1
|
Bhat RA, Rafi H, Tardiolo G, Fazio F, Aragona F, Zumbo A, Coelho C, D'Alessandro E. The role of embryonic stem cells, transcription and growth factors in mammals: A review. Tissue Cell 2023; 80:102002. [PMID: 36549226 DOI: 10.1016/j.tice.2022.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Mammals represent a relevant species in worldwide cultures with significant commercial value. These animals are considered an attractive large animal model for biomedical and biotechnology research. The development of large animal experimental models may open alternative strategies for investigating stem cells (SCs) physiology and potential application in the veterinary field. The embryonic stem cells (ESCs) are known to possess natural pluripotency that confers the ability to differentiate into various tissues in vivo and in vitro. These notable characteristics can be useful for research and innovative applications, including biomedicine, agriculture and industry. Transcription factors play a crucial role in preserving stem cell self-renewal, whereas growth factors are involved in both growth and differentiation. However, to date, many questions concerning pluripotency, cellular differentiation regulator genes, and other molecules such as growth factors and their interactions in many mammalian species remain unresolved. The purpose of this review is to provide an overall review regarding the study of ESCs in mammals and briefly discuss the role of transcription and growth factors.
Collapse
Affiliation(s)
- Rayees Ahmad Bhat
- Department of Zoology, Kurukshetra University, Kurukshetra 136119, India
| | - Humera Rafi
- Department of Chemistry, University of Gujrat, Pakistan
| | - Giuseppe Tardiolo
- Department of Veterinary Sciences, University of Messina, Via Palatucci snc, Messina 98168, Italy
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Via Palatucci snc, Messina 98168, Italy.
| | - Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Via Palatucci snc, Messina 98168, Italy
| | - Alessandro Zumbo
- Department of Veterinary Sciences, University of Messina, Via Palatucci snc, Messina 98168, Italy
| | - Clarisse Coelho
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias (ULHT), Campo Grande 376, Lisboa 1749-024, Portugal
| | - Enrico D'Alessandro
- Department of Veterinary Sciences, University of Messina, Via Palatucci snc, Messina 98168, Italy
| |
Collapse
|
2
|
Abstract
Mammals evolved from oviparous reptiles that laid eggs in a dry, terrestrial environment, thus requiring large amounts of yolk to support development and tough, outer coats to protect them. Eutherian mammals such as humans and mice exhibit an "extreme" form of viviparity in which yolk and conceptus coats have become largely redundant. However, the "other" mammals-monotremes and marsupials-have retained and modified some features of reptilian development that provide valuable insights into the evolution of viviparity in mammals. Most striking of these are the conceptus coats, which include the zona pellucida, the mucoid coat, and the shell coat. We discuss current knowledge of these coats in monotremes and marsupials, their possible roles, and recently identified components such as the zona pellucida protein ZPAX, conceptus coat mucin (CCM), and nephronectin (NPNT).
Collapse
Affiliation(s)
| | - Marilyn B Renfree
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Familari M, Au PCK, de Iongh RU, Cruz Y, Selwood L. Expression analysis of Cdx2 and Pou5f1 in a marsupial, the stripe-faced dunnart, during early development. Mol Reprod Dev 2016; 83:108-23. [PMID: 26613191 DOI: 10.1002/mrd.22597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/26/2015] [Indexed: 11/06/2022]
Abstract
The first lineage allocation during mouse development forms the trophectoderm and inner cell mass, in which Cdx2 and Pou5f1 display reciprocal expression. Yet Cdx2 is not required for trophectoderm specification in other mammals, such as the human, cow, pig, or in two marsupials, the tammar and opossum. The role of Cdx2 and Pou5f1 in the first lineage allocation of Sminthopsis macroura, the stripe-faced dunnart, is unknown. In this study, expression of Cdx2 and Pou5f1 during oogenesis, development from cleavage to blastocyst stages, and in the allocation of the first three lineages was analyzed for this dunnart. Cdx2 mRNA was present in late antral-stage oocytes, but not present again until Day 5.5. Pou5f1 mRNA was present from primary follicles to zygotes, and then expression resumed starting at the early unilaminar blastocyst stage. All cleavage stages and the pluriblast and trophoblast cells co-expressed CDX2 and POU5F1 proteins, which persisted until early stages of hypoblast formation. Hypoblast cells also show co-localisation of POU5F1 and CDX2 once they were allocated, and this persisted during their division and migration. Our studies suggest that CDX2, and possibly POU5F1, are maternal proteins, and that the first lineage to differentiate is the trophoblast, which differentiates to trophectoderm after shell loss one day before implantation. In the stripe-faced dunnart, cleavage cells, as well as trophoblast and pluriblast cells, are polarized, suggesting the continued presence of CDX2 in both lineages until late blastocyst stages may play a role in the formation and maintenance of polarity.
Collapse
Affiliation(s)
- Mary Familari
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Phil Chi Khang Au
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Robb U de Iongh
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Yolanda Cruz
- Department of Biology, Oberlin College, Oberlin, Ohio
| | - Lynne Selwood
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Kumar D, Anand T, Singh KP, Singh MK, Shah RA, Chauhan MS, Palta P, Singla SK, Manik RS. Derivation of buffalo embryonic stem-like cells from in vitro-produced blastocysts on homologous and heterologous feeder cells. J Assist Reprod Genet 2011; 28:679-88. [PMID: 21573679 DOI: 10.1007/s10815-011-9572-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/20/2011] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of the present study is to compare the ability of homologous and heterologous embryonic fibroblast feeder layers to support isolation and proliferation of buffalo ES-like cells generated from hatched and expanded blastocysts produced by in vitro fertilization and characterization of derived cells through expression of pluripotent markers. METHODS Embryonic stem cells were derived from hatched and expanded blastocysts through intact blastocyst culture and enzymatic method respectively and compared for proliferation rate on homologous (buffalo) and heterologous feeder layers (goat and sheep). RESULTS A total of 69 hatched and 83 expanded blastocysts were used for isolation of inner cell masses which were seeded on buffalo, goat and sheep embryonic feeder layers. Following seeding, attachment rate, primary colony formation rate and survival to maximum number of passages were observed to be higher on homologous feeder layers. CONCLUSIONS Upon comparison of different feeder layer cells for derivation and maintenance of buffalo ES-like cells from hatched and expanded blastocysts, buffalo embryonic fibroblast cells were able to provide a better environment for maintaining pluripotency in culture conditions.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Boom and bust: a review of the physiology of the marsupial genus Antechinus. J Comp Physiol B 2008; 178:545-62. [DOI: 10.1007/s00360-007-0250-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 12/09/2007] [Accepted: 12/22/2007] [Indexed: 11/25/2022]
|
6
|
Familari M, Selwood L. The potential for derivation of embryonic stem cells in vertebrates. Mol Reprod Dev 2006; 73:123-31. [PMID: 16177982 DOI: 10.1002/mrd.20376] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An analysis of embryonic stem cell (ESC) derivation in vertebrates has revealed that the potential to form ESC is dependent on the setting aside of a pluripotent lineage from extraembryonic lineages early in development. Derivation of ESCs from all amniotes and also many lower vertebrates with that pattern of lineage allocation is thus predictable. Culture conditions during derivation in all groups share some similar characteristics, most of which are related to retaining potency coupled with extensive proliferative capacity. This in turn probably reflects the environment that maintains and causes the primordial germ cells (PGC) to proliferate in vivo. Hence culture usually involves feeder layers and serum or factors derived from them and the use of small clumps of pluriblast or epiblast cells instead of total dissociation, to facilitate cell-cell signalling. Currently addition of FGF has proven to be important but that of LIF has not been fully explored.
Collapse
Affiliation(s)
- Mary Familari
- Department of Zoology, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
7
|
Kress A, Selwood L. Marsupial Hypoblast: Formation and Differentiation of the Bilaminar Blastocyst in Sminthopsis macroura. Cells Tissues Organs 2006; 182:155-70. [PMID: 16914918 DOI: 10.1159/000093965] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2006] [Indexed: 11/19/2022] Open
Abstract
Hypoblast formation in Sminthopsis macroura starts in blastocysts with a size between 1.0 and 1.4 mm, in which cells appear to be similar to each other, and finishes at the complete 2.6- or 2.7-mm bilaminar blastocyst, which is fully lined with hypoblast cells. When hypoblast cells begin allocation, the pluriblast region progressively differentiates from the trophoblast. Some pluriblast cells, which are otherwise undistinguished, lying on one side near the boundary of the circular pluriblast, move to the inside as hypoblast cells by mitosis or migration. They initially line the pluriblast and then the trophoblast. Hypoblast cells continue to leave the pluriblast/epiblast and intercalate into the underlying hypoblast layer until the advanced stages of bilaminar blastocysts. Associated with the origin of the hypoblast cells, the residual surface epiblast cells become less flatted and more cuboidal or rounded in shape. Characteristics are increased density of ribosomes, granular endoplasmic reticulum and a marked apical-basal polarity related to apical microvilli and endocytosis and more vesicles with flocculent content and a loss of the crystalloid deposits that were typical for earlier stages. Trophoblast cells become flat and elongated with only few vesicles, and they transform into extra-embryonic ectoderm cells, which are broader, rather square and with a higher density of ribosomes. Hypoblast cells are characterized by a relatively high level of ribosomes and endoplasmic reticulum, fewer small vesicles and no noticeable endocytotic processes and initially form a reticulum because the cells preferentially migrate along cell-cell boundaries by extension of long filopodia. Once hypoblast cells reach the boundary of the embryonic area and extend to line the trophoblast, they progressively consolidate into a squamous epithelium. It is suggested that the origin of the hypoblast from one side of the pluriblast and its invasion under the trophoblast from proliferating centres at the edge of the embryonic area provide mechanisms for patterning epiblast, hypoblast, trophoblast and extra-embryonic ectoderm.
Collapse
Affiliation(s)
- Annetrudi Kress
- Department of Anatomy, University of Basel, Basel, Switzerland.
| | | |
Collapse
|
8
|
Selwood L, Johnson MH. Trophoblast and hypoblast in the monotreme, marsupial and eutherian mammal: evolution and origins. Bioessays 2006; 28:128-45. [PMID: 16435291 DOI: 10.1002/bies.20360] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pregastrula stage mammalian conceptus consists of both embryonic and non-embryonic components. The latter forms the bulk of the tissues, provides nutrition for the developing embryo and also contributes developmental signals that influence events within the embryo itself. Understanding the origins and relationships between the embryonic and extraembryonic cell lineages is thus central to understanding development in mammals. Despite the apparent gross differences in early developmental strategy and form, the conceptuses of eutherian, marsupial and monotreme mammals show some remarkable similarities in the lineage allocation to trophoblast and hypoblast and in the emergent properties of the two cell types. We suggest that the gross differences can be explained by two relatively small evolutionary timing changes affecting cell adhesion patterns and the polarisation of developmentally significant information. These changes result in the conversion of a unilaminar blastocyst to a morula form composed of blastomeres with increased regulatory capacity.
Collapse
Affiliation(s)
- Lynne Selwood
- Department of Zoology, University of Melbourne, Vic, Australia
| | | |
Collapse
|
9
|
Hickford D, Selwood L. Peri-gastrulation development of the dasyurid marsupial Sminthopsis macroura (stripe-faced dunnart) in vitro and evidence for patterning of the epiblast prior to gastrulation. Mol Reprod Dev 2003; 65:402-19. [PMID: 12840814 DOI: 10.1002/mrd.10315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Marsupials are potentially excellent models for the study of gastrulation because of their superficial embryonic area (EA), post-gastrulation implantation and their potential to provide information about the evolution of gastrulation. Very few studies have examined this developmental period in marsupials. Using an established developmental timetable, peri-gastrula stage Sminthopsis macroura blastocysts were collected and described in detail by observations on live blastocysts and by the use of histological and immunohistochemical techniques on fixed blastocysts. Gastrulation in S. macroura shares several aspects common to that of both eutherian mammals and birds, but in terms of tissue arrangement and conceptus form, is more similar to the chick than other mammals. Two methods of culturing EA explants flat without their shell were devised. The techniques will markedly increase the number of possible experimental manipulations, which previously were limited by the presence of blastocyst investments. Exposure of fractions of explants of round, morphologically uniform pre-gastrula stage EA to growth factors or signaling molecules implicated in vertebrate gastrulation suggests that like the chick and mouse, the marsupial epiblast is patterned prior to gastrulation. Of all factors tested, basic fibroblast growth factor (bFGF) had the most prominent effect, promoting cell differentiation, and possible mesoderm formation. Data from explant culture suggests that similar to the chick and mouse, limited specification precedes the onset of gastrulation.
Collapse
Affiliation(s)
- Danielle Hickford
- School of Zoology, La Trobe University, Bundoora, Victoria, Australia
| | | |
Collapse
|