1
|
Zhao C, Wan Y, Cao X, Zhang H, Bao X. Comparative genomics and analysis of the mechanism of PQQ overproduction in Methylobacterium. World J Microbiol Biotechnol 2021; 37:100. [PMID: 33983497 DOI: 10.1007/s11274-021-03068-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/06/2021] [Indexed: 11/24/2022]
Abstract
Methylobacterium sp. CLZ was isolated from soil contaminated with chemical wastewater. This strain simultaneously synthesizes Pyrroloquinoline quinone (PQQ), Coenzyme Q10 (CoQ10), and carotenoids by utilizing methanol as a carbon source. Comparative genomic analysis was performed for five Methylobacterium strains. As per the outcomes, the Methylobacterium CLZ strain showed the smallest genome size and the lowest number of proteins. Thus, it can serve as an ideal cell model for investigating the biological process of Methylobacterium and constructing genetically engineered Methylobacterium. The Methylobacterium CLZ strain's pqqL gene, which does not occur in other Methylobacterium strains but plays a crucial role in PQQ synthesis. This was a surprising finding for the study of PQQ biosynthesis in Methylobacterium. Methylobacterium sp. NI91 strain was generated by random mutagenesis of CLZ strain, and NI91 strain showed a 72.44% increase in PQQ yield. The mutation in the mxaJ gene involved in the methanol dehydrogenase (MDH) synthesis was identified through comparative genomic analysis of the whole genome of mutant strain NI91 and wild-type strain CLZ. The mxaJ gene was found to be upregulated in the NI91 strain. Thus, the up-regulation of the mxaJ gene could be correlated with the high yield of PQQ, and it could provide valuable clues for strain engineering to improve PQQ production.
Collapse
Affiliation(s)
- Changle Zhao
- College of Life Sciences, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Yinping Wan
- College of Life Sciences, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Xiaojie Cao
- College of Life Sciences, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Huili Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, People's Republic of China.
| | - Xin Bao
- Xinjiang Fufeng Biotechnology Co., Ltd., Ürümqi, 830001, Xinjiang, People's Republic of China
| |
Collapse
|
2
|
Sarmiento-Pavía PD, Sosa-Torres ME. Bioinorganic insights of the PQQ-dependent alcohol dehydrogenases. J Biol Inorg Chem 2021; 26:177-203. [PMID: 33606117 DOI: 10.1007/s00775-021-01852-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Among the several alcohol dehydrogenases, PQQ-dependent enzymes are mainly found in the α, β, and γ-proteobacteria. These proteins are classified into three main groups. Type I ADHs are localized in the periplasm and contain one Ca2+-PQQ moiety, being the methanol dehydrogenase (MDH) the most representative. In recent years, several lanthanide-dependent MDHs have been discovered exploding the understanding of the natural role of lanthanide ions. Type II ADHs are localized in the periplasm and possess one Ca2+-PQQ moiety and one heme c group. Finally, type III ADHs are complexes of two or three subunits localized in the cytoplasmic membrane and possess one Ca2+-PQQ moiety and four heme c groups, and in one of these proteins, an additional [2Fe-2S] cluster has been discovered recently. From the bioinorganic point of view, PQQ-dependent alcohol dehydrogenases have been revived recently mainly due to the discovery of the lanthanide-dependent enzymes. Here, we review the three types of PQQ-dependent ADHs with special focus on their structural features and electron transfer processes. The PQQ-Alcohol dehydrogenases are classified into three main groups. Type I and type II ADHs are located in the periplasm, while type III ADHs are in the cytoplasmic membrane. ADH-I have a Ca-PQQ or a Ln-PQQ, ADH-II a Ca-PQQ and one heme-c and ADH-III a Ca-PQQ and four hemes-c. This review focuses on their structural features and electron transfer processes.
Collapse
Affiliation(s)
- Pedro D Sarmiento-Pavía
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Martha E Sosa-Torres
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
3
|
Lumpe H, Pol A, Op den Camp HJM, Daumann LJ. Impact of the lanthanide contraction on the activity of a lanthanide-dependent methanol dehydrogenase - a kinetic and DFT study. Dalton Trans 2018; 47:10463-10472. [PMID: 30020281 PMCID: PMC6085770 DOI: 10.1039/c8dt01238e] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/14/2018] [Indexed: 01/15/2023]
Abstract
Interest in the bioinorganic chemistry of lanthanides is growing rapidly as more and more lanthanide-dependent bacteria are being discovered. Especially the earlier lanthanides have been shown to be preferentially utilized by bacteria that need these Lewis acids as cofactors in their alcohol dehydrogenase enzymes. Here, we investigate the impact of the lanthanide ions lanthanum(iii) to lutetium(iii) (excluding Pm) on the catalytic parameters (vmax, KM, kcat/KM) of a methanol dehydrogenase (MDH) isolated from Methylacidiphilum fumariolicum SolV. Kinetic experiments and DFT calculations were used to discuss why only the earlier lanthanides (La-Gd) promote high MDH activity. Impact of Lewis acidity, coordination number preferences, stability constants and other properties that are a direct result of the lanthanide contraction are discussed in light of the two proposed mechanisms for MDH.
Collapse
Affiliation(s)
- Henning Lumpe
- Ludwig-Maximilians-Universität München
, Department Chemie
,
Butenandtstr. 5-13
, 81377 München
, Germany
.
| | - Arjan Pol
- Department of Microbiology
, Institute of Wetland and Water Research
, Radboud University Nijmegen
,
The Netherlands
| | - Huub J. M. Op den Camp
- Department of Microbiology
, Institute of Wetland and Water Research
, Radboud University Nijmegen
,
The Netherlands
| | - Lena J. Daumann
- Ludwig-Maximilians-Universität München
, Department Chemie
,
Butenandtstr. 5-13
, 81377 München
, Germany
.
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry
, Ludwig-Maximilians-Universität München
,
Germany
| |
Collapse
|
4
|
Culpepper MA, Rosenzweig AC. Structure and protein-protein interactions of methanol dehydrogenase from Methylococcus capsulatus (Bath). Biochemistry 2014; 53:6211-9. [PMID: 25185034 PMCID: PMC4188263 DOI: 10.1021/bi500850j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
In
the initial steps of their metabolic pathway, methanotrophic
bacteria oxidize methane to methanol with methane monooxygenases (MMOs)
and methanol to formaldehyde with methanol dehydrogenases (MDHs).
Several lines of evidence suggest that the membrane-bound or particulate
MMO (pMMO) and MDH interact to form a metabolic supercomplex. To further
investigate the possible existence of such a supercomplex, native
MDH from Methylococcus capsulatus (Bath) has been
purified and characterized by size exclusion chromatography with multi-angle
light scattering and X-ray crystallography. M. capsulatus (Bath) MDH is primarily a dimer in solution, although an oligomeric
species with a molecular mass of ∼450–560 kDa forms
at higher protein concentrations. The 2.57 Å resolution crystal
structure reveals an overall fold and α2β2 dimeric architecture similar to those of other MDH structures.
In addition, biolayer interferometry studies demonstrate specific
protein–protein interactions between MDH and M. capsulatus (Bath) pMMO as well as between MDH and the truncated recombinant
periplasmic domains of M. capsulatus (Bath) pMMO
(spmoB). These interactions exhibit KD values of 833 ± 409 nM and 9.0 ± 7.7 μM, respectively.
The biochemical data combined with analysis of the crystal lattice
interactions observed in the MDH structure suggest a model in which
MDH and pMMO associate not as a discrete, stoichiometric complex but
as a larger assembly scaffolded by the intracytoplasmic membranes.
Collapse
Affiliation(s)
- Megen A Culpepper
- Departments of Molecular Biosciences and Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | | |
Collapse
|
5
|
Abstract
Whole-cell biocatalysis utilizes native or recombinant enzymes produced by cellular metabolism to perform synthetically interesting reactions. Besides hydrolases, oxidoreductases represent the most applied enzyme class in industry. Oxidoreductases are attributed a high future potential, especially for applications in the chemical and pharmaceutical industries, as they enable highly interesting chemistry (e.g., the selective oxyfunctionalization of unactivated C-H bonds). Redox reactions are characterized by electron transfer steps that often depend on redox cofactors as additional substrates. Their regeneration typically is accomplished via the metabolism of whole-cell catalysts. Traditionally, studies towards productive redox biocatalysis focused on the biocatalytic enzyme, its activity, selectivity, and specificity, and several successful examples of such processes are running commercially. However, redox cofactor regeneration by host metabolism was hardly considered for the optimization of biocatalytic rate, yield, and/or titer. This article reviews molecular mechanisms of oxidoreductases with synthetic potential and the host redox metabolism that fuels biocatalytic reactions with redox equivalents. The tools discussed in this review for investigating redox metabolism provide the basis for studies aiming at a deeper understanding of the interplay between synthetically active enzymes and metabolic networks. The ultimate goal of rational whole-cell biocatalyst engineering and use for fine chemical production is discussed.
Collapse
|
6
|
Hothi P, Sutcliffe M, Scrutton N. Kinetic isotope effects and ligand binding in PQQ-dependent methanol dehydrogenase. Biochem J 2009; 388:123-33. [PMID: 15617516 PMCID: PMC1186700 DOI: 10.1042/bj20041731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The reaction of PQQ (2,7,9-tricarboxypyrroloquinoline quinone)-dependent MDH (methanol dehydrogenase) from Methylophilus methylotrophus has been studied under steady-state conditions in the presence of an alternative activator [GEE (glycine ethyl ester)] and compared with similar reactions performed with ammonium (used more generally as an activator in steady-state analysis of MDH). Studies of initial velocity with methanol (protiated methanol, C1H3O1H) and [2H]methanol (deuteriated methanol, C2H3O2H) as substrate, performed with different concentrations of GEE and PES (phenazine ethosulphate), indicate competitive binding effects for substrate and PES on the stimulation and inhibition of enzyme activity by GEE. GEE is more effective at stimulating activity than ammonium at low concentrations, suggesting tighter binding of GEE to the active site. Inhibition of activity at high GEE concentration is less pronounced than at high ammonium concentration. This suggests a close spatial relationship between the stimulatory (KS) and inhibitory (KI) binding sites in that binding of GEE to the KS site sterically impairs the binding of GEE to the KI site. The binding of GEE is also competitive with the binding of PES, and GEE is more effective than ammonium in competing with PES. This competitive binding of GEE and PES lowers the effective concentration of PES at the site competent for electron transfer. Accordingly, the oxidative half-reaction, which is second-order with respect to PES concentration, is more rate-limiting in steady-state turnover with GEE than with ammonium. The smaller methanol C-1H/C-2H kinetic isotope effects observed with GEE are consistent with a larger contribution made by the oxidative half-reaction to rate limitation. Cyanide is much less effective at suppressing 'endogenous' activity in the presence of GEE than with ammonium, which is attributed to impaired binding of cyanide to the catalytic site through steric interaction with GEE bound at the KS site. The kinetic model developed previously for reactions of MDH with ammonium [Hothi, Basran, Sutcliffe and Scrutton (2003) Biochemistry 42, 3966-3978] is consistent with data obtained with GEE, although a more detailed structural interpretation is given here. Molecular-modelling studies rationalize the kinetic observations in terms of a complex binding scenario at the molecular level involving two spatially distinct inhibitory sites (KI and KI'). The KI' site caps the entrance to the active site and is interpreted as the PES binding site. The KI site is adjacent to, and, for GEE, overlaps with, the KS site, and is located in the active-site cavity close to the PQQ cofactor and the catalytic site for methanol oxidation.
Collapse
Affiliation(s)
- Parvinder Hothi
- *Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
| | - Michael J. Sutcliffe
- *Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
- †Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
| | - Nigel S. Scrutton
- *Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
7
|
Zhang X, Reddy SY, Bruice TC. Mechanism of methanol oxidation by quinoprotein methanol dehydrogenase. Proc Natl Acad Sci U S A 2007; 104:745-9. [PMID: 17215371 PMCID: PMC3020142 DOI: 10.1073/pnas.0610126104] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
At neutral pH, oxidation of CH(3)OH --> CH(2)O by an o-quinone requires general-base catalysis and the reaction is endothermic. The active-site -CO(2)(-) groups of Glu-171 and Asp-297 (Glu-171-CO(2)(-) and Asp-297-CO(2)(-)) have been considered as the required general base catalysts in the bacterial o-quinoprotein methanol dehydrogenase (MDH) reaction. Based on quantum mechanics/molecular mechanics (QM/MM) calculations, the free energy for MeOH reduction of o-PQQ when MeOH is hydrogen bonded to Glu-171-CO(2)(-) and the crystal water (Wat1) is hydrogen bonded to Asp-297-CO(2)(-) is DeltaG++ = 11.7 kcal/mol, which is comparable with the experimental value of 8.5 kcal/mol. The calculated DeltaG++ when MeOH is hydrogen bonded to Asp-297-CO(2)(-) is >50 kcal/mol. The Asp-297-CO(2)(-)...Wat1 complex is very stable. Molecular dynamics (MD) simulations on MDH.PQQ.Wat1 complex in TIP3P water for 5 ns does not result in interchange of Asp-297-CO(2)(-) bound Wat1 for a solvent water. Starting with Wat1 removed and MeOH hydrogen bonded to Asp-297-CO(2)(-), we find that MeOH returns to be hydrogen bonded to Glu-171-CO(2)(-) and Asp-297-CO(2)(-) coordinates to Ca(2+) during 3 ns simulation. The Asp-297-CO(2)(-)...Wat1 of reactant complex does play a crucial role in catalysis. By QM/MM calculation DeltaG++ = 1.1 kcal/mol for Asp-297-CO(2)(-) general-base catalysis of Wat1 hydration of the immediate CH(2)==O product --> CH(2)(OH)(2). By this means, the endothermic oxidation-reduction reaction is pulled such that the overall conversion of MeOH to CH(2)(OH)(2) is exothermic.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | - Swarnalatha Y. Reddy
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | - Thomas C. Bruice
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Kay CWM, Mennenga B, Görisch H, Bittl R. Substrate binding in quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa studied by electron-nuclear double resonance. Proc Natl Acad Sci U S A 2006; 103:5267-72. [PMID: 16567634 PMCID: PMC1459345 DOI: 10.1073/pnas.0509667103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binding of methanol to the quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa has been studied by pulsed electron-nuclear double resonance at 9 GHz. Shifts in the hyperfine couplings of the pyrroloquinoline quinone radical provide direct evidence for a change in the environment of the cofactor when substrate is present. By performing experiments with deuteriated methanol, we confirmed that methanol was the cause of the effect. Density functional theory calculations show that these shifts can be understood if a water molecule, which is often found in x-ray structures of the active site of quinoprotein alcohol dehydrogenases, is displaced by the substrate. The difference between the binding of water and methanol is that the water molecule forms a hydrogen bond to O5 of pyrroloquinoline quinone, which the methanol, by virtue of its methyl group, does not. The results support the proposal that aspartate rather than glutamate is the catalytically active base for a hydride transfer mechanism in quinoprotein alcohol dehydrogenases.
Collapse
Affiliation(s)
- Christopher W. M. Kay
- *Institut für Experimentalphysik, Fachbereich Physik, Freie Universität, 14195 Berlin, Germany; and
| | - Bina Mennenga
- Fachgebiet Technische Biochemie, Institut für Biotechnologie, Technische Universität, 13353 Berlin, Germany
| | - Helmut Görisch
- Fachgebiet Technische Biochemie, Institut für Biotechnologie, Technische Universität, 13353 Berlin, Germany
| | - Robert Bittl
- *Institut für Experimentalphysik, Fachbereich Physik, Freie Universität, 14195 Berlin, Germany; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Toyama H, Chen ZW, Fukumoto M, Adachi O, Matsushita K, Mathews FS. Molecular Cloning and Structural Analysis of Quinohemoprotein Alcohol Dehydrogenase ADH-IIG from Pseudomonas putida HK5. J Mol Biol 2005; 352:91-104. [PMID: 16061256 DOI: 10.1016/j.jmb.2005.06.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 06/28/2005] [Accepted: 06/28/2005] [Indexed: 11/26/2022]
Abstract
Depending on the alcohols used as growth substrates, Pseudomonas putida HK5 produces two distinct quinohemoprotein alcohol dehydrogenases, ADH-IIB and ADH-IIG, both of which contain pyrroloquinoline quinone (PQQ) and heme c as the prosthetic groups but show different substrate specificities, especially for diol substrates. Molecular cloning of the gene of ADH-IIB and its crystal structure are already reported. Here, molecular cloning of the gene, qgdA, and solution of the three-dimensional structure of ADH-IIG are reported. The enzyme consists of 718 amino acid residues including a signal sequence of 29 amino acid residues. The PQQ domain is highly homologous to other quinoproteins, especially to quinohemoproteins. The crystal structure of ADH-IIG, determined at 2.2A resolution, shows that the overall structure and the amino acid residues involved in PQQ binding are quite similar to ADH-IIB and to another quinohemoprotein ADH, qhEDH from Comamonas testosteroni. However, the lengths of the linker regions connecting the PQQ and the cytochrome domains are different from each other, leading to a significant difference in orientation of the cytochrome domain with respect to the PQQ domain. Apart from ADH-IIB and qhEDH, ADH-IIG has an extra 12-residue helix within loop 3 in the PQQ domain and an extra 3(10) helix in the C terminus of the cytochrome domain, and both helices appear parallel and linked by a hydrogen bond. The amino acid residues contacting substrate/product in the crystal structures are also different among them. In the crystal structure of ADH-IIG with 1,2-propanediol, one of the hydroxyl groups of the substrate forms a hydrogen bond with O5 of PQQ and OD1 of Asp300, and the other interacts with a water molecule and with NE2 of Trp386, the corresponding residue of which is not found in ADH-IIB and qhEDH, and might be the residue responsible for making ADH-IIG prefer diol substrates.
Collapse
Affiliation(s)
- Hirohide Toyama
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Reddy SY, Bruice TC. Determination of enzyme mechanisms by molecular dynamics: studies on quinoproteins, methanol dehydrogenase, and soluble glucose dehydrogenase. Protein Sci 2005; 13:1965-78. [PMID: 15273299 PMCID: PMC2279812 DOI: 10.1110/ps.04673404] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Molecular dynamics (MD) simulations have been carried out to study the enzymatic mechanisms of quinoproteins, methanol dehydrogenase (MDH), and soluble glucose dehydrogenase (sGDH). The mechanisms of reduction of the orthoquinone cofactor (PQQ) of MDH and sGDH involve concerted base-catalyzed proton abstraction from the hydroxyl moiety of methanol or from the 1-hydroxyl of glucose, and hydride equivalent transfer from the substrate to the quinone carbonyl carbon C5 of PQQ. The products of methanol and glucose oxidation are formaldehyde and glucolactone, respectively. The immediate product of PQQ reduction, PQQH- [-HC5(O-)-C4(=O)-] and PQQH [-HC5(OH)-C4(=O)-] converts to the hydroquinone PQQH2 [-C5(OH)=C4(OH)-]. The main focus is on MD structures of MDH * PQQ * methanol, MDH * PQQH-, MDH * PQQH, sGDH * PQQ * glucose, sGDH * PQQH- (glucolactone, and sGDH * PQQH. The reaction PQQ-->PQQH- occurs with Glu 171-CO2- and His 144-Im as the base species in MDH and sGDH, respectively. The general-base-catalyzed hydroxyl proton abstraction from substrate concerted with hydride transfer to the C5 of PQQ is assisted by hydrogen-bonding to the C5=O by Wat1 and Arg 324 in MDH and by Wat89 and Arg 228 in sGDH. Asp 297-COOH would act as a proton donor for the reaction PQQH(-)-->PQQH, if formed by transfer of the proton from Glu 171-COOH to Asp 297-CO2- in MDH. For PQQH-->PQQH2, migration of H5 to the C4 oxygen may be assisted by a weak base like water (either by crystal water Wat97 or bulk solvent, hydrogen-bonded to Glu 171-CO2- in MDH and by Wat89 in sGDH).
Collapse
Affiliation(s)
- Swarnalatha Y Reddy
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
11
|
Reddy SY, Bruice TC. Mechanisms of ammonia activation and ammonium ion inhibition of quinoprotein methanol dehydrogenase: a computational approach. Proc Natl Acad Sci U S A 2004; 101:15887-92. [PMID: 15520392 PMCID: PMC528780 DOI: 10.1073/pnas.0407209101] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism of methanol oxidation by quinoprotein methanol dehydrogenase (MDH.PQQ) in combination with methanol (MDH.PQQ.methanol) involves Glu-171--CO2(-) general base removal of the hydroxyl proton of methanol in concert with hydride equivalent transfer to the >C5=O quinone carbon of pyrroloquinoline quinone (PQQ) and rearrangement to hydroquinone (PQQH2) with release of formaldehyde. Molecular dynamics (MD) studies of the structures of MDH.PQQ.methanol in the presence of activator NH3 and inhibitor NH4(+) have been carried out. In the MD structure of MDH.PQQ.methanol.NH3, the hydrated NH3 resides at a distance of approximately 24 A away from methanol and the ortho-quinone portion of PQQ. As such, influence of NH3 on the oxidation reaction is not probable. We find that NH4(+) competes with the substrate by hydrogen-bonding to Glu-171CO2(-) such that the MDH.PQQ.methanol.NH4(+) complex is not reactive. Ammonia readily forms imines with quinone. Imines are present in solution as neutral (>C5=NH) and protonated (>C5=NH2(+)) species. MD simulations establish that the >C5=NH2(+) derivative of MDH.PQQ(NH2(+).methanol structure is unreactive because of the nonproductive means of methanol binding. The structure obtained by the MD simulations with the neutral >C5=NH imine of MDH.PQQ(NH).methanol structure is similar to the reactive MDH.PQQ.methanol complex. This active site geometry allows for catalysis of hydride equivalent transfer to the >C5=NH of PQQ(NH) by concerted Glu-171CO(2)(-) general-base removal of the H-OCH3 proton and Arg-324H+ general-acid proton transfer to the imine nitrogen. Enzyme-bound <C5(H)NH2 derivative of PQQ [PQQ(NH)] and CH(2)O product are formed.
Collapse
Affiliation(s)
- Swarnalatha Y Reddy
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
12
|
Reddy SY, Mathews F, Zheng YJ, Bruice TC. Quinoprotein methanol dehydrogenase: a molecular dynamics study and comparison with crystal structure. J Mol Struct 2003. [DOI: 10.1016/s0022-2860(03)00257-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Abstract
This review summarises the characteristics, identification, and measurement of pyrroloquinoline quinone, the prosthetic group of bacterial quinoprotein dehydrogenases whose structures, mechanisms, and electron transport functions are described in detail. Type I alcohol dehydrogenase includes the "classic" methanol dehydrogenase; its x-ray structure and mechanism are discussed in detail. It is likely that its mechanism involves a direct hydride transfer rather than a mechanism involving a covalent adduct. The x-ray structure of a closely related ethanol dehydrogenase is also described. The type II alcohol dehydrogenase is a soluble quinohaemoprotein, having a C-terminal extension containing haem C, which provides an excellent opportunity for the study of intraprotein electron transfer processes. The type III alcohol dehydrogenase is similar but it has two additional subunits (one of which is a multihaem cytochrome c) bound in an unusual way to the periplasmic membrane. One type of glucose dehydrogenase is a soluble quinoprotein whose role in energy transduction is uncertain. Its x-ray structure (in the presence and absence of substrate) is described together with the detailed mechanism, which also involves a direct hydride transfer. The more widely distributed glucose dehydrogenases are integral membrane proteins, bound to the membrane by transmembrane helices at the N-terminus.
Collapse
Affiliation(s)
- C Anthony
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, UK.
| |
Collapse
|