1
|
Torii T, Miyamoto Y, Yamauchi J. Myelination by signaling through Arf guanine nucleotide exchange factor. J Neurochem 2024; 168:2201-2213. [PMID: 38894552 DOI: 10.1111/jnc.16141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
During myelination, large quantities of proteins are synthesized and transported from the endoplasmic reticulum (ER)-trans-Golgi network (TGN) to their appropriate locations within the intracellular region and/or plasma membrane. It is widely believed that oligodendrocytes uptake neuronal signals from neurons to regulate the endocytosis- and exocytosis-mediated intracellular trafficking of major myelin proteins such as myelin-associated glycoprotein (MAG) and proteolipid protein 1 (PLP1). The small GTPases of the adenosine diphosphate (ADP) ribosylation factor (Arf) family constitute a large group of signal transduction molecules that act as regulators for intracellular signaling, vesicle sorting, or membrane trafficking in cells. Studies on mice deficient in Schwann cell-specific Arfs-related genes have revealed abnormal myelination formation in peripheral nerves, indicating that Arfs-mediated signaling transduction is required for myelination in Schwann cells. However, the complex roles in these events remain poorly understood. This review aims to provide an update on signal transduction, focusing on Arf and its activator ArfGEF (guanine nucleotide exchange factor for Arf) in oligodendrocytes and Schwann cells. Future studies are expected to provide important information regarding the cellular and physiological processes underlying the myelination of oligodendrocytes and Schwann cells and their function in modulating neural activity.
Collapse
Affiliation(s)
- Tomohiro Torii
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara-shi, Kanagawa, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
2
|
Zamanian MY, Golmohammadi M, Amin RS, Bustani GS, Romero-Parra RM, Zabibah RS, Oz T, Jalil AT, Soltani A, Kujawska M. Therapeutic Targeting of Krüppel-Like Factor 4 and Its Pharmacological Potential in Parkinson's Disease: a Comprehensive Review. Mol Neurobiol 2024; 61:3596-3606. [PMID: 37996730 PMCID: PMC11087351 DOI: 10.1007/s12035-023-03800-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Krüppel-like factor 4 (KLF4), a zinc finger transcription factor, is found in different human tissues and shows diverse regulatory activities in a cell-dependent manner. In the brain, KLF4 controls various neurophysiological and neuropathological processes, and its contribution to various neurological diseases has been widely reported. Parkinson's disease (PD) is an age-related neurodegenerative disease that might have a connection with KLF4. In this review, we discussed the potential implication of KLF4 in fundamental molecular mechanisms of PD, including aberrant proteostasis, neuroinflammation, apoptosis, oxidative stress, and iron overload. The evidence collected herein sheds new light on KLF4-mediated pathways, which manipulation appears to be a promising therapeutic target for PD management. However, there is a gap in the knowledge on this topic, and extended research is required to understand the translational value of the KLF4-oriented therapeutical approach in PD.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | | | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Tuba Oz
- Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Afsaneh Soltani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran.
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland.
| |
Collapse
|
3
|
Cytohesin-2 mediates group I metabotropic glutamate receptor-dependent mechanical allodynia through the activation of ADP ribosylation factor 6 in the spinal cord. Neurobiol Dis 2021; 159:105466. [PMID: 34390832 DOI: 10.1016/j.nbd.2021.105466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 01/15/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGluRs), mGluR1 and mGluR5, in the spinal cord are implicated in nociceptive transmission and plasticity through G protein-mediated second messenger cascades leading to the activation of various protein kinases such as extracellular signal-regulated kinase (ERK). In this study, we demonstrated that cytohesin-2, a guanine nucleotide exchange factor for ADP ribosylation factors (Arfs), is abundantly expressed in subsets of excitatory interneurons and projection neurons in the superficial dorsal horn. Cytohesin-2 is enriched in the perisynapse on the postsynaptic membrane of dorsal horn neurons and forms a protein complex with mGluR5 in the spinal cord. Central nervous system-specific cytohesin-2 conditional knockout mice exhibited reduced mechanical allodynia in inflammatory and neuropathic pain models. Pharmacological blockade of cytohesin catalytic activity with SecinH3 similarly reduced mechanical allodynia and inhibited the spinal activation of Arf6, but not Arf1, in both pain models. Furthermore, cytohesin-2 conditional knockout mice exhibited reduced mechanical allodynia and ERK1/2 activation following the pharmacological activation of spinal mGluR1/5 with 3,5-dihydroxylphenylglycine (DHPG). The present study suggests that cytothesin-2 is functionally associated with mGluR5 during the development of mechanical allodynia through the activation of Arf6 in spinal dorsal horn neurons.
Collapse
|
4
|
Walton K, Leier A, Sztul E. Regulating the regulators: role of phosphorylation in modulating the function of the GBF1/BIG family of Sec7 ARF-GEFs. FEBS Lett 2020; 594:2213-2226. [PMID: 32333796 DOI: 10.1002/1873-3468.13798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Membrane traffic between secretory and endosomal compartments is vesicle-mediated and must be tightly balanced to maintain a physiological compartment size. Vesicle formation is initiated by guanine nucleotide exchange factors (GEFs) that activate the ARF family of small GTPases. Regulatory mechanisms, including reversible phosphorylation, allow ARF-GEFs to support vesicle formation only at the right time and place in response to cellular needs. Here, we review current knowledge of how the Golgi-specific brefeldin A-resistance factor 1 (GBF1)/brefeldin A-inhibited guanine nucleotide exchange protein (BIG) family of ARF-GEFs is influenced by phosphorylation and use predictive paradigms to propose new regulatory paradigms. We describe a conserved cluster of phosphorylation sites within the N-terminal domains of the GBF1/BIG ARF-GEFs and suggest that these sites may respond to homeostatic signals related to cell growth and division. In the C-terminal region, GBF1 shows phosphorylation sites clustered differently as compared with the similar configuration found in both BIG1 and BIG2. Despite this similarity, BIG1 and BIG2 phosphorylation patterns are divergent in other domains. The different clustering of phosphorylation sites suggests that the nonconserved sites may represent distinct regulatory nodes and specify the function of GBF1, BIG1, and BIG2.
Collapse
Affiliation(s)
- Kendall Walton
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, AL, USA
| | - Andre Leier
- Department of Genetics, University of Alabama at Birmingham, AL, USA
| | - Elizabeth Sztul
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
5
|
Sztul E, Chen PW, Casanova JE, Cherfils J, Dacks JB, Lambright DG, Lee FJS, Randazzo PA, Santy LC, Schürmann A, Wilhelmi I, Yohe ME, Kahn RA. ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol Biol Cell 2019; 30:1249-1271. [PMID: 31084567 PMCID: PMC6724607 DOI: 10.1091/mbc.e18-12-0820] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Detailed structural, biochemical, cell biological, and genetic studies of any gene/protein are required to develop models of its actions in cells. Studying a protein family in the aggregate yields additional information, as one can include analyses of their coevolution, acquisition or loss of functionalities, structural pliability, and the emergence of shared or variations in molecular mechanisms. An even richer understanding of cell biology can be achieved through evaluating functionally linked protein families. In this review, we summarize current knowledge of three protein families: the ARF GTPases, the guanine nucleotide exchange factors (ARF GEFs) that activate them, and the GTPase-activating proteins (ARF GAPs) that have the ability to both propagate and terminate signaling. However, despite decades of scrutiny, our understanding of how these essential proteins function in cells remains fragmentary. We believe that the inherent complexity of ARF signaling and its regulation by GEFs and GAPs will require the concerted effort of many laboratories working together, ideally within a consortium to optimally pool information and resources. The collaborative study of these three functionally connected families (≥70 mammalian genes) will yield transformative insights into regulation of cell signaling.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA 01267
| | - James E. Casanova
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS and Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France
| | - Joel B. Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David G. Lambright
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Amherst, MA 01605
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | | | - Lorraine C. Santy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Annette Schürmann
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Ilka Wilhelmi
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Marielle E. Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322-3050
| |
Collapse
|
6
|
Bhatt JM, Hancock W, Meissner JM, Kaczmarczyk A, Lee E, Viktorova E, Ramanadham S, Belov GA, Sztul E. Promiscuity of the catalytic Sec7 domain within the guanine nucleotide exchange factor GBF1 in ARF activation, Golgi homeostasis, and effector recruitment. Mol Biol Cell 2019; 30:1523-1535. [PMID: 30943106 PMCID: PMC6724685 DOI: 10.1091/mbc.e18-11-0711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The integrity of the Golgi and trans-Golgi network (TGN) is disrupted by brefeldin A (BFA), which inhibits the Golgi-localized BFA-sensitive factor (GBF1) and brefeldin A-inhibited guanine nucleotide-exchange factors (BIG1 and BIG2). Using a cellular replacement assay to assess GBF1 functionality without interference from the BIGs, we show that GBF1 alone maintains Golgi architecture; facilitates secretion; activates ADP-ribosylation factor (ARF)1, 3, 4, and 5; and recruits ARF effectors to Golgi membranes. Unexpectedly, GBF1 also supports TGN integrity and recruits numerous TGN-localized ARF effectors. The impact of the catalytic Sec7 domain (Sec7d) on GBF1 functionality was assessed by swapping it with the Sec7d from ARF nucleotide-binding site opener (ARNO)/cytohesin-2, a plasma membrane GEF reported to activate all ARFs. The resulting chimera (GBF1-ARNO-GBF1 [GARG]) targets like GBF1, supports Golgi/TGN architecture, and facilitates secretion. However, unlike GBF1, GARG activates all ARFs (including ARF6) at the Golgi/TGN and recruits additional ARF effectors to the Golgi/TGN. Our results have general implications: 1) GEF's targeting is independent of Sec7d, but Sec7d influence the GEF substrate specificity and downstream effector events; 2) all ARFs have access to all membranes, but are restricted in their distribution by the localization of their activating GEFs; and 3) effector association with membranes requires the coincidental presence of activated ARFs and specific membrane identifiers.
Collapse
Affiliation(s)
- Jay M Bhatt
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - William Hancock
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Justyna M Meissner
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Aneta Kaczmarczyk
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Eunjoo Lee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ekaterina Viktorova
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742
| | - Sasanka Ramanadham
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - George A Belov
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
7
|
Jun YW, Lee SH, Shim J, Lee JA, Lim CS, Kaang BK, Jang DJ. Dual roles of the N-terminal coiled-coil domain of anAplysiasec7 protein: homodimer formation and nuclear export. J Neurochem 2016; 139:1102-1112. [DOI: 10.1111/jnc.13875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/13/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Yong-Woo Jun
- Department of Ecological Science; College of Ecology and Environment; Kyungpook National University; Sangju-si Gyeongsangbuk-do Korea
| | - Seung-Hee Lee
- Department of Biological Sciences; Korea Institute of Science and Technology (KAIST); Daejeon Korea
| | - Jaehoon Shim
- Department of Biological Sciences; College of Natural Sciences; Seoul National University; Gwanak-gu Seoul Korea
| | - Jin-A Lee
- Department of Biotechnology and Biological Science; College of Life Science and Nano Technology; Hannam University; Yuseong-daero; Yuseong-gu Daejeon Korea
| | - Chae-Seok Lim
- Department of Biological Sciences; College of Natural Sciences; Seoul National University; Gwanak-gu Seoul Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences; College of Natural Sciences; Seoul National University; Gwanak-gu Seoul Korea
| | - Deok-Jin Jang
- Department of Ecological Science; College of Ecology and Environment; Kyungpook National University; Sangju-si Gyeongsangbuk-do Korea
| |
Collapse
|
8
|
El-Chemaly S, Pacheco-Rodriguez G, Malide D, Meza-Carmen V, Kato J, Cui Y, Padilla PI, Samidurai A, Gochuico BR, Moss J. Nuclear localization of vascular endothelial growth factor-D and regulation of c-Myc-dependent transcripts in human lung fibroblasts. Am J Respir Cell Mol Biol 2014; 51:34-42. [PMID: 24450584 DOI: 10.1165/rcmb.2013-0417oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lymphangiogenesis and angiogenesis are processes that are, in part, regulated by vascular endothelial growth factor (VEGF)-D. The formation of lymphatic structures has been implicated in multiple lung diseases, including pulmonary fibrosis. VEGF-D is a secreted protein produced by fibroblasts and macrophages, which induces lymphangiogenesis by signaling via VEGF receptor-3, and angiogenesis through VEGF receptor-2. VEGF-D contains a central VEGF homology domain, which is the biologically active domain, with flanking N- and C-terminal propeptides. Full-length VEGF-D (∼ 50 kD) is proteolytically processed in the extracellular space, to generate VEGF homology domain that contains the VEGF-D receptor-binding sites. Here, we report that, independent of its cell surface receptors, full-length VEGF-D accumulated in nuclei of fibroblasts, and that this process appears to increase with cell density. In nuclei, full-length VEGF-D associated with RNA polymerase II and c-Myc. In cells depleted of VEGF-D, the transcriptionally regulated genes appear to be modulated by c-Myc. These findings have potential clinical implications, as VEGF-D was found in fibroblast nuclei in idiopathic pulmonary fibrosis, a disease characterized by fibroblast proliferation. These findings are consistent with actions of full-length VEGF-D in cellular homeostasis in health and disease, independent of its receptors.
Collapse
|
9
|
Regulating the large Sec7 ARF guanine nucleotide exchange factors: the when, where and how of activation. Cell Mol Life Sci 2014; 71:3419-38. [PMID: 24728583 DOI: 10.1007/s00018-014-1602-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Eukaryotic cells require selective sorting and transport of cargo between intracellular compartments. This is accomplished at least in part by vesicles that bud from a donor compartment, sequestering a subset of resident protein "cargos" destined for transport to an acceptor compartment. A key step in vesicle formation and targeting is the recruitment of specific proteins that form a coat on the outside of the vesicle in a process requiring the activation of regulatory GTPases of the ARF family. Like all such GTPases, ARFs cycle between inactive, GDP-bound, and membrane-associated active, GTP-bound, conformations. And like most regulatory GTPases the activating step is slow and thought to be rate limiting in cells, requiring the use of ARF guanine nucleotide exchange factor (GEFs). ARF GEFs are characterized by the presence of a conserved, catalytic Sec7 domain, though they also contain motifs or additional domains that confer specificity to localization and regulation of activity. These domains have been used to define and classify five different sub-families of ARF GEFs. One of these, the BIG/GBF1 family, includes three proteins that are each key regulators of the secretory pathway. GEF activity initiates the coating of nascent vesicles via the localized generation of activated ARFs and thus these GEFs are the upstream regulators that define the site and timing of vesicle production. Paradoxically, while we have detailed molecular knowledge of how GEFs activate ARFs, we know very little about how GEFs are recruited and/or activated at the right time and place to initiate transport. This review summarizes the current knowledge of GEF regulation and explores the still uncertain mechanisms that position GEFs at "budding ready" membrane sites to generate highly localized activated ARFs.
Collapse
|
10
|
Lowery J, Szul T, Styers M, Holloway Z, Oorschot V, Klumperman J, Sztul E. The Sec7 guanine nucleotide exchange factor GBF1 regulates membrane recruitment of BIG1 and BIG2 guanine nucleotide exchange factors to the trans-Golgi network (TGN). J Biol Chem 2013; 288:11532-45. [PMID: 23386609 PMCID: PMC3630886 DOI: 10.1074/jbc.m112.438481] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Three Sec7 guanine nucleotide exchange factors (GEFs) activate ADP-ribosylation factors (ARFs) to facilitate coating of transport vesicles within the secretory and endosomal pathways. GBF1 recruits COPI to pre-Golgi and Golgi compartments, whereas BIG1 and BIG2 recruit AP1 and GGA clathrin adaptors to the trans-Golgi network (TGN) and endosomes. Here, we report a functional cascade between these GEFs by showing that GBF1-activated ARFs (ARF4 and ARF5, but not ARF3) facilitate BIG1 and BIG2 recruitment to the TGN. We localize GBF1 ultrastructurally to the pre-Golgi, the Golgi, and also the TGN. Our findings suggest a model in which GBF1 localized within pre-Golgi and Golgi compartments mediates ARF activation to facilitate recruitment of COPI to membranes, whereas GBF1 localized at the TGN mediates ARF activation that leads to the recruitment of BIG1 and BIG2 to the TGN. Membrane-associated BIG1/2 then activates ARFs that recruit clathrin adaptors. In this cascade, an early acting GEF (GBF1) activates ARFs that mediate recruitment of late acting GEFs (BIG1/2) to coordinate coating events within the pre-Golgi/Golgi/TGN continuum. Such coordination may optimize the efficiency and/or selectivity of cargo trafficking through the compartments of the secretory pathway.
Collapse
Affiliation(s)
- Jason Lowery
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Lisauskas T, Matula P, Claas C, Reusing S, Wiemann S, Erfle H, Lehmann L, Fischer P, Eils R, Rohr K, Storrie B, Starkuviene V. Live-cell assays to identify regulators of ER-to-Golgi trafficking. Traffic 2012; 13:416-32. [PMID: 22132776 DOI: 10.1111/j.1600-0854.2011.01318.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 11/28/2011] [Accepted: 12/01/2011] [Indexed: 11/27/2022]
Abstract
We applied fluorescence microscopy-based quantitative assays to living cells to identify regulators of endoplasmic reticulum (ER)-to-Golgi trafficking and/or Golgi complex maintenance. We first validated an automated procedure to identify factors which influence Golgi-to-ER relocalization of GalT-CFP (β1,4-galactosyltransferase I-cyan fluorescent protein) after brefeldin A (BFA) addition and/or wash-out. We then tested 14 proteins that localize to the ER and/or Golgi complex when overexpressed for a role in ER-to-Golgi trafficking. Nine of them interfered with the rate of BFA-induced redistribution of GalT-CFP from the Golgi complex to the ER, six of them interfered with GalT-CFP redistribution from the ER to a juxtanuclear region (i.e. the Golgi complex) after BFA wash-out and six of them were positive effectors in both assays. Notably, our live-cell approach captures regulator function in ER-to-Golgi trafficking, which was missed in previous fixed cell assays, as well as assigns putative roles for other less characterized proteins. Moreover, we show that our assays can be extended to RNAi and chemical screens.
Collapse
|
12
|
Effects of brefeldin A-inhibited guanine nucleotide-exchange (BIG) 1 and KANK1 proteins on cell polarity and directed migration during wound healing. Proc Natl Acad Sci U S A 2011; 108:19228-33. [PMID: 22084092 DOI: 10.1073/pnas.1117011108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Brefeldin A-inhibited guanine nucleotide-exchange protein (BIG) 1 activates class I ADP ribosylation factors (ARFs) by accelerating the replacement of bound GDP with GTP to initiate recruitment of coat proteins for membrane vesicle formation. Among proteins that interact with BIG1, kinesin family member 21A (KIF21A), a plus-end-directed motor protein, moves cargo away from the microtubule-organizing center (MTOC) on microtubules. Because KANK1, a protein containing N-terminal KN, C-terminal ankyrin-repeat, and intervening coiled-coil domains, has multiple actions in cells and also interacts with KIF21A, we explored a possible interaction between it and BIG1. We obtained evidence for a functional and physical association between these proteins, and found that the effects of BIG1 and KANK1 depletion on cell migration in wound-healing assays were remarkably similar. Treatment of cells with BIG1- or KANK1-specific siRNA interfered significantly with directed cell migration and initial orientation of Golgi/MTOC toward the leading edge, which was not mimicked by KIF21A depletion. Although colocalization of overexpressed KANK1 and endogenous BIG1 in HeLa cells was not clear microscopically, their reciprocal immunoprecipitation (IP) is compatible with the presence of small percentages of each protein in the same complexes. Depletion or overexpression of BIG1 protein appeared not to affect KANK1 distribution. Our data identify actions of both BIG1 and KANK1 in regulating cell polarity during directed migration; these actions are consistent with the presence of both BIG1 and KANK1 in dynamic multimolecular complexes that maintain Golgi/MTOC orientation, differ from those that might contain all three proteins (BIG1, KIF21A, and KANK1), and function in directed transport along microtubules.
Collapse
|
13
|
Boal F, Stephens DJ. Specific functions of BIG1 and BIG2 in endomembrane organization. PLoS One 2010; 5:e9898. [PMID: 20360857 PMCID: PMC2845624 DOI: 10.1371/journal.pone.0009898] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/04/2010] [Indexed: 11/29/2022] Open
Abstract
Background Transport of molecules from one subcellular compartment to another involves the recruitment of cytosolic coat protein complexes to a donor membrane to concentrate cargo, deform the membrane and ultimately to form an independent carrier. Small-GTP-binding proteins of the Arf family are central to many membrane trafficking events. Arfs are activated by guanine nucleotide exchange factors (GEFs) which results in their recruitment to membranes and subsequent engagement with Arf-effectors, many of which are coat proteins. Among the human BFA-sensitive large Arf-GEFs, the function of the two closely related BIG1 and BIG2 is still not clear, and recent studies have raised the question of functional redundancy between the two proteins. Methodology/Principal Findings Here we have used small-interfering RNA on human cells and a combination of fixed and live-cell imaging to investigate the differential functions of BIG1 and BIG2 in endomembrane organization and function. Importantly, in this direct comparative study, we show discrete functions for BIG1 and BIG2. Our results show that depletion of BIG2 but not of BIG1 induces a tubulation of the recycling endosomal compartment, consistent with a specific role for BIG2 here. In contrast, suppression of BIG1 induces the formation of Golgi mini-stacks still polarized and functional in terms of cargo export. Conclusions A key finding from our work is that suppression of BIG1 expression results in a fragmentation of the Golgi apparatus. Our data indicate that the human BFA-sensitive large Arf-GEFs have non-redundant functions in cell organization and membrane trafficking. BIG1 is required to maintain the normal morphology of the Golgi; BIG2 is important for endosomal compartment integrity and cannot replace the function of BIG1 in Golgi organization.
Collapse
Affiliation(s)
- Frédéric Boal
- Department of Biochemistry, Cell Biology Laboratories, University of Bristol School of Medical Sciences, Bristol, United Kingdom.
| | | |
Collapse
|
14
|
|
15
|
Bui QT, Golinelli-Cohen MP, Jackson CL. Large Arf1 guanine nucleotide exchange factors: evolution, domain structure, and roles in membrane trafficking and human disease. Mol Genet Genomics 2009; 282:329-50. [PMID: 19669794 PMCID: PMC7088145 DOI: 10.1007/s00438-009-0473-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 07/19/2009] [Indexed: 12/16/2022]
Abstract
The Sec7 domain ADP-ribosylation factor (Arf) guanine nucleotide exchange factors (GEFs) are found in all eukaryotes, and are involved in membrane remodeling processes throughout the cell. This review is focused on members of the GBF/Gea and BIG/Sec7 subfamilies of Arf GEFs, all of which use the class I Arf proteins (Arf1-3) as substrates, and play a fundamental role in trafficking in the endoplasmic reticulum (ER)—Golgi and endosomal membrane systems. Members of the GBF/Gea and BIG/Sec7 subfamilies are large proteins on the order of 200 kDa, and they possess multiple homology domains. Phylogenetic analyses indicate that both of these subfamilies of Arf GEFs have members in at least five out of the six eukaryotic supergroups, and hence were likely present very early in eukaryotic evolution. The homology domains of the large Arf1 GEFs play important functional roles, and are involved in interactions with numerous protein partners. The large Arf1 GEFs have been implicated in several human diseases. They are crucial host factors for the replication of several viral pathogens, including poliovirus, coxsackievirus, mouse hepatitis coronavirus, and hepatitis C virus. Mutations in the BIG2 Arf1 GEF have been linked to autosomal recessive periventricular heterotopia, a disorder of neuronal migration that leads to severe malformation of the cerebral cortex. Understanding the roles of the Arf1 GEFs in membrane dynamics is crucial to a full understanding of trafficking in the secretory and endosomal pathways, which in turn will provide essential insights into human diseases that arise from misregulation of these pathways.
Collapse
Affiliation(s)
- Quynh Trang Bui
- Laboratoire d'Enzymologie et Biochimie Structurales, Bat 34, CNRS, 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
16
|
Xu Z, Gong Q, Xia B, Groves B, Zimmermann M, Mugler C, Mu D, Matsumoto B, Seaman M, Ma D. A role of histone H3 lysine 4 methyltransferase components in endosomal trafficking. ACTA ACUST UNITED AC 2009; 186:343-53. [PMID: 19651892 PMCID: PMC2728403 DOI: 10.1083/jcb.200902146] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Histone lysine methyltransferase complexes are essential for chromatin organization and gene regulation. Whether any of this machinery functions in membrane traffic is unknown. In this study, we report that mammal Dpy-30 (mDpy-30), a subunit of several histone H3 lysine 4 (H3K4) methyltransferase (H3K4MT) complexes, resides in the nucleus and at the trans-Golgi network (TGN). The TGN targeting of mDpy-30 is mediated by BIG1, a TGN-localized guanine nucleotide exchange factor for adenosine diphosphate ribosylation factor GTPases. Altering mDpy-30 levels changes the distribution of cation-independent mannose 6-phosphate receptor (CIMPR) without affecting that of TGN46 or transferrin receptor. Our experiments also indicate that mDpy-30 functions in the endosome to TGN transport of CIMPR and that its knockdown results in the enrichment of internalized CIMPR and recycling endosomes near cell protrusions. Much like mDpy-30 depletion, the knockdown of Ash2L or RbBP5, two other H3K4MT subunits, leads to a similar redistribution of CIMPR. Collectively, these results suggest that mDpy-30 and probably H3K4MT play a role in the endosomal transport of specific cargo proteins.
Collapse
Affiliation(s)
- Zhuojin Xu
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Interaction of brefeldin A-inhibited guanine nucleotide-exchange protein (BIG) 1 and kinesin motor protein KIF21A. Proc Natl Acad Sci U S A 2008; 105:18788-93. [PMID: 19020088 DOI: 10.1073/pnas.0810104105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brefeldin A-inhibited guanine nucleotide-exchange protein (BIG) 1 activates human ADP-ribosylation factor (ARF) 1 and 3 by accelerating the replacement of ARF-bound GDP with GTP to initiate recruitment of coat proteins for membrane vesicle formation. Liquid chromatography MS/MS analysis of peptides from proteins that co-precipitated with BIG1 antibodies identified "kinesin family member 21A" (KIF21A), a plus-end-directed motor protein that moves cargo on microtubules away from the microtubule-organizing center. Reciprocal immunoprecipitation (IP) of endogenous proteins and microscopically apparent overlap of immunoreactive BIG1 with overexpressed GFP-KIF21A in the perinuclear region were consistent with an interaction of KIF21A-BIG1. Overexpression of full-length KIF21A and BIG1 and their fragments in HEK293 cells followed by reciprocal IP revealed that the C-terminal tail of KIF21A, with seven WD-40 repeats, may interact with structure in the C-terminal region of BIG1. Interfering with cyclic activation and inactivation of ARF1 by overexpressing constitutively active ARF1(Q71L) or dominant inactive ARF1(T31N) altered the distribution of BIG1 as well as its interaction with KIF21A. A requirement for ARF1 was confirmed by its selective depletion with siRNA. Unlike disruption of microtubules with nocodazole, selective inhibition of transport by depletion of KIF21A with specific siRNA altered BIG1 distribution without changing that of intrinsic Golgi membrane proteins. These newly recognized interactions of BIG1 and KIF21A should enable us to understand better the mechanisms through which, acting together, they may integrate local events in membrane trafficking with longer-range transport processes and to relate those processes to the diverse signaling and scaffold functions of BIG1.
Collapse
|
18
|
Padilla PI, Uhart M, Pacheco-Rodriguez G, Peculis BA, Moss J, Vaughan M. Association of guanine nucleotide-exchange protein BIG1 in HepG2 cell nuclei with nucleolin, U3 snoRNA, and fibrillarin. Proc Natl Acad Sci U S A 2008; 105:3357-61. [PMID: 18292223 PMCID: PMC2265132 DOI: 10.1073/pnas.0712387105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Indexed: 01/01/2023] Open
Abstract
BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein, activates class I ADP-ribosylation factors (ARF1-3) by catalyzing the replacement of bound GDP by GTP, an action critical for the regulation of protein transport in eukaryotic cells. Our earlier report [Padilla PI, Pancheco-Rodriguez G, Moss J, Vaughan M (2004) Proc Natl Acad Sci USA 101:2752-2757] that BIG1 concentrated in nucleoli of serum-starved HepG2 cells prompted us to identify molecules associated with BIG1 in dynamic nucleolar structures. Antibodies against BIG1 or nucleolin coprecipitated both proteins from nuclei, which was abolished by the incubation of nuclei with RNase A or DNase, indicating that the interaction depended on nucleic acids. (32)P labeling of RNAs immunoprecipitated with BIG1 or nucleolin from nuclei revealed bands of approximately 210 bases that also hybridized with U3 small nucleolar (sno)RNA-specific oligonucleotides. Clones of U3 snoRNA cDNAs from the material precipitated by antibodies against BIG1 or nucleolin yielded identical nucleotide sequences that also were found in genomic DNA. Later analyses revealed the presence of fibrillarin, nucleoporin p62, and La in BIG1 and nucleolin immunoprecipitates. Our data demonstrate that BIG1, nucleolin, U3, the U3-binding protein fibrillarin, and the RNA-binding protein La may exist together in nuclear complexes, consistent with a potential role for BIG1 in nucleolar processes. Evidence that BIG1 and nucleolin, but not fibrillarin, can be present with p62 at the nuclear envelope confirms the presence of BIG1 and nucleolin in dynamic molecular complexes that change in composition while moving through nuclei. Nuclear functions of BIG1 remain to be determined.
Collapse
Affiliation(s)
- Philip Ian Padilla
- *Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Marina Uhart
- *Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Gustavo Pacheco-Rodriguez
- *Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Brenda A. Peculis
- Department of Biochemistry, University of Missouri, Columbia, MO 65211
| | - Joel Moss
- *Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Martha Vaughan
- *Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
19
|
Abstract
BRAG2 is a guanine nucleotide exchange factor for the GTPase Arf6 that cycles between the cytoplasm and nucleus in a CRM1/exportin1-dependent manner. Despite its presence in the nucleus, nuclear functions have not previously been described. Here, we show that depletion of endogenous BRAG2 by RNAi leads to an increased number of Cajal bodies (CBs), and altered structure of nucleoli, as indicated by less focal fibrillarin staining. This result was surprising given that nuclear BRAG2 is diffusely distributed throughout the nucleoplasm and is not concentrated within nucleoli at steady state. However, we found that ectopic expression of the nuclear GTPase PIKE/AGAP2 causes both BRAG2 and the CB marker coilin to accumulate in nucleoli. Neither the GTPase activity of PIKE nor the nucleotide exchange activity of BRAG2 is required for this nucleolar concentration. Increased levels of exogenous BRAG2 in nucleoli result in a redistribution of fibrillarin to the nucleolar periphery, supporting a role for BRAG2 in regulating nucleolar architecture. These observations suggest that, in addition to its role in endocytic regulation at the plasma membrane, BRAG2 also functions within the nucleus.
Collapse
Affiliation(s)
- Jillian L Dunphy
- Department of Cell Biology, University of Virginia Health Sciences Center, Box 800732, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
20
|
Shen X, Hong MS, Moss J, Vaughan M. BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein, is required for correct glycosylation and function of integrin beta1. Proc Natl Acad Sci U S A 2007; 104:1230-5. [PMID: 17227842 PMCID: PMC1783117 DOI: 10.1073/pnas.0610535104] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycosylation of beta1 integrin (beta1) in the Golgi complex has been related to its function in multiple cell processes, e.g., invasiveness, matrix adhesion, and migration. Brefeldin A-inhibited guanine nucleotide-exchange proteins (BIG) 1 and BIG2 activate human ADP-ribosylation factors (ARF) 1 and ARF3 by catalyzing the replacement of ARF-bound GDP with GTP to regulate Golgi vesicular transport. We show here a requirement for BIG1 (but not BIG2) in glycosylation and function of beta1. In HepG2 cells treated for 48 or 72 h with BIG1, but not BIG2, siRNA, both the amount and electrophoretic mobility of the initially 130-kDa beta1 were increased. BIG1 content had risen by 48 h after removal of BIG1 siRNA, and the faster-migrating, aberrant 130-kDa beta1 was not seen. Peptide N-glycosidase F, but not endoglycosidase H, digestion converted all beta1 to an approximately 85-kDa (core protein) form. By electron microscopy, Golgi membranes in BIG1-depleted cells were less sharply defined than those in mock or BIG2 siRNA-treated cells, with more vesicle-like structures at the transface. Amounts of active RhoA-GTP also were decreased in such cells and restored by overexpression of HA-BIG1. Aberrant beta1 was present on the cell surface, but its function in cell spreading, adhesion, and migration was impaired. By immunofluorescence microscopy, BIG1 siRNA-treated cells showed less spreading and concentration of beta1 at the cell surface. These results indicate a previously unrecognized role for BIG1 in the glycosylation of beta1 by Golgi enzymes, which is critical for its function in developmental and other vital cell processes.
Collapse
Affiliation(s)
- Xiaoyan Shen
- *Pulmonary-Critical Care Medicine Branch
- To whom correspondence may be addressed at:
National Institutes of Health, Building 10, Room 5N307, MSC 1434, Bethesda, MD 20892-1434. E-mail:
or
| | - Myoung-Soon Hong
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joel Moss
- *Pulmonary-Critical Care Medicine Branch
| | - Martha Vaughan
- *Pulmonary-Critical Care Medicine Branch
- To whom correspondence may be addressed at:
National Institutes of Health, Building 10, Room 5N307, MSC 1434, Bethesda, MD 20892-1434. E-mail:
or
| |
Collapse
|
21
|
Ishizaki R, Shin HW, Iguchi-Ariga SMM, Ariga H, Nakayama K. AMY-1 (associate of Myc-1) localization to the trans-Golgi network through interacting with BIG2, a guanine-nucleotide exchange factor for ADP-ribosylation factors. Genes Cells 2006; 11:949-59. [PMID: 16866877 DOI: 10.1111/j.1365-2443.2006.00991.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AMY-1 (associate of Myc-1) was originally identified as a c-Myc-binding protein that enhances the c-Myc transcription activity, and subsequently found to interact with A-kinase-anchoring proteins (AKAPs), including AKAP149, S-AKAP84 and AKAP95. We show here that, using anti-AMY-1 antibodies we raised, AMY-1 localizes to the trans-Golgi network (TGN) and the nucleus. To explore the possible function of AMY-1, we have undertaken a search for interacting partners by co-immunoprecipitation experiments using cells stably expressing FLAG-tagged AMY-1. Interestingly, we have found that AMY-1 interacts with BIG2 and BIG1, both of which are high molecular weight guanine-nucleotide exchange factors for ADP-ribosylation factors (ARFs) and mainly localize to the TGN. Furthermore, we have demonstrated that AMY-1 is associated with the TGN through interacting with BIG2 but not with BIG1 using an RNA interference approach, although AMY-1 can interact with both BIG1 and BIG2 in vitro. Taken together with the facts that BIG2 contains domains that bind to regulatory subunits of protein kinase A and that recruitment of ARF1 onto Golgi membranes is mediated, at least in part, by activation of protein kinase A, these results suggest that BIG2 alone or in concert with recruited AMY-1 coordinates ARF-mediated membrane trafficking and signaling pathways.
Collapse
Affiliation(s)
- Ray Ishizaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
22
|
Citterio C, Jones HD, Pacheco-Rodriguez G, Islam A, Moss J, Vaughan M. Effect of protein kinase A on accumulation of brefeldin A-inhibited guanine nucleotide-exchange protein 1 (BIG1) in HepG2 cell nuclei. Proc Natl Acad Sci U S A 2006; 103:2683-8. [PMID: 16467138 PMCID: PMC1413798 DOI: 10.1073/pnas.0510571103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Brefeldin A-inhibited guanine nucleotide-exchange proteins, BIG1 and BIG2, are activators of ADP-ribosylation factor GTPases that are essential for regulating vesicular traffic among intracellular organelles. Biochemical analyses and immunofluorescence microscopy demonstrated BIG1 in nuclei as well as membranes and cytosol of serum-starved HepG2 cells. Within 20 min after addition of 8-Br-cAMP, BIG1 accumulated in nuclei, and this effect was blocked by protein kinase A (PKA) inhibitors H-89 and PKI, suggesting a dependence on PKA-catalyzed phosphorylation. BIG2 localization was not altered by cAMP, nor did BIG2 small interfering RNA influence nuclear accumulation of BIG1 induced by cAMP. Mutant BIG1 (S883A) in which Ala replaced Ser-883, a putative PKA phosphorylation site, did not move to the nucleus with cAMP addition, whereas replacement with Asp (S883D) resulted in nuclear accumulation of BIG1 without or with cAMP exposure, consistent with the mechanistic importance of a negative charge at that site. Mutation (712KPK714) of the nuclear localization signal inhibited BIG1 accumulation in nuclei, and PKA-catalyzed phosphorylation of S883, although necessary, was not sufficient for nuclear accumulation, as shown by the double mutation S883D/nuclear localization signal. A role for microtubules in cAMP-induced translocation of BIG1 is inferred from its inhibition by nocodazole. Thus, two more critical elements of BIG1 molecular structure were identified, as well as the potential function of microtubules in a novel PKA effect on BIG1 translocation.
Collapse
Affiliation(s)
- Carmen Citterio
- Pulmonary–Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Heather D. Jones
- Pulmonary–Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Gustavo Pacheco-Rodriguez
- Pulmonary–Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Aminul Islam
- Pulmonary–Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joel Moss
- Pulmonary–Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Martha Vaughan
- Pulmonary–Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
23
|
Kim TS, Jang CY, Kim HD, Lee JY, Ahn BY, Kim J. Interaction of Hsp90 with ribosomal proteins protects from ubiquitination and proteasome-dependent degradation. Mol Biol Cell 2005; 17:824-33. [PMID: 16314389 PMCID: PMC1356592 DOI: 10.1091/mbc.e05-08-0713] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Heat-shock protein 90 (Hsp90) is a molecular chaperone that plays a key role in the conformational maturation of various transcription factors and protein kinases in signal transduction. Multifunctional ribosomal protein S3 (rpS3), a component of the ribosomal small subunit, is involved in DNA repair and apoptosis. Our data show that Hsp90 binds directly to rpS3 and the functional consequence of Hsp90-rpS3 interaction results in the prevention of the ubiquitination and the proteasome-dependent degradation of rpS3, subsequently retaining the function and the biogenesis of the ribosome. Interference of Hsp90 activity by Hsp90 inhibitors appears to dissociate rpS3 from Hsp90, associate the protein with Hsp70, and induce the degradation of free forms of rpS3. Furthermore, ribosomal protein S6 (rpS6) also interacted with Hsp90 and exhibited a similar effect upon treatment with Hsp90 inhibitors. Therefore, we conclude that Hsp90 regulates the function of ribosomes by maintaining the stability of 40S ribosomal proteins such as rpS3 and rpS6.
Collapse
Affiliation(s)
- Tae-Sung Kim
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701, South Korea
| | | | | | | | | | | |
Collapse
|
24
|
Oka S, Kato J, Moss J. Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J Biol Chem 2005; 281:705-13. [PMID: 16278211 DOI: 10.1074/jbc.m510290200] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADP-ribosylation is a post-translational modification resulting from transfer of the ADP-ribose moiety of NAD to protein. Mammalian cells contain mono-ADP-ribosyltransferases that catalyze the formation of ADP-ribose-(arginine) protein, which can be cleaved by a 39-kDa ADP-ribose-(arginine) protein hydrolase (ARH1), resulting in release of free ADP-ribose and regeneration of unmodified protein. Enzymes involved in poly(ADP-ribosylation) participate in several critical physiological processes, including DNA repair, cellular differentiation, and carcinogenesis. Multiple poly(ADP-ribose) polymerases have been identified in the human genome, but there is only one known poly(ADP-ribose) glycohydrolase (PARG), a 111-kDa protein that degrades the (ADP-ribose) polymer to ADP-ribose. We report here the identification of an ARH1-like protein, termed poly(ADP-ribose) hydrolase or ARH3, which exhibited PARG activity, generating ADP-ribose from poly-(ADP-ribose), but did not hydrolyze ADP-ribose-arginine, -cysteine, -diphthamide, or -asparagine bonds. The 39-kDa ARH3 shares amino acid sequence identity with both ARH1 and the catalytic domain of PARG. ARH3 activity, like that of ARH1, was enhanced by Mg(2+). Critical vicinal acidic amino acids in ARH3, identified by mutagenesis (Asp(77) and Asp(78)), are located in a region similar to that required for activity in ARH1 but different from the location of the critical vicinal glutamates in the PARG catalytic site. All findings are consistent with the conclusion that ARH3 has PARG activity but is structurally unrelated to PARG.
Collapse
Affiliation(s)
- Shunya Oka
- Pulmonary-Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD 20892-1590, USA
| | | | | |
Collapse
|
25
|
Donaldson JG, Honda A, Weigert R. Multiple activities for Arf1 at the Golgi complex. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:364-73. [PMID: 15979507 DOI: 10.1016/j.bbamcr.2005.03.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 02/28/2005] [Accepted: 03/01/2005] [Indexed: 10/25/2022]
Abstract
The Arf family of GTPases regulates membrane traffic and organelle structure. At the Golgi complex, Arf proteins facilitate membrane recruitment of many cytoplasmic coat proteins to allow sorting of membrane proteins for transport, stimulate the activity of enzymes that modulate the lipid composition of the Golgi, and assemble a cytoskeletal scaffold on the Golgi. Arf1 is the Arf family member most closely studied for its function at the Golgi complex. A number of regulators that activate and inactivate Arf1 on the Golgi have been described that localize to different regions of the organelle. This spatial distribution of Arf regulators may facilitate the recruitment of the coat proteins and other Arf effectors to different regions of the Golgi complex.
Collapse
Affiliation(s)
- Julie G Donaldson
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 50, Room 2503, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
26
|
Xu KF, Shen X, Li H, Pacheco-Rodriguez G, Moss J, Vaughan M. Interaction of BIG2, a brefeldin A-inhibited guanine nucleotide-exchange protein, with exocyst protein Exo70. Proc Natl Acad Sci U S A 2005; 102:2784-9. [PMID: 15705715 PMCID: PMC549493 DOI: 10.1073/pnas.0409871102] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Guanine nucleotide-exchange proteins activate ADP-ribosylation factors by accelerating the replacement of bound GDP with GTP. Mammalian brefeldin A-inhibited guanine nucleotide-exchange proteins, BIG1 and BIG2, are important activators of ADP-ribosylation factors for vesicular trafficking. To identify proteins that interact with BIG2, we used cDNA constructs encoding BIG2 sequences in a yeast two-hybrid screen of a human heart library. Clone p2-5-3, encoding a form of human exocyst protein Exo70, interacted with BIG2 amino acids 1-643 and 1-832, but not 644-832, which was confirmed by coimmunoprecipitation of in vitro-translated BIG2 N-terminal segments and 2-5-3. By immunofluorescence microscopy, endogenous BIG2 and Exo70 in HepG2 cells were visualized at Golgi membranes and apparently at the microtubule-organizing center (MTOC). Both were identified in purified centrosomes. Immunoreactive Exo70 and BIG2 partially or completely overlapped with gamma-tubulin at the MTOC in cells inspected by confocal microscopy. In cells incubated with brefeldin A, most of the BIG2, Exo70, and trans-Golgi protein p230 were widely dispersed from their perinuclear concentrations, but small amounts always remained, apparently at the MTOC. After disruption of microtubules with nocodazole, BIG2 and Exo70 were widely distributed in cells and remained only partially colocalized with p230, BIG2 more so than Exo70. We conclude that in HepG2 cells BIG2 and Exo70 interact in trans-Golgi network and centrosomes, as well as in exocyst structures or complexes that move along microtubules to the plasma membrane, consistent with a functional association in both early and late stages of vesicular trafficking.
Collapse
Affiliation(s)
- Kai-Feng Xu
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
27
|
Jones HD, Moss J, Vaughan M. BIG1 and BIG2, brefeldin A-inhibited guanine nucleotide-exchange factors for ADP-ribosylation factors. Methods Enzymol 2005; 404:174-84. [PMID: 16413268 DOI: 10.1016/s0076-6879(05)04017-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BIG1 and BIG2 are large (approximately 200 kDa) guanine nucleotide-exchange proteins for ADP-ribosylation factors, or ARFs, that were isolated based on sensitivity of their guanine nucleotide-exchange activity to inhibition by brefeldin A. The intracellular distributions of BIG1 and BIG2 differ from those of other ARF guanine nucleotide-exchange proteins. In addition to its presence in Golgi membranes, BIG2 is seen in peripheral vesicular structures that most likely represent recycling endosomes, and BIG1 is found in nuclei of serum-starved HepG2 cells. Several binding partners for BIG1 and BIG2 that were identified via yeast two-hybrid screens include FKBP13 and myosin IXb for BIG1 and, for BIG2, the regulatory RIalpha subunit of protein kinase A, Exo70, and the GABA receptor beta subunit. Autosomal recessive periventricular heterotopia with microcephaly, a disorder of human embryonic development due to defective vesicular trafficking, has been attributed to mutations in BIG2. Methods for purification of BIG1 and BIG2 from HepG2 cells are presented here, along with a summary of information regarding their structure and function.
Collapse
Affiliation(s)
- Heather D Jones
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|