1
|
Jena NR. Rare Tautomers of Artificially Expanded Genetic Letters and their Effects on the Base pair Stabilities. Chemphyschem 2022; 23:e202100908. [PMID: 35029036 DOI: 10.1002/cphc.202100908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Indexed: 11/11/2022]
Abstract
To expand the existing genetic letters, it is necessary to design robust nucleotides that can function naturally in living cells. Therefore, it is desirable to examine the roles of recently proposed second-generation artificially expanded genetic letters in producing stable duplex DNA. Here, a reliable dispersion-corrected density functional theory method is used to understand the electronic structures and properties of different rare tautomers of proposed expanded genetic letters and their effects on the base pair stabilities in the duplex DNA. It is found that the rare tautomers are not only stable in the aqueous medium but can also base pair with natural bases to produce stable mispairs. Except for J and V, all the artificial genetic letters are found to produce mispairs that are about 1-7 kcal/mol more stable than their complementary counterparts. They are also appreciably more stable than the naturally occurring G:C, A:T, and G:T pairs. The higher base pair stabilities are found to be mainly because of the polarity of monomers and attractive electrostatic interactions.
Collapse
Affiliation(s)
- N R Jena
- IIITDM Jabalpur, Discipline of Natural Sciences, Dumna Airport Road, Khamaria, India, 482005, Jabalpur, INDIA
| |
Collapse
|
2
|
Yeager A, Humphries K, Farmer E, Cline G, Miller BR. Investigation of Nascent Base Pair and Polymerase Behavior in the Presence of Mismatches in DNA Polymerase I Using Molecular Dynamics. J Chem Inf Model 2018; 58:338-349. [PMID: 29280634 DOI: 10.1021/acs.jcim.7b00516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Optimizing DNA polymerases for a broad range of tasks requires an understanding of the factors influencing polymerase fidelity, but many details of polymerase behavior remain unknown, especially in the presence of mismatched nascent base pairs. Using molecular dynamics, the large fragment of Bacillus stearothermophilus DNA polymerase I is simulated in the presence of all 16 possible standard nucleoside triphosphate-template (dNTP-dN) pairs, including four Watson-Crick pairs and 12 mismatches. The precatalytic steps of nucleotide addition from nucleotide insertion to immediately preceding catalysis are explored using three starting structures representing different stages of nucleotide addition. From these simulations, interactions between dNTPs and the DNA-protein complex formed by the polymerase are elucidated. Patterns of large-scale conformational shifts, classification of nucleotide pairs based on composition, and investigation of the roles of residues interacting with dNTPs are completed on 50+ μs of simulation. The role of molecular dynamics in studies of polymerase behavior is discussed.
Collapse
Affiliation(s)
- Andrew Yeager
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| | - Kathryn Humphries
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| | - Ellen Farmer
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| | - Gene Cline
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| | - Bill R Miller
- Department of Chemistry, Truman State University , 100 E. Normal Ave, Kirksville, Missouri 63501, United States
| |
Collapse
|
3
|
Mahmoud MM, Schechter A, Alnajjar KS, Huang J, Towle-Weicksel J, Eckenroth BE, Doublié S, Sweasy JB. Defective Nucleotide Release by DNA Polymerase β Mutator Variant E288K Is the Basis of Its Low Fidelity. Biochemistry 2017; 56:5550-5559. [PMID: 28945359 DOI: 10.1021/acs.biochem.7b00869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
DNA polymerases synthesize new DNA during DNA replication and repair, and their ability to do so faithfully is essential to maintaining genomic integrity. DNA polymerase β (Pol β) functions in base excision repair to fill in single-nucleotide gaps, and variants of Pol β have been associated with cancer. Specifically, the E288K Pol β variant has been found in colon tumors and has been shown to display sequence-specific mutator activity. To probe the mechanism that may underlie E288K's loss of fidelity, a fluorescence resonance energy transfer system that utilizes a fluorophore on the fingers domain of Pol β and a quencher on the DNA substrate was employed. Our results show that E288K utilizes an overall mechanism similar to that of wild type (WT) Pol β when incorporating correct dNTP. However, when inserting the correct dNTP, E288K exhibits a faster rate of closing of the fingers domain combined with a slower rate of nucleotide release compared to those of WT Pol β. We also detect enzyme closure upon mixing with the incorrect dNTP for E288K but not WT Pol β. Taken together, our results suggest that E288K Pol β incorporates all dNTPs more readily than WT because of an inherent defect that results in rapid isomerization of dNTPs within its active site. Structural modeling implies that this inherent defect is due to interaction of E288K with DNA, resulting in a stable closed enzyme structure.
Collapse
Affiliation(s)
- Mariam M Mahmoud
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Allison Schechter
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Khadijeh S Alnajjar
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Ji Huang
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Jamie Towle-Weicksel
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Brian E Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont , Burlington, Vermont 05405, United States
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont , Burlington, Vermont 05405, United States
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States.,Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
4
|
Jena NR, Gaur V, Mishra PC. The R- and S-diastereoisomeric effects on the guanidinohydantoin-induced mutations in DNA. Phys Chem Chem Phys 2015; 17:18111-20. [DOI: 10.1039/c5cp02636a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although, Gh (Gh1 or Gh2) in DNA would induce mainly G to C mutations, other mutations cannot be ignored.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences
- Indian Institute of Information Technology
- Design and Manufacturing
- Jabalpur-482005
- India
| | - Vivek Gaur
- Discipline of Mechanical Engineering
- Indian Institute of Information Technology
- Design and Manufacturing
- Jabalpur-482005
- India
| | - P. C. Mishra
- NASI Senior Scientist
- Department of Physics
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
5
|
Brovarets' OO, Hovorun DM. The nature of the transition mismatches with Watson-Crick architecture: the G*·T or G·T* DNA base mispair or both? A QM/QTAIM perspective for the biological problem. J Biomol Struct Dyn 2014; 33:925-45. [PMID: 24842163 DOI: 10.1080/07391102.2014.924879] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study provides the first accurate investigation of the tautomerization of the biologically important guanine*·thymine (G*·T) DNA base mispair with Watson-Crick geometry, involving the enol mutagenic tautomer of the G and the keto tautomer of the T, into the G·T* mispair (∆G = .99 kcal mol(-1), population = 15.8% obtained at the MP2 level of quantum-mechanical theory in the continuum with ε = 4), formed by the keto tautomer of the G and the enol mutagenic tautomer of the T base, using DFT and MP2 methods in vacuum and in the weakly polar medium (ε = 4), characteristic for the hydrophobic interfaces of specific protein-nucleic acid interactions. We were first able to show that the G*·T↔G·T* tautomerization occurs through the asynchronous concerted double proton transfer along two antiparallel O6H···O4 and N1···HN3 H-bonds and is assisted by the third N2H···O2 H-bond, that exists along the entire reaction pathway. The obtained results indicate that the G·T* base mispair is stable from the thermodynamic point of view complex, while it is dynamically unstable structure in vacuum and dynamically stable structure in the continuum with ε = 4 with lifetime of 6.4·10(-12) s, that, on the one side, makes it possible to develop all six low-frequency intermolecular vibrations, but, on the other side, it is by three orders less than the time (several ns) required for the replication machinery to forcibly dissociate a base pair into the monomers during DNA replication. One of the more significant findings to emerge from this study is that the short-lived G·T* base mispair, which electronic interaction energy between the bases (-23.76 kcal mol(-1)) exceeds the analogical value for the G·C Watson-Crick nucleobase pair (-20.38 kcal mol(-1)), "escapes from the hands" of the DNA replication machinery by fast transforming into the G*·T mismatch playing an indirect role of its supplier during the DNA replication. So, exactly the G*·T mismatch was established to play the crucial role in the spontaneous point mutagenesis.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine
| | | |
Collapse
|
6
|
Hohlbein J, Aigrain L, Craggs TD, Bermek O, Potapova O, Shoolizadeh P, Grindley NDF, Joyce CM, Kapanidis AN. Conformational landscapes of DNA polymerase I and mutator derivatives establish fidelity checkpoints for nucleotide insertion. Nat Commun 2014; 4:2131. [PMID: 23831915 PMCID: PMC3715850 DOI: 10.1038/ncomms3131] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 06/11/2013] [Indexed: 01/04/2023] Open
Abstract
The fidelity of DNA polymerases depends on conformational changes that promote the rejection of incorrect nucleotides before phosphoryl transfer. Here, we combine single-molecule FRET with the use of DNA polymerase I and various fidelity mutants to highlight mechanisms by which active-site side chains influence the conformational transitions and free-energy landscape that underlie fidelity decisions in DNA synthesis. Ternary complexes of high fidelity derivatives with complementary dNTPs adopt mainly a fully closed conformation, whereas a conformation with a FRET value between those of open and closed is sparsely populated. This intermediate-FRET state, which we attribute to a partially closed conformation, is also predominant in ternary complexes with incorrect nucleotides and, strikingly, in most ternary complexes of low-fidelity derivatives for both correct and incorrect nucleotides. The mutator phenotype of the low-fidelity derivatives correlates well with reduced affinity for complementary dNTPs and highlights the partially closed conformation as a primary checkpoint for nucleotide selection. The fidelity of DNA polymerases depends on conformational changes that promote the rejection of incorrect nucleotides. Here, by using an intramolecular single-molecule FRET assay, the authors establish and characterize the partially closed conformation as a crucial fidelity checkpoint.
Collapse
Affiliation(s)
- Johannes Hohlbein
- Biological Physics Research Group, Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Brovarets’ OO, Hovorun DM. The physicochemical essence of the purine·pyrimidine transition mismatches with Watson-Crick geometry in DNA: A·C*versaA*·C. A QM and QTAIM atomistic understanding. J Biomol Struct Dyn 2013; 33:28-55. [DOI: 10.1080/07391102.2013.852133] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Bermek O, Grindley NDF, Joyce CM. Prechemistry nucleotide selection checkpoints in the reaction pathway of DNA polymerase I and roles of glu710 and tyr766. Biochemistry 2013; 52:6258-74. [PMID: 23937394 PMCID: PMC3770053 DOI: 10.1021/bi400837k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The accuracy of high-fidelity DNA
polymerases such as DNA polymerase
I (Klenow fragment) is governed by conformational changes early in
the reaction pathway that serve as fidelity checkpoints, identifying
inappropriate template–nucleotide pairings. The fingers-closing
transition (detected by a fluorescence resonance energy transfer-based
assay) is the unique outcome of binding a correct incoming nucleotide,
both complementary to the templating base and with a deoxyribose (rather
than ribose) sugar structure. Complexes with mispaired dNTPs or complementary
rNTPs are arrested at an earlier stage, corresponding to a partially
closed fingers conformation, in which weak binding of DNA and nucleotide
promote dissociation and resampling of the substrate pool. A 2-aminopurine
fluorescence probe on the DNA template provides further information
about the steps preceding fingers closing. A characteristic 2-aminopurine
signal is observed on binding a complementary nucleotide, regardless
of whether the sugar is deoxyribose or ribose. However, mispaired
dNTPs show entirely different behavior. Thus, a fidelity checkpoint
ahead of fingers closing is responsible for distinguishing complementary
from noncomplementary nucleotides and routing them toward different
outcomes. The E710A mutator polymerase has a defect in the early fidelity
checkpoint such that some complementary dNTPs are treated as if they
were mispaired. In the Y766A mutant, the early checkpoint functions
normally, but some correctly paired dNTPs do not efficiently undergo
fingers closing. Thus, both mutator alleles cause a blurring of the
distinction between correct and incorrect base pairs and result in
a larger fraction of errors passing through the prechemistry fidelity
checkpoints.
Collapse
Affiliation(s)
- Oya Bermek
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520, United States
| | | | | |
Collapse
|
9
|
Gardner AF, Wang J, Wu W, Karouby J, Li H, Stupi BP, Jack WE, Hersh MN, Metzker ML. Rapid incorporation kinetics and improved fidelity of a novel class of 3'-OH unblocked reversible terminators. Nucleic Acids Res 2012; 40:7404-15. [PMID: 22570423 PMCID: PMC3424534 DOI: 10.1093/nar/gks330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent developments of unique nucleotide probes have expanded our understanding of DNA polymerase function, providing many benefits to techniques involving next-generation sequencing (NGS) technologies. The cyclic reversible termination (CRT) method depends on efficient base-selective incorporation of reversible terminators by DNA polymerases. Most terminators are designed with 3′-O-blocking groups but are incorporated with low efficiency and fidelity. We have developed a novel class of 3′-OH unblocked nucleotides, called Lightning Terminators™, which have a terminating 2-nitrobenzyl moiety attached to hydroxymethylated nucleobases. A key structural feature of this photocleavable group displays a ‘molecular tuning’ effect with respect to single-base termination and improved nucleotide fidelity. Using Therminator™ DNA polymerase, we demonstrate that these 3′-OH unblocked terminators exhibit superior enzymatic performance compared to two other reversible terminators, 3′-O-amino-TTP and 3′-O-azidomethyl-TTP. Lightning Terminators™ show maximum incorporation rates (kpol) that range from 35 to 45 nt/s, comparable to the fastest NGS chemistries, yet with catalytic efficiencies (kpol/KD) comparable to natural nucleotides. Pre-steady-state kinetic studies of thymidine analogs revealed that the major determinant for improved nucleotide selectivity is a significant reduction in kpol by >1000-fold over TTP misincorporation. These studies highlight the importance of structure–function relationships of modified nucleotides in dictating polymerase performance.
Collapse
|
10
|
Abstract
DNA polymerase ε (Pol ε) is one of three replicative DNA polymerases in eukaryotic cells. Pol ε is a multi-subunit DNA polymerase with many functions. For example, recent studies in yeast have suggested that Pol ε is essential during the initiation of DNA replication and also participates during leading strand synthesis. In this chapter, we will discuss the structure of Pol ε, the individual subunits and their function.
Collapse
Affiliation(s)
- Matthew Hogg
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden
| | | |
Collapse
|
11
|
Arana ME, Potapova O, Kunkel TA, Joyce CM. Kinetic analysis of the unique error signature of human DNA polymerase ν. Biochemistry 2011; 50:10126-35. [PMID: 22008035 DOI: 10.1021/bi201197p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The fidelity of DNA synthesis by A-family DNA polymerases ranges from very accurate for bacterial, bacteriophage, and mitochondrial family members to very low for certain eukaryotic homologues. The latter include DNA polymerase ν (Pol ν) which, among all A-family polymerases, is uniquely prone to misincorporating dTTP opposite template G in a highly sequence-dependent manner. Here we present a kinetic analysis of this unusual error specificity, in four different sequence contexts and in comparison to Pol ν's more accurate A-family homologue, the Klenow fragment of Escherichia coli DNA polymerase I. The kinetic data strongly correlate with rates of stable misincorporation during gap-filling DNA synthesis. The lower fidelity of Pol ν compared to that of Klenow fragment can be attributed primarily to a much lower catalytic efficiency for correct dNTP incorporation, whereas both enzymes have similar kinetic parameters for G-dTTP misinsertion. The major contributor to sequence-dependent differences in Pol ν error rates is the reaction rate, k(pol). In the sequence context where fidelity is highest, k(pol) for correct G-dCTP incorporation by Pol ν is ~15-fold faster than k(pol) for G-dTTP misinsertion. However, in sequence contexts where the error rate is higher, k(pol) is the same for both correct and mismatched dNTPs, implying that the transition state does not provide additional discrimination against misinsertion. The results suggest that Pol ν may be fine-tuned to function when high enzyme activity is not a priority and may even be disadvantageous and that the relaxed active-site specificity toward the G-dTTP mispair may be associated with its cellular function(s).
Collapse
Affiliation(s)
- Mercedes E Arana
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
12
|
Garalde DR, Simon CA, Dahl JM, Wang H, Akeson M, Lieberman KR. Distinct complexes of DNA polymerase I (Klenow fragment) for base and sugar discrimination during nucleotide substrate selection. J Biol Chem 2011; 286:14480-92. [PMID: 21362617 DOI: 10.1074/jbc.m111.218750] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During each catalytic cycle, DNA polymerases select deoxyribonucleoside triphosphate (dNTP) substrates complementary to a templating base with high fidelity from a pool that includes noncomplementary dNTPs and both complementary and noncomplementary ribonucleoside triphosphates (rNTPs). The Klenow fragment of Escherichia coli DNA polymerase I (KF) achieves this through a series of conformational transitions that precede the chemical step of phosphodiester bond formation. Kinetic evidence from fluorescence and FRET experiments indicates that discrimination of the base and sugar moieties of the incoming nucleotide occurs in distinct, sequential steps during the selection pathway. Here we show that KF-DNA complexes formed with complementary rNTPs or with noncomplementary nucleotides can be distinguished on the basis of their properties when captured in an electric field atop the α-hemolysin nanopore. The average nanopore dwell time of KF-DNA complexes increased as a function of complementary rNTP concentration. The increase was less than that promoted by complementary dNTP, indicating that the rNTP complexes are more stable than KF-DNA binary complexes but less stable than KF-DNA-dNTP ternary complexes. KF-DNA-rNTP complexes could also be distinguished from KF-DNA-dNTP complexes on the basis of ionic current amplitude. In contrast to complementary rNTPs, noncomplementary dNTPs and rNTPs diminished the average nanopore dwell time of KF-DNA complexes in a concentration-dependent manner, suggesting that binding of a noncomplementary nucleotide keeps the KF-DNA complex in a less stable state. These results imply that nucleotide selection proceeds through a series of complexes of increasing stability in which substrates with the correct moiety promote the forward transitions.
Collapse
Affiliation(s)
- Daniel R Garalde
- Department of Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | | | |
Collapse
|
13
|
Wei Q, Wang L, Wang Q, Kruger WD, Dunbrack RL. Testing computational prediction of missense mutation phenotypes: functional characterization of 204 mutations of human cystathionine beta synthase. Proteins 2010; 78:2058-74. [PMID: 20455263 DOI: 10.1002/prot.22722] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Predicting the phenotypes of missense mutations uncovered by large-scale sequencing projects is an important goal in computational biology. High-confidence predictions can be an aid in focusing experimental and association studies on those mutations most likely to be associated with causative relationships between mutation and disease. As an aid in developing these methods further, we have derived a set of random mutations of the enzymatic domains of human cystathionine beta synthase. This enzyme is a dimeric protein that catalyzes the condensation of serine and homocysteine to produce cystathionine. Yeast missing this enzyme cannot grow on medium lacking a source of cysteine, while transfection of functional human CBS into yeast strains missing endogenous enzyme can successfully complement for the missing gene. We used PCR mutagenesis with error-prone Taq polymerase to produce 948 colonies and compared cell growth in the presence or absence of a cysteine source as a measure of CBS function. We were able to infer the phenotypes of 204 single-site mutants, 79 of them deleterious and 125 neutral. This set was used to test the accuracy of six publicly available prediction methods for phenotype prediction of missense mutations: SIFT, PolyPhen, PMut, SNPs3D, PhD-SNP, and nsSNPAnalyzer. The top methods are PolyPhen, SIFT, and nsSNPAnalyzer, which have similar performance. Using kernel discriminant functions, we found that the difference in position-specific scoring matrix values is more predictive than the wild-type PSSM score alone, and that the relative surface area in the biologically relevant complex is more predictive than that of the monomeric proteins.
Collapse
Affiliation(s)
- Qiong Wei
- Program in Molecular and Translational Medicine, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
14
|
Beckman J, Wang M, Blaha G, Wang J, Konigsberg WH. Substitution of Ala for Tyr567 in RB69 DNA polymerase allows dAMP and dGMP to be inserted opposite Guanidinohydantoin . Biochemistry 2010; 49:8554-63. [PMID: 20795733 PMCID: PMC3755731 DOI: 10.1021/bi100913v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Continuous oxidative damage inflicted on DNA produces 7,8-dihydro-8-oxoguanine (8-oxoG), a commonly occurring lesion that can potentially cause cancer by producing G → T transversions during DNA replication. Mild oxidation of 8-oxoG leads to the formation of hydantoins, specifically guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), which are 100% mutagenic because they encode almost exclusively the insertion of dAMP and dGMP (encoding G → T and G → C transversions, respectively). The wild-type (wt) pol α family DNA polymerase from bacteriophage RB69 (RB69pol) inserts dAMP and dGMP with low efficiency when situated opposite Gh. In contrast, the RB69pol Y567A mutant inserts both of these dNMPs opposite Gh with >100-fold higher efficiency than wt. We now report the crystal structure of the "closed" preinsertion complex for the Y567A mutant with dATP opposite a templating Gh (R-configuration) in a 13/18mer primer-template (P/T) at 2.0 Å resolution. The structure data reveal that the Y to A substitution provides the nascent base pair binding pocket (NBP) with the flexibility to accommodate Gh by allowing G568 to move in the major-to-minor groove direction of the P/T. Thus, Gh is rejected as a templating base by wt RB69pol because G568 is inflexible, preventing Gh from pairing with the incoming dATP or dGTP base.
Collapse
Affiliation(s)
| | | | | | - Jimin Wang
- Address correspondence to: Prof. William H. Konigsberg, Dr. Jimin Wang, Department of Molecular Biophysics and Biochemistry, Yale University, SHM CE-14, New Haven, CT 06520-8114, Telephone: (203) 785-4599, Fax: (203) 785-7979, ,
| | - William H. Konigsberg
- Address correspondence to: Prof. William H. Konigsberg, Dr. Jimin Wang, Department of Molecular Biophysics and Biochemistry, Yale University, SHM CE-14, New Haven, CT 06520-8114, Telephone: (203) 785-4599, Fax: (203) 785-7979, ,
| |
Collapse
|
15
|
Streckenbach F, Rangam G, Möller HM, Marx A. Steric constraints dependent on nucleobase pair orientation vary in different DNA polymerase active sites. Chembiochem 2009; 10:1630-3. [PMID: 19544344 DOI: 10.1002/cbic.200900123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Finding the right fit: Herein, we report on the development of novel steric probes and present initial insights into their interplay with DNA polymerases. Our findings provide experimental evidence for varied enzyme-substrate interactions that might account for the varied selectivity previously observed.
Collapse
Affiliation(s)
- Frank Streckenbach
- Department of Chemistry, and Konstanz Research School Chemical Biology, Universität Konstanz, Universitätsstrasse 10, Konstanz, Germany
| | | | | | | |
Collapse
|
16
|
Cavanaugh NA, Urban M, Beckman J, Spratt TE, Kuchta RD. Identifying the features of purine dNTPs that allow accurate and efficient DNA replication by herpes simplex virus I DNA polymerase. Biochemistry 2009; 48:3554-64. [PMID: 19166354 DOI: 10.1021/bi8022202] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To accurately replicate its viral genome, the Herpes Simplex Virus 1 (HSV-1) DNA polymerase usually polymerizes the correct natural 2'-deoxy-5'-triphosphate (dNTP) opposite the template base being replicated. We employed a series of purine-dNTP analogues to determine the chemical features of the base necessary for the herpes polymerase to avoid polymerizing incorrect dNTPs. The enzyme uses N-3 to prevent misincorporation of purine dNTPs but does not require N-3 for correct polymerization. A free pair of electrons on N-1 also helps prevent misincorporation opposite A, C, and G and strongly drives polymerization opposite T. N6 contributes a small amount both for preventing misincorporation and for correct polymerization. Within the context of guanine in either the incoming dNTP or the template base being replicated, N2 prevents misincorporation opposite adenine but plays at most a minor role for incorporation opposite C. In contrast, adding N2 to the dNTPs of either adenine, purine, 6-chloropurine, or 1-deazapurine greatly enhances incorporation opposite C, likely via the formation of a hydrogen bond between N2 of the purine and O2 of the pyrimidine. Herpes polymerase is very sensitive to the structure of the base pair at the primer 3'-terminus since eliminating N-1, N-3, or N6 from a purine nucleotide at the primer 3'-terminus interfered with polymerization of the next two dNTPs. The biological and evolutionary implications of these data are discussed.
Collapse
Affiliation(s)
- Nisha A Cavanaugh
- Department of Chemistry and Biochemistry, UniVersity of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | |
Collapse
|
17
|
Kunkel TA, Burgers PM. Dividing the workload at a eukaryotic replication fork. Trends Cell Biol 2008; 18:521-7. [PMID: 18824354 DOI: 10.1016/j.tcb.2008.08.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 08/22/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
Abstract
Efficient and accurate replication of the eukaryotic nuclear genome requires DNA polymerases (Pols) alpha, delta and epsilon. In all current replication fork models, polymerase alpha initiates replication. However, several models have been proposed for the roles of Pol delta and Pol epsilon in subsequent chain elongation and the division of labor between these two polymerases is still unclear. Here, we revisit this issue, considering recent studies with diagnostic mutator polymerases that support a model wherein Pol epsilon is primarily responsible for copying the leading-strand template and Pol delta is primarily responsible for copying the lagging-strand template. We also review earlier studies in light of this model and then consider prospects for future investigations of possible variations on this simple division of labor.
Collapse
Affiliation(s)
- Thomas A Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, 111 T.W. Alexander Drive, National Institute of Environmental Health Sciences, National Institute of Health, DHHS, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
18
|
Di Pasquale F, Fischer D, Grohmann D, Restle T, Geyer A, Marx A. Opposed steric constraints in human DNA polymerase beta and E. coli DNA polymerase I. J Am Chem Soc 2008; 130:10748-57. [PMID: 18627154 DOI: 10.1021/ja8028284] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA polymerase selectivity is crucial for the survival of any living species, yet varies significantly among different DNA polymerases. Errors within DNA polymerase-catalyzed DNA synthesis result from the insertion of noncanonical nucleotides and extension of misaligned DNA substrates. The substrate binding characteristics among DNA polymerases are believed to vary in properties such as shape and tightness of the binding pocket, which might account for the observed differences in fidelity. Here, we employed 4'-alkylated nucleotides and primer strands bearing 4'-alkylated nucleotides at the 3'-terminal position as steric probes to investigate differential active site properties of human DNA polymerase beta (Pol beta) and the 3'-->5'-exonuclease-deficient Klenow fragment of E. coli DNA polymerase I (KF(exo-)). Transient kinetic measurements indicate that both enzymes vary significantly in active site tightness at both positions. While small 4'-methyl and -ethyl modifications of the nucleoside triphosphate perturb Pol beta catalysis, extension of modified primer strands is only marginally affected. Just the opposite was observed for KF(exo-). Here, incorporation of the modified nucleotides is only slightly reduced, whereas size augmentation of the 3'-terminal nucleotide in the primer reduces the catalytic efficiency by more than 7000- and 260,000-fold, respectively. NMR studies support the notion that the observed effects derive from enzyme substrate interactions rather than inherent properties of the modified substrates. These findings are consistent with the observed differential capability of the investigated DNA polymerases in fidelity such as processing misaligned DNA substrates. The results presented provide direct evidence for the involvement of varied steric effects among different DNA polymerases on their fidelity.
Collapse
Affiliation(s)
- Francesca Di Pasquale
- Fachbereich Chemie, Universität Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Pursell ZF, Isoz I, Lundström EB, Johansson E, Kunkel TA. Regulation of B family DNA polymerase fidelity by a conserved active site residue: characterization of M644W, M644L and M644F mutants of yeast DNA polymerase epsilon. Nucleic Acids Res 2007; 35:3076-86. [PMID: 17452367 PMCID: PMC1888828 DOI: 10.1093/nar/gkm132] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To better understand the functions and fidelity of DNA polymerase ε (Pol ε), we report here on the fidelity of yeast Pol ε mutants with leucine, tryptophan or phenylalanine replacing Met644. The Met644 side chain interacts with an invariant tyrosine that contacts the sugar of the incoming dNTP. M644W and M644L Pol ε synthesize DNA with high fidelity, but M644F Pol ε has reduced fidelity resulting from strongly increased misinsertion rates. When Msh6-dependent repair of replication errors is defective, the mutation rate of a pol2-M644F strain is 16-fold higher than that of a strain with wild-type Pol ε. In conjunction with earlier studies of low-fidelity mutants with replacements for the homologous amino acid in yeast Pol α (L868M/F) and Pol δ (L612M), these data indicate that the active site location occupied by Met644 in Pol ε is a key determinant of replication fidelity by all three B family replicative polymerases. Interestingly, error specificity of M644F Pol ε is distinct from that of L868M/F Pol α or L612M Pol δ, implying that each polymerase has different active site geometry, and suggesting that these polymerase alleles may generate distinctive mutational signatures for probing functions in vivo.
Collapse
Affiliation(s)
- Zachary F. Pursell
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA and Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Isabelle Isoz
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA and Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Else-Britt Lundström
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA and Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Erik Johansson
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA and Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA and Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
- *To whom correspondence should be addressed. +1-9195412644+1-9195417613
| |
Collapse
|
20
|
Nick McElhinny SA, Stith CM, Burgers PMJ, Kunkel TA. Inefficient proofreading and biased error rates during inaccurate DNA synthesis by a mutant derivative of Saccharomyces cerevisiae DNA polymerase delta. J Biol Chem 2006; 282:2324-32. [PMID: 17121822 PMCID: PMC1839876 DOI: 10.1074/jbc.m609591200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase delta (pol delta) is a high fidelity eukaryotic enzyme that participates in DNA repair and is essential for DNA replication. Toward the goal of dissecting its multiple biological functions, here we describe the biochemical properties of Saccharomyces cerevisiae pol delta with a methionine replacing conserved leucine 612 at the polymerase active site. Compared with wild type pol delta, L612M pol delta has normal processivity and slightly higher polymerase specific activity. L612M pol delta also has normal 3' exonuclease activity, yet it is impaired in partitioning mismatches to the exonuclease active site, thereby reducing DNA synthesis fidelity. Error rates in vitro for L612M pol delta are elevated for both base substitutions and single base deletions but in a highly biased manner. For each of the six possible pairs of reciprocal mismatches that could arise during replication of complementary DNA strands to account for any particular base substitution in vivo (e.g. T-dGMP or A-dCMP for T to C transitions), L612M pol delta error rates are substantially higher for one mismatch than the other. These results provide a biochemical explanation for our observation, which confirms earlier genetic studies, that a haploid pol3-L612M S. cerevisiae strain has an elevated spontaneous mutation rate that is likely due to reduced replication fidelity in vivo.
Collapse
Affiliation(s)
- Stephanie A Nick McElhinny
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
21
|
Arana ME, Takata KI, Garcia-Diaz M, Wood RD, Kunkel TA. A unique error signature for human DNA polymerase nu. DNA Repair (Amst) 2006; 6:213-23. [PMID: 17118716 PMCID: PMC1950682 DOI: 10.1016/j.dnarep.2006.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/27/2006] [Accepted: 09/27/2006] [Indexed: 11/25/2022]
Abstract
Human DNA polymerase nu (pol nu) is one of three A family polymerases conserved in vertebrates. Although its biological functions are unknown, pol nu has been implicated in DNA repair and in translesion DNA synthesis (TLS). Pol nu lacks intrinsic exonucleolytic proofreading activity and discriminates poorly against misinsertion of dNTP opposite template thymine or guanine, implying that it should copy DNA with low base substitution fidelity. To test this prediction and to comprehensively examine pol nu DNA synthesis fidelity as a clue to its function, here we describe human pol nu error rates for all 12 single base-base mismatches and for insertion and deletion errors during synthesis to copy the lacZ alpha-complementation sequence in M13mp2 DNA. Pol nu copies this DNA with average single-base insertion and deletion error rates of 7 x 10(-5) and 17 x 10(-5), respectively. This accuracy is comparable to that of replicative polymerases in the B family, lower than that of its A family homolog, human pol gamma, and much higher than that of Y family TLS polymerases. In contrast, the average single-base substitution error rate of human pol nu is 3.5 x 10(-3), which is inaccurate compared to the replicative polymerases and comparable to Y family polymerases. Interestingly, the vast majority of errors made by pol nu reflect stable misincorporation of dTMP opposite template G, at average rates that are much higher than for homologous A family members. This pol nu error is especially prevalent in sequence contexts wherein the template G is preceded by a C-G or G-C base pair, where error rates can exceed 10%. Amino acid sequence alignments based on the structures of more accurate A family polymerases suggest substantial differences in the O-helix of pol nu that could contribute to this unique error signature.
Collapse
Affiliation(s)
- Mercedes E. Arana
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS Research Triangle Park, NC 27709
| | - Kei-ichi Takata
- Department of Pharmacology, University of Pittsburgh Medical School Hillman Cancer Center, Research Pavilion Suite 2.6 5117 Centre Avenue, Pittsburgh, PA 15213-1863
| | - Miguel Garcia-Diaz
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS Research Triangle Park, NC 27709
| | - Richard D. Wood
- Department of Pharmacology, University of Pittsburgh Medical School Hillman Cancer Center, Research Pavilion Suite 2.6 5117 Centre Avenue, Pittsburgh, PA 15213-1863
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS Research Triangle Park, NC 27709
- *Corresponding author: Phone - (919) 541-2644; Fax - (919) 541-7613; Email -
| |
Collapse
|
22
|
Abstract
We have quantified the fidelity of polymerization of DNA by human mitochondrial DNA polymerase using synthetic DNA oligonucleotides and recombinant holoenzyme and examining each of the possible 16-base pair combinations. Although the kinetics of incorporation for all correct nucleotides are similar, with an average Kd of 0.8 microM and an average k(pol) of 37 s(-1), the kinetics of misincorporation vary widely. The ground state binding Kd of incorrect bases ranges from a low of 25 microM for a dATP:A mispair to a high of 360 microM for a dCTP:T mispair. Similarly, the rates of incorporation of incorrect bases vary from 0.0031 s(-1) for a dCTP:C mispair to 1.16 s(-1) for a dGTP:T mispair. Due to the variability in the kinetic parameters for misincorporation, the estimates of fidelity range from 1 error in 3563 nucleotides for dGTP:T to 1 error in 2.3 x 10(6) nucleotides for dCTP:C. Interestingly, the discrimination against a dGTP:T mismatch is 16.5 times lower than that of a dTTP:G mismatch due to a tighter Kd for ground state binding and a faster rate of incorporation of the dGTP:T mismatch relative to the dTTP:G mismatch. We calculate an average fidelity of 1 error in 440,000 nucleotides.
Collapse
Affiliation(s)
- Harold R Lee
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
23
|
DeLucia AM, Chaudhuri S, Potapova O, Grindley NDF, Joyce CM. The properties of steric gate mutants reveal different constraints within the active sites of Y-family and A-family DNA polymerases. J Biol Chem 2006; 281:27286-91. [PMID: 16831866 DOI: 10.1074/jbc.m604393200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Y-family (lesion-bypass) DNA polymerases show the same overall structural features seen in other members of the polymerase superfamily, yet their active sites are more open, with fewer contacts to the DNA and nucleotide substrates. This raises the question of whether analogous active-site side chains play equivalent roles in the bypass polymerases and their classical DNA polymerase counterparts. In Klenow fragment, an A-family DNA polymerase, the steric gate side chain (Glu710) not only prevents ribonucleotide incorporation but also plays an important role in discrimination against purine-pyrimidine mispairs. In this work we show that the steric gate (Phe12) of the Y-family polymerase Dbh plays a very minor role in fidelity, despite its analogous role in sugar selection. Using ribonucleotide discrimination to report on the positioning of a mispaired dNTP, we found that the pyrimidine of a Pu-dPyTP nascent mispair occupies a similar position to that of a correctly paired dNTP in the Dbh active site, whereas in Klenow fragment the mispaired dNTP sits higher in the active site pocket. If purine-pyrimidine mispairs adopt the expected wobble geometry, the difference between the two polymerases can be attributed to the binding of the templating base, with the looser binding site of Dbh permitting a variety of template conformations with only minimal adjustment at the incoming dNTP. In Klenow fragment the templating base is more rigidly held, so that changes in base pair geometry would affect the dNTP position, allowing the Glu710 side chain to serve as a sensor of nascent mispairs.
Collapse
Affiliation(s)
- Angela M DeLucia
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
24
|
Potapova O, Chan C, DeLucia AM, Helquist SA, Kool ET, Grindley NDF, Joyce CM. DNA polymerase catalysis in the absence of Watson-Crick hydrogen bonds: analysis by single-turnover kinetics. Biochemistry 2006; 45:890-8. [PMID: 16411765 PMCID: PMC2567902 DOI: 10.1021/bi051792i] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the first pre-steady-state kinetic studies of DNA replication in the absence of hydrogen bonds. We have used nonpolar nucleotide analogues that mimic the shape of a Watson-Crick base pair to investigate the kinetic consequences of a lack of hydrogen bonds in the polymerase reaction catalyzed by the Klenow fragment of DNA polymerase I from Escherichia coli. With a thymine isostere lacking hydrogen-bonding ability in the nascent pair, the efficiency (k(pol)/Kd) of the polymerase reaction is decreased by 30-fold, affecting the ground state (Kd) and transition state (k(pol)) approximately equally. When both thymine and adenine analogues in the nascent pair lack hydrogen-bonding ability, the efficiency of the polymerase reaction is decreased by about 1000-fold, with most of the decrease attributable to the transition state. Reactions using nonpolar analogues at the primer-terminal base pair demonstrated the requirement for a hydrogen bond between the polymerase and the minor groove of the primer-terminal base. The R668A mutation of Klenow fragment abolished this requirement, identifying R668 as the probable hydrogen-bond donor. Detailed examination of the kinetic data suggested that Klenow fragment has an extremely low tolerance of even minor deviations of the analogue base pairs from ideal Watson-Crick geometry. Consistent with this idea, some analogue pairings were better tolerated by Klenow fragment mutants having more spacious active sites. In contrast, the Y-family polymerase Dbh was much less sensitive to changes in base pair dimensions and more dependent upon hydrogen bonding between base-paired partners.
Collapse
Affiliation(s)
- Olga Potapova
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhang H, Rhee C, Bebenek A, Drake JW, Wang J, Konigsberg W. The L561A substitution in the nascent base-pair binding pocket of RB69 DNA polymerase reduces base discrimination. Biochemistry 2006; 45:2211-20. [PMID: 16475809 PMCID: PMC3373012 DOI: 10.1021/bi052099y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Several variants of RB69 DNA polymerase (RB69 pol) with single-site replacements in the nascent base-pair binding pocket are less discriminating with respect to noncomplementary dNMP incorporation than the wild-type enzyme. To quantify the loss in base selectivity, we determined the transient-state kinetic parameters for incorporation of correct and all combinations of incorrect dNMPs by the exonuclease-deficient form of one of these RB69 pol variants, L561A, using rapid chemical quench assays. The L561A variant did not significantly alter the k(pol) and K(D) values for incorporation of correct dNMPs, but it showed increased incorporation efficiency (k(pol)/K(D)) for mispaired bases relative to the wild-type enzyme. The incorporation efficiency for mispaired bases by the L561A variant ranged from 1.5 x 10(-)(5) microM(-)(1) s(-)(1) for dCMP opposite templating C to 2 x 10(-)(3) microM(-)(1) s(-)(1) for dAMP opposite templating C. These k(pol)/K(D) values are 3-60-fold greater than those observed with the wild-type enzyme. The effect of the L561A replacement on the mutation frequency in vivo was determined by infecting Escherichia coli harboring a plasmid encoding the L561A variant of RB69 pol with T4 phage bearing a mutant rII locus, and the rates of reversions to rII(+) were scored. The exonuclease-proficient RB69 pol L561A displayed a weak mutator phenotype. In contrast, no progeny phage were produced after infection of E. coli, expressing an exonuclease-deficient RB69 pol L561A, with either mutant or wild-type T4 phage. This dominant-lethal phenotype was attributed to error catastrophe caused by the high rate of mutation expected from combining the pol L561A and exo(-) mutator activities.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520
| | - Chanu Rhee
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520
| | - Anna Bebenek
- Institute of Biochemistry and Biophysics, Polish Academy of Science, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - John W. Drake
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, 111 South Alexander Drive, Research Triangle Park, North Carolina 27709-2233
| | | | - William Konigsberg
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520
- To whom correspondence and reprint requests should be addressed. telephone, (203) 785-4599; fax, (203) 785-7979;
| |
Collapse
|
26
|
Rappaport HP. The fidelity of replication of the three-base-pair set adenine/thymine, hypoxanthine/cytosine and 6-thiopurine/5-methyl-2-pyrimidinone with T7 DNA polymerase. Biochem J 2004; 381:709-17. [PMID: 15078225 PMCID: PMC1133880 DOI: 10.1042/bj20031776] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 04/06/2004] [Accepted: 04/13/2004] [Indexed: 11/17/2022]
Abstract
With the goal of constructing a genetic alphabet consisting of a set of three base pairs, the fidelity of replication of the three base pairs T(H) (5-methyl-2-pyrimidinone)/H(S) (6-thiopurine; thiohypoxanthine), C/H (hypoxanthine) and T/A was evaluated using T7 DNA polymerase, a polymerase with a strong 3'-->5' exonuclease activity. An evaluation of the suitability of a new base pair for replication should include both the contribution of the fidelity of a polymerase activity and the contribution of proofreading by a 3'-->5' exonuclease activity. Using a steady-state kinetics method that included the contribution of the 3'-->5' exonuclease activity, the fidelity of replication was determined. The method determined the ratio of the apparent rate constant for the addition of a deoxynucleotide to the primer across from a template base by the polymerase activity and the rate constant for removal of the added deoxynucleotide from the primer by the 3'-->5' exonuclease activity. This ratio was designated the eni (efficiency of net incorporation). The eni of the base pair C/H was equal to or greater than the eni of T/A. The eni of the base pair T(H)/H(S) was 0.1 times that of A/T for T(H) in the template and 0.01 times that of A/T for H(S) in the template. The ratio of the eni of a mismatched deoxynucleotide to the eni of a matched deoxynucleotide was a measure of the error frequency. The error frequencies were as follows: thymine or T(H) opposite a template hypoxanthine, 2x10(-6); H(S) opposite a template cytosine, <3x10(-4). The remaining 24 mismatched combinations of bases gave no detectable net incorporation. Two mismatches, hypoxanthine opposite a template thymine or a template T(H), showed trace incorporation in the presence of a standard dNTP complementary to the next template base. T7 DNA polymerase extended the primer beyond each of the matched base pairs of the set. The level of fidelity of replication of the three base pairs with T7 DNA polymerase suggests that they are adequate for a three-base-pair alphabet for DNA replication.
Collapse
|
27
|
Temiakov D, Patlan V, Anikin M, McAllister WT, Yokoyama S, Vassylyev DG. Structural basis for substrate selection by t7 RNA polymerase. Cell 2004; 116:381-91. [PMID: 15016373 DOI: 10.1016/s0092-8674(04)00059-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 11/12/2003] [Accepted: 12/22/2003] [Indexed: 01/22/2023]
Abstract
The mechanism by which nucleotide polymerases select the correct substrate is of fundamental importance to the fidelity of DNA replication and transcription. During the nucleotide addition cycle, pol I DNA polymerases undergo the transition from a catalytically inactive "open" to an active "closed" conformation. All known determinants of substrate selection are associated with the "closed" state. To elucidate if this mechanism is conserved in homologous single subunit RNA polymerases (RNAPs), we have determined the structure of T7 RNAP elongation complex with the incoming substrate analog. Surprisingly, the substrate specifically binds to RNAP in the "open" conformation, where it is base paired with the acceptor template base, while Tyr639 provides discrimination of ribose versus deoxyribose substrates. The structure therefore suggests a novel mechanism, in which the substrate selection occurs prior to the isomerization to the catalytically active conformation. Modeling of multisubunit RNAPs suggests that this mechanism might be universal for all RNAPs.
Collapse
Affiliation(s)
- Dmitry Temiakov
- Morse Institute for Molecular Genetics, Department of Microbiology, SUNY Health Science Center, 450 Clarkson Avenue, Brooklyn, New York 11203, USA
| | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Thomas A Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| |
Collapse
|
29
|
Lestienne P, Pourquier P, Bonnet J. Elongation of oligonucleotide primers forming a triple helix on double-stranded DNA templates by purified DNA polymerases. Biochem Biophys Res Commun 2004; 311:380-5. [PMID: 14592425 DOI: 10.1016/j.bbrc.2003.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Current knowledge on the replication of DNA involves enzymatic steps of DNA strand separation upon helicase activity, thus enabling the exposed bases of the single-stranded DNA to direct the polymerization of complementary nucleotides through Watson-Crick base pairing rules by DNA-dependent DNA polymerases. Here, we report that oligonucleotide primers (9-11 nt long) bound to the double-stranded DNA, can be elongated by the T7 and by the Thermus thermophilus DNA polymerases and by the Escherichia coli Klenow fragment. A perfectly base-paired DNA cannot be used as a template, but a single A/A mismatch located even 5 bp upstream from the theoretical 3'-end of the oligonucleotide primer is sufficient for DNA elongation by these first two enzymes, while five are required for the Klenow fragment. Elongation products from templates containing A/A mismatches at different positions revealed similar patterns independently of the positions of the A/A mismatches. The sequencing of the elongated products revealed that both purine and pyrimidine are incorporated at the pyrimidine-purine-pyrimidine transitions of the template strands, probably because of a shift of the primers on the double helix template. These data confirm that prokaryotic DNA polymerases may accommodate transiently three DNA strands in their catalytic centre. They also show for the first time that replication can occur on double-stranded DNA in the absence of DNA helicase, when mismatches are present in the vicinity of the triple helix initiation complex.
Collapse
Affiliation(s)
- Patrick Lestienne
- Institut Bergonié, Laboratoire de Pharmacologie des Agents Anticancéreux., FRE 2618 CNRS, 229, cours de l'Argonne, 33076 Bordeaux Cedex, France.
| | | | | |
Collapse
|
30
|
Gardner AF, Joyce CM, Jack WE. Comparative kinetics of nucleotide analog incorporation by vent DNA polymerase. J Biol Chem 2003; 279:11834-42. [PMID: 14699133 DOI: 10.1074/jbc.m308286200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Comparative kinetic and structural analyses of a variety of polymerases have revealed both common and divergent elements of nucleotide discrimination. Although the parameters for dNTP incorporation by the hyperthermophilic archaeal Family B Vent DNA polymerase are similar to those previously derived for Family A and B DNA polymerases, parameters for analog incorporation reveal alternative strategies for discrimination by this enzyme. Discrimination against ribonucleotides was characterized by a decrease in the affinity of NTP binding and a lower rate of phosphoryl transfer, whereas discrimination against ddNTPs was almost exclusively due to a slower rate of phosphodiester bond formation. Unlike Family A DNA polymerases, incorporation of 9-[(2-hydroxyethoxy)methyl]X triphosphates (where X is adenine, cytosine, guanine, or thymine; acyNTPs) by Vent DNA polymerase was enhanced over ddNTPs via a 50-fold increase in phosphoryl transfer rate. Furthermore, a mutant with increased propensity for nucleotide analog incorporation (Vent(A488L) DNA polymerase) had unaltered dNTP incorporation while displaying enhanced nucleotide analog binding affinity and rates of phosphoryl transfer. Based on kinetic data and available structural information from other DNA polymerases, we propose active site models for dNTP, ddNTP, and acyNTP selection by hyperthermophilic archaeal DNA polymerases to rationalize structural and functional differences between polymerases.
Collapse
|
31
|
Harris VH, Smith CL, Jonathan Cummins W, Hamilton AL, Adams H, Dickman M, Hornby DP, Williams DM. The effect of tautomeric constant on the specificity of nucleotide incorporation during DNA replication: support for the rare tautomer hypothesis of substitution mutagenesis. J Mol Biol 2003; 326:1389-401. [PMID: 12595252 DOI: 10.1016/s0022-2836(03)00051-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The nucleoside analogue dP (6-(2-deoxy-beta-D-ribofuranosyl)-3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-2-one) displays ambivalent hydrogen bonding characteristics whereby the imino tautomer of P can base-pair with adenine and its amino tautomer can base-pair with guanine. Fixed imino and amino tautomers of 6-methyl-3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-2-one (N-methyl P) have been synthesised and their structures obtained by X-ray crystallography. The tautomeric constant of N-methyl P has been calculated from pK(a) values of the fixed tautomers and the kinetic parameters for the incorporation of its 5'-triphosphate (dPTP) by exonuclease-free Klenow fragment of DNA polymerase I have been determined. A strong correlation between the tautomeric constant and the incorporation specificity of dPTP is found. These results lend support to the proposal that the minor tautomeric forms of the natural bases may play an important role in substitution mutagenesis during DNA replication. Furthermore, they imply that DNA polymerases impose specific steric requirements on the base-pair during nucleotide incorporation.
Collapse
Affiliation(s)
- Victoria H Harris
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kunkel TA, Pavlov YI, Bebenek K. Functions of human DNA polymerases eta, kappa and iota suggested by their properties, including fidelity with undamaged DNA templates. DNA Repair (Amst) 2003; 2:135-49. [PMID: 12531385 DOI: 10.1016/s1568-7864(02)00224-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human DNA polymerases eta, kappa and iota are template-dependent, Y-family DNA polymerases that have been implicated in translesion DNA synthesis (TLS) in human cells. Here, we briefly review evidence that these exonuclease-deficient polymerases copy undamaged DNA with very low fidelity and unusual error specificity. Based on the base substitution specificity and other biochemical properties of DNA polymerases eta and iota, we consider the possibility that they participate in specialized DNA transactions that repair damaged DNA and/or generate mutations in the variable regions of immunoglobulin genes.
Collapse
Affiliation(s)
- Thomas A Kunkel
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|