In conclusion, the supplementation of putrescine to the culture medium during in vitro bovine embryo production was found to contribute to the improvement of embryo quality and early embryonic development.
Collapse
Affiliation(s)
- Kubra Karakas Alkan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye.
| | - Fatma Satilmis
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Gonca Sonmez
- Department of Genetics, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Yunus Emre Deniz
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Muhammed Hudai Culha
- Department of Genetics, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Muhammed Furkan Ciftci
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Omer Faruk Yesilkaya
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Hasan Alkan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| |
Collapse
|
2
|
Arthur R, Jamwal S, Kumar P. A review on polyamines as promising next-generation neuroprotective and anti-aging therapy. Eur J Pharmacol 2024; 978:176804. [PMID: 38950837 DOI: 10.1016/j.ejphar.2024.176804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Neurodegenerative disorders are diseases characterized by progressive degeneration of neurons and associated structures and are a major global issue growing more widespread as the global population's average age increases. Despite several investigations on their etiology, the specific cause of these disorders remains unknown. However, there are few symptomatic therapies to treat these disorders. Polyamines (PAs) (putrescine, spermidine, and spermine) are being studied for their role in neuroprotection, aging and cognitive impairment. They are ubiquitous polycations which have relatively higher concentrations in the brain and possess pleiotropic biochemical activities, including regulation of gene expression, ion channels, mitochondria Ca2+ transport, autophagy induction, programmed cell death, and many more. Their cellular content is tightly regulated, and substantial evidence indicates that their altered levels and metabolism are strongly implicated in aging, stress, cognitive dysfunction, and neurodegenerative disorders. In addition, dietary polyamine supplementation has been reported to induce anti-aging effects, anti-oxidant effects, and improve locomotor abnormalities, and cognitive dysfunction. Thus, restoring the polyamine level is considered a promising pharmacological strategy to counteract neurodegeneration. This review highlights PAs' physiological role and the molecular mechanism underpinning their proposed neuroprotective effect in aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| |
Collapse
|
3
|
Bao S, Yin T, Liu S. Ovarian aging: energy metabolism of oocytes. J Ovarian Res 2024; 17:118. [PMID: 38822408 PMCID: PMC11141068 DOI: 10.1186/s13048-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
In women who are getting older, the quantity and quality of their follicles or oocytes and decline. This is characterized by decreased ovarian reserve function (DOR), fewer remaining oocytes, and lower quality oocytes. As more women choose to delay childbirth, the decline in fertility associated with age has become a significant concern for modern women. The decline in oocyte quality is a key indicator of ovarian aging. Many studies suggest that age-related changes in oocyte energy metabolism may impact oocyte quality. Changes in oocyte energy metabolism affect adenosine 5'-triphosphate (ATP) production, but how related products and proteins influence oocyte quality remains largely unknown. This review focuses on oocyte metabolism in age-related ovarian aging and its potential impact on oocyte quality, as well as therapeutic strategies that may partially influence oocyte metabolism. This research aims to enhance our understanding of age-related changes in oocyte energy metabolism, and the identification of biomarkers and treatment methods.
Collapse
Affiliation(s)
- Shenglan Bao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, , Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China.
| |
Collapse
|
4
|
Bernstein LR, Mackenzie ACL, Chaffin CL, Lee SJ, Kraemer DC, Merchenthaler I. Gonadotropin elevation is ootoxic to ovulatory oocytes and inhibits oocyte maturation, and activin decoy receptor ActRIIB:Fc therapeutically restores maturation. Reprod Biol Endocrinol 2024; 22:52. [PMID: 38711160 PMCID: PMC11071334 DOI: 10.1186/s12958-024-01224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/01/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Elevated FSH often occurs in women of advanced maternal age (AMA, age ≥ 35) and in infertility patients undergoing controlled ovarian stimulation (COS). There is controversy on whether high endogenous FSH contributes to infertility and whether high exogenous FSH adversely impacts patient pregnancy rates. METHODS The senescence-accelerated mouse-prone-8 (SAMP8) model of female reproductive aging was employed to assess the separate impacts of age and high FSH activity on the percentages (%) of viable and mature ovulated oocytes recovered after gonadotropin treatment. Young and midlife mice were treated with the FSH analog equine chorionic gonadotropin (eCG) to model both endogenous FSH elevation and exogenous FSH elevation. Previously we showed the activin inhibitor ActRIIB:Fc increases oocyte quality by preventing chromosome and spindle misalignments. Therefore, ActRIIB:Fc treatment was performed in an effort to increase % oocyte viability and % oocyte maturation. RESULTS The high FSH activity of eCG is ootoxic to ovulatory oocytes, with greater decreases in % viable oocytes in midlife than young mice. High FSH activity of eCG potently inhibits oocyte maturation, decreasing the % of mature oocytes to similar degrees in young and midlife mice. ActRIIB:Fc treatment does not prevent eCG ootoxicity, but it restores most oocyte maturation impeded by eCG. CONCLUSIONS FSH ootoxicity to ovulatory oocytes and FSH maturation inhibition pose a paradox given the well-known pro-growth and pro-maturation activities of FSH in the earlier stages of oocyte growth. We propose the FOOT Hypothesis ("FSH OoToxicity Hypothesis), that FSH ootoxicity to ovulatory oocytes comprises a new driver of infertility and low pregnancy success rates in DOR women attempting spontaneous pregnancy and in COS/IUI patients, especially AMA women. We speculate that endogenous FSH elevation also contributes to reduced fecundity in these DOR and COS/IUI patients. Restoration of oocyte maturation by ActRIB:Fc suggests that activin suppresses oocyte maturation in vivo. This contrasts with prior studies showing activin A promotes oocyte maturation in vitro. Improved oocyte maturation with agents that decrease endogenous activin activity with high specificity may have therapeutic benefit for COS/IVF patients, COS/IUI patients, and DOR patients attempting spontaneous pregnancies.
Collapse
Affiliation(s)
- Lori R Bernstein
- Pregmama, LLC, Gaithersburg, MD, 20886, USA.
- Department of Cell Biology and Genetics, Texas A & M School of Medicine, College Station, TX, 77843, USA.
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Veterinary Integrative Biosciences, Texas A&M School of Veterinary Medicine, College Station, TX, 77843, USA.
| | - Amelia C L Mackenzie
- Department of Cell Biology and Genetics, Texas A & M School of Medicine, College Station, TX, 77843, USA
- FHI 360, Durham, NC, 27701, USA
| | - Charles L Chaffin
- Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Se-Jin Lee
- University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
| | - Duane C Kraemer
- Department of Veterinary Physiology and Pharmacology, Texas A & M School of Veterinary Medicine, College Station, TX, 77843, USA
| | - Istvan Merchenthaler
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
5
|
Wei X, Shi S, Lu Z, Li C, Xu X, Chai J, Liu X, Hu T, Wang B. Elevated enteric putrescine suppresses differentiation of intestinal germinal center B cells. Int Immunopharmacol 2024; 128:111544. [PMID: 38266445 DOI: 10.1016/j.intimp.2024.111544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
The dysregulation of B cell maturation and putrescine metabolism has been implicated in various diseases. However, the causal relationship between them and the underlying mechanisms remain unclear. In this study, we investigated the impact of exogenous putrescine on B cell differentiation in the intestinal microenvironment. Our results demonstrated that administration of exogenous putrescine significantly impaired the proportion of germinal center B (GC B) cells in Peyer's patches (PPs) and lamina propria. Through integration of bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq), we identified putrescine-mediated changes in gene drivers, including those involved in the B cell receptor (BCR) signaling pathway and fatty acid oxidation. Furthermore, putrescine drinking disrupted T-B cell interactions and increased reactive oxygen species (ROS) production in B cells. In vitro activation of B cells confirmed the direct suppression of putrescine on GC B cells differentiation and ROS production. Additionally, we explored the Pearson correlations between putrescine biosynthesis activity and B cell infiltration in pan-cancers, revealing negative correlations in colon adenocarcinoma, stomach adenocarcinoma, and lung adenocarcinoma, but positive correlations in liver hepatocellular carcinoma, and breast invasive carcinoma. Our findings provided novel insights into the suppressive effects of elevated enteric putrescine on intestinal B cells differentiation and highlighted the complex and distinctive immunoregulatory role of putrescine in different microenvironments. These findings expand our understanding of the role of polyamines in B cell immunometabolism and related diseases.
Collapse
Affiliation(s)
- Xia Wei
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Shaojie Shi
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Zixuan Lu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Chengyu Li
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiangping Xu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Jinquan Chai
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiaofei Liu
- Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China.
| | - Tao Hu
- Department of Immunology, Binzhou Medical University, Yantai, China.
| | - Bin Wang
- Department of Immunology, Binzhou Medical University, Yantai, China.
| |
Collapse
|
6
|
Jia H, Tang H, Wu W, Yan Z, Gao C, Gao L, Liu J, Tang L, Cui Y. Putrescine alleviates the oxidative damage of cumulus-oocyte complex via improving fatty acid oxidation. Biochem Biophys Res Commun 2023; 684:149127. [PMID: 37871520 DOI: 10.1016/j.bbrc.2023.149127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Fatty acid oxidation of cumulus-oocyte complex (COC) provides sufficient energy for oocyte maturation. But, the relationship between fatty acid oxidation and oxidative stress in aging follicles, as well as the effect of putrescine, is still unclear. METHODS The porcine COCs were randomly divided into four groups and cultured in in vitro maturation (IVM) medium with or without 1 mmol/L putrescine, with 50 μmol/L hydrogen peroxide (H2O2) or with 50 μmol/L H2O2 plus 1 mmol/L putrescine. Oocyte maturation was assessed by the first polar body extrusion. The expressions of genes involved in fatty acid oxidation were detected, and the mitochondrial function was analyzed by themembrane potential. RESULTS The maturation rate of oocyte was significantly lower in the H2O2 group when compared with the control group (P<0.001), and putrescine significantly increased this rate in the H2O2 plus putrescine group when compared with the H2O2 group (P<0.001). The expressions of LKB1, STRAD, ACC2, AMPKα1 and AMPKα2 mRNAs in cumulus cells (CCs) were significantly downregulated by H2O2 treatment, and partly rescued by putrescine addition (P<0.05-0.001). However, the changes of LKB1, STRAD, ACC2, AMPKα1 and AMPKα2 mRNAs in oocytes were inapparent. The mitochondrial membrane potential of CCs in the H2O2 group was significantly lower than that in the control group, while putrescine addition significantly increased the mitochondrial membrane potential (P<0.001). CONCLUSION The decrease of oocyte maturation due to oxidative stress is related with the decreased fatty acid oxidation, and putrescine may alleviate the COCs damage via improving fatty acid oxidation.
Collapse
Affiliation(s)
- Hongyan Jia
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Lianyungang Maternal and Child Health Hospital, Kangda College of Nanjing Medical University, Lianyungang City, 222000, China
| | - Huaiyun Tang
- Lianyungang Maternal and Child Health Hospital, Kangda College of Nanjing Medical University, Lianyungang City, 222000, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhengjie Yan
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chao Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Li Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lisha Tang
- Lianyungang Maternal and Child Health Hospital, Kangda College of Nanjing Medical University, Lianyungang City, 222000, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
7
|
Kang B, Wang X, An X, Ji C, Ling W, Qi Y, Li S, Jiang D. Polyamines in Ovarian Aging and Disease. Int J Mol Sci 2023; 24:15330. [PMID: 37895010 PMCID: PMC10607840 DOI: 10.3390/ijms242015330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Ovarian aging and disease-related decline in fertility are challenging medical and economic issues with an increasing prevalence. Polyamines are a class of polycationic alkylamines widely distributed in mammals. They are small molecules essential for cell growth and development. Polyamines alleviate ovarian aging through various biological processes, including reproductive hormone synthesis, cell metabolism, programmed cell death, etc. However, an abnormal increase in polyamine levels can lead to ovarian damage and promote the development of ovarian disease. Therefore, polyamines have long been considered potential therapeutic targets for aging and disease, but their regulatory roles in the ovary deserve further investigation. This review discusses the mechanisms by which polyamines ameliorate human ovarian aging and disease through different biological processes, such as autophagy and oxidative stress, to develop safe and effective polyamine targeted therapy strategies for ovarian aging and the diseases.
Collapse
Affiliation(s)
- Bo Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (X.A.); (C.J.); (W.L.); (Y.Q.); (S.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (X.A.); (C.J.); (W.L.); (Y.Q.); (S.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoguang An
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (X.A.); (C.J.); (W.L.); (Y.Q.); (S.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengweng Ji
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (X.A.); (C.J.); (W.L.); (Y.Q.); (S.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Weikang Ling
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (X.A.); (C.J.); (W.L.); (Y.Q.); (S.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxin Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (X.A.); (C.J.); (W.L.); (Y.Q.); (S.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuo Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (X.A.); (C.J.); (W.L.); (Y.Q.); (S.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongmei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (X.A.); (C.J.); (W.L.); (Y.Q.); (S.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Catandi GD, Bresnahan DR, Peters SO, Fresa KJ, Maclellan LJ, Broeckling CD, Carnevale EM. Equine maternal aging affects the metabolomic profile of oocytes and follicular cells during different maturation time points. Front Cell Dev Biol 2023; 11:1239154. [PMID: 37818125 PMCID: PMC10561129 DOI: 10.3389/fcell.2023.1239154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction: Oocyte quality and fertility decline with advanced maternal age. During maturation within the ovarian follicle, the oocyte relies on the associated somatic cells, specifically cumulus and granulosa cells, to acquire essential components for developmental capacity. Methods: A nontargeted metabolomics approach was used to investigate the effects of mare age on different cell types within the dominant, follicular-phase follicle at three time points during maturation. Metabolomic analyses from single oocytes and associated cumulus and granulosa cells allowed correlations of metabolite abundance among cell types. Results and Discussion: Overall, many of the age-related changes in metabolite abundance point to Impaired mitochondrial metabolic function and oxidative stress in oocytes and follicular cells. Supporting findings include a higher abundance of glutamic acid and triglycerides and lower abundance of ceramides in oocytes and somatic follicular cells from old than young mares. Lower abundance of alanine in all follicular cell types from old mares, suggests limited anaerobic energy metabolism. The results also indicate impaired transfer of carbohydrate and free fatty acid substrates from cumulus cells to the oocytes of old mares, potentially related to disruption of transzonal projections between the cell types. The identification of age-associated alterations in the abundance of specific metabolites and their correlations among cells contribute to our understanding of follicular dysfunction with maternal aging.
Collapse
Affiliation(s)
- G. D. Catandi
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - D. R. Bresnahan
- Department of Animal Sciences, Berry College, Mount Berry, GA, United States
| | - S. O. Peters
- Department of Animal Sciences, Berry College, Mount Berry, GA, United States
| | - K. J. Fresa
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - L. J. Maclellan
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - C. D. Broeckling
- Proteomic and Metabolomics Core Facility, Colorado State University, Fort Collins, CO, United States
| | - E. M. Carnevale
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
9
|
Luo Y, Huang Y, Deng L, Li Z, Li C. Metabolomic Profiling of Female Mink Serum during Early to Mid-Pregnancy to Reveal Metabolite Changes. Genes (Basel) 2023; 14:1759. [PMID: 37761899 PMCID: PMC10531253 DOI: 10.3390/genes14091759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Mink embryos enter a period of diapause after the embryo develops into the blastocyst, and its reactivation is mainly caused by an increase in polyamine. The specific process of embryo diapause regulation and reactivation remains largely unexamined. This study aimed to identify changes in metabolites in the early pregnancy of mink by comparing and analyzing in serum metabolites up to twenty-nine days after mating. Blood samples were taken on the first day of mating, once a week until the fifth week. Metabolomic profiles of the serum samples taken during this period were analyzed by ultra-performance liquid chromatography/mass spectrometry. Multivariate statistical analyses identified differential metabolite expression at different time points in both positive and negative ion modes. The levels of dopamine, tyramine, L-phenylalanine, L-tyrosine, tyrosine, L-kynurenine, L-lysine, L-arginine, D-ornithine, and leucine changed significantly. These metabolites may be associated with the process of embryo diapause and subsequent reactivation.
Collapse
Affiliation(s)
| | | | | | | | - Chunjin Li
- College of Animal Science, Jilin University, Changchun 130062, China; (Y.L.); (Y.H.); (L.D.); (Z.L.)
| |
Collapse
|
10
|
Zhao H, He X, Zhang X, Shi J, Zhou R, Mai R, Su Q, Cai G, Huang S, Xu Z, Wu Z, Li Z. Progesterone and Androstenedione Are Important Follicular Fluid Factors Regulating Porcine Oocyte Maturation Quality. Animals (Basel) 2023; 13:1811. [PMID: 37889685 PMCID: PMC10251964 DOI: 10.3390/ani13111811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 10/29/2023] Open
Abstract
Oocytes matured in vitro are useful for assisted human and farm animal reproduction. However, the quality of in vitro matured oocytes is usually lower than that of in vivo matured oocytes, possibly due to the absence of some important signal regulators in vitro. In this study, untargeted metabolomics was used to detect the changes in the metabolites in the follicular fluid (FF) during in vivo pig oocyte maturation and in the culture medium during in vitro maturation. Our results showed that the total metabolite changing profile of the in vivo FF was different from that of the in vitro maturation medium, but the levels of 23 differentially expressed metabolites (DEMs) changed by following the same trend during both in vivo and in vitro pig oocyte maturation. These 23 metabolites may be important regulators of porcine oocyte maturation. We found that progesterone and androstenedione, two factors in the ovarian steroidogenesis pathway enriched from the DEMs, were upregulated in the FF during in vivo pig oocyte maturation. The levels of these two factors were 31 and 20 fold, respectively, and they were higher in the FF than in the culture medium at the oocyte mature stage. The supplementation of progesterone and androstenedione during in vitro maturation significantly improved the pig oocyte maturation rate and subsequent embryo developmental competence. Our finding suggests that a metabolic abnormality during in vitro pig oocyte maturation affects the quality of the matured oocytes. This study identified some important metabolites that regulate oocyte maturation and their developmental potential, which will be helpful to improve assisted animal and human reproduction.
Collapse
Affiliation(s)
- Huaxing Zhao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (H.Z.)
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
| | - Xiaohua He
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (H.Z.)
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
| | - Xianjun Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (H.Z.)
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
| | - Junsong Shi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu 527439, China
| | - Rong Zhou
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu 527439, China
| | - Ranbiao Mai
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu 527439, China
| | - Qiaoyun Su
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu 527439, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (H.Z.)
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (H.Z.)
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (H.Z.)
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (H.Z.)
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (H.Z.)
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|