1
|
Berry MA, Andrianova EP, Zhulin IB. Diverse domain architectures of CheA histidine kinase, a central component of bacterial and archaeal chemosensory systems. Microbiol Spectr 2024; 12:e0346423. [PMID: 38038435 PMCID: PMC10782961 DOI: 10.1128/spectrum.03464-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE We found that in contrast to the best-studied model organisms, such as Escherichia coli and Bacillus subtilis, most bacterial and archaeal species have a CheA protein with a different domain composition. We report variations in CheA architecture, such as domain duplication and acquisition as well as class-specific domain composition. Our results will be of interest to those working on signal transduction in bacteria and archaea and lay the foundation for experimental studies.
Collapse
Affiliation(s)
- Marissa A. Berry
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Berry MA, Andrianova EP, Zhulin IB. Diverse domain architectures of CheA histidine kinase, a central component of bacterial and archaeal chemosensory systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558490. [PMID: 37790397 PMCID: PMC10542144 DOI: 10.1101/2023.09.19.558490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Chemosensory systems in bacteria and archaea are complex, multi-protein pathways that enable rapid cellular responses to environmental changes. The CheA histidine kinase is a central component of chemosensory systems. In contrast to other histidine kinases, it lacks a sensor (input) domain and utilizes dedicated chemoreceptors for sensing. CheA is a multi-domain protein; in model organisms as diverse as Escherichia coli and Bacillus subtilis, it contains five single-copy domains. Deviations from this canonical domain architecture have been reported, however, a broad genome-wide analysis of CheA diversity is lacking. Here, we present results of a genomic survey of CheA domain composition carried out using an unbiased set of thousands of CheA sequences from bacteria and archaea. We found that four out of five canonical CheA domains comprise a minimal functional unit (core domains), as they are present in all surveyed CheA homologs. The most common deviations from a classical five-domain CheA architecture are the lack of a P2/CheY-binding domain, which is missing from more than a half of CheA homologs and the acquisition of a response regulator receiver (CheY-like) domain, which is present in ~35% of CheA homologs. We also document other deviations from classical CheA architecture, including bipartite CheA proteins, domain duplications and fusions, and reveal that phylogenetically defined CheA classes have pre-dominant domain architectures. This study lays a foundation for a better classification of CheA homologs and identifies targets for experimental investigations.
Collapse
Affiliation(s)
- Marissa A. Berry
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | | | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
3
|
Design of an artificial phage-display library based on a new scaffold improved for average stability of the randomized proteins. Sci Rep 2023; 13:1339. [PMID: 36693880 PMCID: PMC9873692 DOI: 10.1038/s41598-023-27710-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Scaffold-based protein libraries are designed to be both diverse and rich in functional/folded proteins. However, introducing an extended diversity while preserving stability of the initial scaffold remains a challenge. Here we developed an original approach to select the ensemble of folded proteins from an initial library. The thermostable CheY protein from Thermotoga maritima was chosen as scaffold. Four loops of CheY were diversified to create a new binding surface. The subset of the library giving rise to folded proteins was first selected using a natural protein partner of the template scaffold. Then, a gene shuffling approach based on a single restriction enzyme was used to recombine DNA sequences encoding these filtrated variants. Taken together, the filtration strategy and the shuffling of the filtrated sequences were shown to enrich the library in folded and stable sequences while maintaining a large diversity in the final library (Lib-Cheytins 2.1). Binders of the Oplophorus luciferase Kaz domain were then selected by phage display from the final library, showing affinities in the μM range. One of the best variants induced a loss of 92% of luminescent activity, suggesting that this Cheytin preferentially binds to the Kaz active site.
Collapse
|
4
|
Vora DS, Kalakoti Y, Sundar D. Computational Methods and Deep Learning for Elucidating Protein Interaction Networks. Methods Mol Biol 2023; 2553:285-323. [PMID: 36227550 DOI: 10.1007/978-1-0716-2617-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein interactions play a critical role in all biological processes, but experimental identification of protein interactions is a time- and resource-intensive process. The advances in next-generation sequencing and multi-omics technologies have greatly benefited large-scale predictions of protein interactions using machine learning methods. A wide range of tools have been developed to predict protein-protein, protein-nucleic acid, and protein-drug interactions. Here, we discuss the applications, methods, and challenges faced when employing the various prediction methods. We also briefly describe ways to overcome the challenges and prospective future developments in the field of protein interaction biology.
Collapse
Affiliation(s)
- Dhvani Sandip Vora
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Yogesh Kalakoti
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.
- School of Artificial Intelligence, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.
| |
Collapse
|
5
|
Blazhynska M, Goulard Coderc de Lacam E, Chen H, Roux B, Chipot C. Hazardous Shortcuts in Standard Binding Free Energy Calculations. J Phys Chem Lett 2022; 13:6250-6258. [PMID: 35771686 DOI: 10.1021/acs.jpclett.2c01490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Calculating the standard binding free energies of protein-protein and protein-ligand complexes from atomistic molecular dynamics simulations in explicit solvent is a problem of central importance in computational biophysics. A rigorous strategy for carrying out such calculations is the so-called "geometrical route". In this method, two molecular objects are progressively separated from one another in the presence of orientational and conformational restraints serving to control the change in configurational entropy that accompanies the dissociation process, thereby allowing the computations to converge within simulations of affordable length. Although the geometrical route provides a rigorous theoretical framework, a tantalizing computational shortcut consists of simply leaving out such orientational and conformational degrees of freedom during the separation process. Here the accuracy and convergence of the two approaches are critically compared in the case of two protein-ligand complexes (Abl kinase-SH3:p41 and MDM2-p53:NVP-CGM097) and three protein-protein complexes (pig insulin dimer, SARS-CoV-2 spike RBD:ACE2, and CheA kinase-P2:CheY). The results of the simulations that strictly follow the geometrical route match the experimental standard binding free energies within chemical accuracy. In contrast, simulations bereft of geometrical restraints converge more poorly, yielding inconsistent results that are at variance with the experimental measurements. Furthermore, the orientational and positional time correlation functions of the protein in the unrestrained simulations decay over several microseconds, a time scale that is far longer than the typical simulation times of the geometrical route, which explains why those simulations fail to sample the relevant degrees of freedom during the separation process of the complexes.
Collapse
Affiliation(s)
- Marharyta Blazhynska
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche 7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex, France
| | - Emma Goulard Coderc de Lacam
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche 7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex, France
| | - Haochuan Chen
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche 7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex, France
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, W225, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche 7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex, France
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, W225, Chicago, Illinois 60637, United States
- Theoretical and Computational Biophysics Group, Beckman Institute, and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Fulk EM, Huh D, Atkinson JT, Lie M, Masiello CA, Silberg JJ. A Split Methyl Halide Transferase AND Gate That Reports by Synthesizing an Indicator Gas. ACS Synth Biol 2020; 9:3104-3113. [PMID: 33104325 DOI: 10.1021/acssynbio.0c00355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monitoring microbial reactions in highly opaque or autofluorescent environments like soils, seawater, and wastewater remains challenging. To develop a simple approach for observing post-translational reactions within microbes situated in environmental matrices, we designed a methyl halide transferase (MHT) fragment complementation assay that reports by synthesizing an indicator gas. We show that backbone fission within regions of high sequence variability in the Rossmann domain yields split MHT (sMHT) AND gates whose fragments cooperatively associate to synthesize CH3Br. Additionally, we identify a sMHT whose fragments require fusion to pairs of interacting partner proteins for maximal activity. We also show that sMHT fragments fused to FKBP12 and the FKBP-rapamycin binding domain of mTOR display significantly enhanced CH3Br production in the presence of rapamycin. This gas production is reversed in the presence of the competitive inhibitor of FKBP12/FKPB dimerization, indicating that sMHT is a reversible reporter of post-translational reactions. This sMHT represents the first genetic AND gate that reports on protein-protein interactions via an indicator gas. Because indicator gases can be measured in the headspaces of complex environmental samples, this assay should be useful for monitoring the dynamics of diverse molecular interactions within microbes situated in hard-to-image marine and terrestrial matrices.
Collapse
Affiliation(s)
- Emily M. Fulk
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, 6100 Main Street, MS-180, Houston, Texas 77005, United States
| | - Dongkuk Huh
- Department of Biosciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Joshua T. Atkinson
- Department of Biosciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Margaret Lie
- Department of Biosciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Caroline A. Masiello
- Department of Biosciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
- Department of Earth, Environmental and Planetary Sciences, Rice University, MS 126, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, 6100 Main Street, MS-60, Houston, Texas 77005, United States
| | - Jonathan J. Silberg
- Department of Biosciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Muok AR, Chua TK, Srivastava M, Yang W, Maschmann Z, Borbat PP, Chong J, Zhang S, Freed JH, Briegel A, Crane BR. Engineered chemotaxis core signaling units indicate a constrained kinase-off state. Sci Signal 2020; 13:13/657/eabc1328. [PMID: 33172954 DOI: 10.1126/scisignal.abc1328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bacterial chemoreceptors, the histidine kinase CheA, and the coupling protein CheW form transmembrane molecular arrays with remarkable sensing properties. The receptors inhibit or stimulate CheA kinase activity depending on the presence of attractants or repellants, respectively. We engineered chemoreceptor cytoplasmic regions to assume a trimer of receptor dimers configuration that formed well-defined complexes with CheA and CheW and promoted a CheA kinase-off state. These mimics of core signaling units were assembled to homogeneity and investigated by site-directed spin-labeling with pulse-dipolar electron-spin resonance spectroscopy (PDS), small-angle x-ray scattering, targeted protein cross-linking, and cryo-electron microscopy. The kinase-off state was especially stable, had relatively low domain mobility, and associated the histidine substrate and docking domains with the kinase core, thus preventing catalytic activity. Together, these data provide an experimentally restrained model for the inhibited state of the core signaling unit and suggest that chemoreceptors indirectly sequester the kinase and substrate domains to limit histidine autophosphorylation.
Collapse
Affiliation(s)
- Alise R Muok
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Teck Khiang Chua
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Madhur Srivastava
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,National Biomedical Center for Advanced ESR Technologies (ACERT), Cornell University, Ithaca, NY 14853, USA
| | - Wen Yang
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Zach Maschmann
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Petr P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,National Biomedical Center for Advanced ESR Technologies (ACERT), Cornell University, Ithaca, NY 14853, USA
| | - Jenna Chong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Sheng Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,National Biomedical Center for Advanced ESR Technologies (ACERT), Cornell University, Ithaca, NY 14853, USA
| | - Ariane Briegel
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
8
|
Paithankar KS, Enderle M, Wirthensohn DC, Miller A, Schlesner M, Pfeiffer F, Rittner A, Grininger M, Oesterhelt D. Structure of the archaeal chemotaxis protein CheY in a domain-swapped dimeric conformation. Acta Crystallogr F Struct Biol Commun 2019; 75:576-585. [PMID: 31475924 PMCID: PMC6718144 DOI: 10.1107/s2053230x19010896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
Archaea are motile by the rotation of the archaellum. The archaellum switches between clockwise and counterclockwise rotation, and movement along a chemical gradient is possible by modulation of the switching frequency. This modulation involves the response regulator CheY and the archaellum adaptor protein CheF. In this study, two new crystal forms and protein structures of CheY are reported. In both crystal forms, CheY is arranged in a domain-swapped conformation. CheF, the protein bridging the chemotaxis signal transduction system and the motility apparatus, was recombinantly expressed, purified and subjected to X-ray data collection.
Collapse
Affiliation(s)
- Karthik Shivaji Paithankar
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Mathias Enderle
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - David C. Wirthensohn
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Arthur Miller
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Matthias Schlesner
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Alexander Rittner
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Dieter Oesterhelt
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
9
|
Muok AR, Briegel A, Crane BR. Regulation of the chemotaxis histidine kinase CheA: A structural perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183030. [PMID: 31374212 DOI: 10.1016/j.bbamem.2019.183030] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
Bacteria sense and respond to their environment through a highly conserved assembly of transmembrane chemoreceptors (MCPs), the histidine kinase CheA, and the coupling protein CheW, hereafter termed "the chemosensory array". In recent years, great strides have been made in understanding the architecture of the chemosensory array and how this assembly engenders sensitive and cooperative responses. Nonetheless, a central outstanding question surrounds how receptors modulate the activity of the CheA kinase, the enzymatic output of the sensory system. With a focus on recent advances, we summarize the current understanding of array structure and function to comment on the molecular mechanism by which CheA, receptors and CheW generate the high sensitivity, gain and dynamic range emblematic of bacterial chemotaxis. The complexity of the chemosensory arrays has motivated investigation with many different approaches. In particular, structural methods, genetics, cellular activity assays, nanodisc technology and cryo-electron tomography have provided advances that bridge length scales and connect molecular mechanism to cellular function. Given the high degree of component integration in the chemosensory arrays, we ultimately aim to understand how such networked molecular interactions generate a whole that is truly greater than the sum of its parts. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Alise R Muok
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Ariane Briegel
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States of America.
| |
Collapse
|
10
|
Merz GE, Borbat PP, Muok AR, Srivastava M, Bunck DN, Freed JH, Crane BR. Site-Specific Incorporation of a Cu 2+ Spin Label into Proteins for Measuring Distances by Pulsed Dipolar Electron Spin Resonance Spectroscopy. J Phys Chem B 2018; 122:9443-9451. [PMID: 30222354 DOI: 10.1021/acs.jpcb.8b05619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulsed dipolar electron spin resonance spectroscopy (PDS) is a powerful tool for measuring distances in solution-state macromolecules. Paramagnetic metal ions, such as Cu2+, are used as spin probes because they can report on metalloprotein features and can be spectroscopically distinguished from traditional nitroxide (NO)-based labels. Here, we demonstrate site-specific incorporation of Cu2+ into non-metalloproteins through the use of a genetically encodable non-natural amino acid, 3-pyrazolyltyrosine (PyTyr). We first incorporate PyTyr in cyan fluorescent protein to measure Cu2+-to-NO distances and examine the effects of solvent conditions on Cu2+ binding and protein aggregation. We then apply the method to characterize the complex formed by the histidine kinase CheA and its target response regulator CheY. The X-ray structure of CheY-PyTyr confirms Cu labeling at PyTyr but also reveals a secondary Cu site. Cu2+-to-NO and Cu2+-to-Cu2+ PDS measurements of CheY-PyTyr with nitroxide-labeled CheA provide new insights into the conformational landscape of the phosphotransfer complex and have implications for kinase regulation.
Collapse
Affiliation(s)
- Gregory E Merz
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Alise R Muok
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Madhur Srivastava
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - David N Bunck
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
11
|
Otrusinová O, Demo G, Padrta P, Jaseňáková Z, Pekárová B, Gelová Z, Szmitkowska A, Kadeřávek P, Jansen S, Zachrdla M, Klumpler T, Marek J, Hritz J, Janda L, Iwaï H, Wimmerová M, Hejátko J, Žídek L. Conformational dynamics are a key factor in signaling mediated by the receiver domain of a sensor histidine kinase from Arabidopsis thaliana. J Biol Chem 2017; 292:17525-17540. [PMID: 28860196 DOI: 10.1074/jbc.m117.790212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/28/2017] [Indexed: 11/06/2022] Open
Abstract
Multistep phosphorelay (MSP) cascades mediate responses to a wide spectrum of stimuli, including plant hormonal signaling, but several aspects of MSP await elucidation. Here, we provide first insight into the key step of MSP-mediated phosphotransfer in a eukaryotic system, the phosphorylation of the receiver domain of the histidine kinase CYTOKININ-INDEPENDENT 1 (CKI1RD) from Arabidopsis thaliana We observed that the crystal structures of free, Mg2+-bound, and beryllofluoridated CKI1RD (a stable analogue of the labile phosphorylated form) were identical and similar to the active state of receiver domains of bacterial response regulators. However, the three CKI1RD variants exhibited different conformational dynamics in solution. NMR studies revealed that Mg2+ binding and beryllofluoridation alter the conformational equilibrium of the β3-α3 loop close to the phosphorylation site. Mutations that perturbed the conformational behavior of the β3-α3 loop while keeping the active-site aspartate intact resulted in suppression of CKI1 function. Mechanistically, homology modeling indicated that the β3-α3 loop directly interacts with the ATP-binding site of the CKI1 histidine kinase domain. The functional relevance of the conformational dynamics observed in the β3-α3 loop of CKI1RD was supported by a comparison with another A. thaliana histidine kinase, ETR1. In contrast to the highly dynamic β3-α3 loop of CKI1RD, the corresponding loop of the ETR1 receiver domain (ETR1RD) exhibited little conformational exchange and adopted a different orientation in crystals. Biochemical data indicated that ETR1RD is involved in phosphorylation-independent signaling, implying a direct link between conformational behavior and the ability of eukaryotic receiver domains to participate in MSP.
Collapse
Affiliation(s)
- Olga Otrusinová
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Gabriel Demo
- From the Central European Institute of Technology and
| | - Petr Padrta
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Zuzana Jaseňáková
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Blanka Pekárová
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Zuzana Gelová
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Agnieszka Szmitkowska
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Pavel Kadeřávek
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Séverine Jansen
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Milan Zachrdla
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | | | - Jaromír Marek
- From the Central European Institute of Technology and
| | - Jozef Hritz
- From the Central European Institute of Technology and
| | - Lubomír Janda
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Hideo Iwaï
- the Institute of Biotechnology, University of Helsinki, Viikinkaari 1 (P. O. Box 65), 00014 Helsinki, Finland
| | - Michaela Wimmerová
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Jan Hejátko
- From the Central European Institute of Technology and.,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| | - Lukáš Žídek
- From the Central European Institute of Technology and .,Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and
| |
Collapse
|
12
|
Thomas EE, Pandey N, Knudsen S, Ball ZT, Silberg JJ. Programming Post-Translational Control over the Metabolic Labeling of Cellular Proteins with a Noncanonical Amino Acid. ACS Synth Biol 2017; 6:1572-1583. [PMID: 28419802 PMCID: PMC6858787 DOI: 10.1021/acssynbio.7b00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcriptional control can be used to program cells to label proteins with noncanonical amino acids by regulating the expression of orthogonal aminoacyl tRNA synthetases (aaRSs). However, we cannot yet program cells to control labeling in response to aaRS and ligand binding. To identify aaRSs whose activities can be regulated by interactions with ligands, we used a combinatorial approach to discover fragmented variants of Escherichia coli methionyl tRNA synthetase (MetRS) that require fusion to associating proteins for maximal activity. We found that these split proteins could be leveraged to create ligand-dependent MetRS using two approaches. When a pair of MetRS fragments was fused to FKBP12 and the FKBP-rapamycin binding domain (FRB) of mTOR and mutations were introduced that direct substrate specificity toward azidonorleucine (Anl), Anl metabolic labeling was significantly enhanced in growth medium containing rapamycin, which stabilizes the FKBP12-FRB complex. In addition, fusion of MetRS fragments to the termini of the ligand-binding domain of the estrogen receptor yielded proteins whose Anl metabolic labeling was significantly enhanced when 4-hydroxytamoxifen (4-HT) was added to the growth medium. These findings suggest that split MetRS can be fused to a range of ligand-binding proteins to create aaRSs whose metabolic labeling activities depend upon post-translational interactions with ligands.
Collapse
Affiliation(s)
- Emily E. Thomas
- Department of Biosciences, Rice University, Houston, TX 77005, USA
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX 77005, USA
| | - Naresh Pandey
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Sarah Knudsen
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Jonathan J. Silberg
- Department of Biosciences, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
13
|
Immormino RM, Silversmith RE, Bourret RB. A Variable Active Site Residue Influences the Kinetics of Response Regulator Phosphorylation and Dephosphorylation. Biochemistry 2016; 55:5595-5609. [PMID: 27589219 PMCID: PMC5050157 DOI: 10.1021/acs.biochem.6b00645] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two-component regulatory systems, minimally composed of a sensor kinase and a response regulator protein, are common mediators of signal transduction in microorganisms. All response regulators contain a receiver domain with conserved active site residues that catalyze the signal activating and deactivating phosphorylation and dephosphorylation reactions. We explored the impact of variable active site position T+1 (one residue C-terminal to the conserved Thr/Ser) on reaction kinetics and signaling fidelity, using wild type and mutant Escherichia coli CheY, CheB, and NarL to represent the three major sequence classes observed across response regulators: Ala/Gly, Ser/Thr, and Val/Ile/Met, respectively, at T+1. Biochemical and structural data together suggested that different amino acids at T+1 impacted reaction kinetics by altering access to the active site while not perturbing overall protein structure. A given amino acid at position T+1 had similar effects on autodephosphorylation in each protein background tested, likely by modulating access of the attacking water molecule to the active site. Similarly, rate constants for CheY autophosphorylation with three different small molecule phosphodonors were consistent with the steric constraints on access to the phosphorylation site arising from combination of specific phosphodonors with particular amino acids at T+1. Because other variable active site residues also influence response regulator phosphorylation biochemistry, we began to explore how context (here, the amino acid at T+2) affected the influence of position T+1 on CheY autocatalytic reactions. Finally, position T+1 affected the fidelity and kinetics of phosphotransfer between sensor kinases and response regulators but was not a primary determinant of their interaction.
Collapse
Affiliation(s)
| | - Ruth E. Silversmith
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, United States
| | - Robert B. Bourret
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, United States
| |
Collapse
|
14
|
Segura J, Sanchez-Garcia R, Tabas-Madrid D, Cuenca-Alba J, Sorzano COS, Carazo JM. 3DIANA: 3D Domain Interaction Analysis: A Toolbox for Quaternary Structure Modeling. Biophys J 2016; 110:766-75. [PMID: 26772592 PMCID: PMC4775853 DOI: 10.1016/j.bpj.2015.11.3519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022] Open
Abstract
Electron microscopy (EM) is experiencing a revolution with the advent of a new generation of Direct Electron Detectors, enabling a broad range of large and flexible structures to be resolved well below 1 nm resolution. Although EM techniques are evolving to the point of directly obtaining structural data at near-atomic resolution, for many molecules the attainable resolution might not be enough to propose high-resolution structural models. However, accessing information on atomic coordinates is a necessary step toward a deeper understanding of the molecular mechanisms that allow proteins to perform specific tasks. For that reason, methods for the integration of EM three-dimensional maps with x-ray and NMR structural data are being developed, a modeling task that is normally referred to as fitting, resulting in the so called hybrid models. In this work, we present a novel application—3DIANA—specially targeted to those cases in which the EM map resolution is medium or low and additional experimental structural information is scarce or even lacking. In this way, 3DIANA statistically evaluates proposed/potential contacts between protein domains, presents a complete catalog of both structurally resolved and predicted interacting regions involving these domains and, finally, suggests structural templates to model the interaction between them. The evaluation of the proposed interactions is computed with DIMERO, a new method that scores physical binding sites based on the topology of protein interaction networks, which has recently shown the capability to increase by 200% the number of domain-domain interactions predicted in interactomes as compared to previous approaches. The new application displays the information at a sequence and structural level and is accessible through a web browser or as a Chimera plugin at http://3diana.cnb.csic.es.
Collapse
Affiliation(s)
- Joan Segura
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain.
| | - Ruben Sanchez-Garcia
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain
| | - Daniel Tabas-Madrid
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain
| | - Jesus Cuenca-Alba
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain
| | - Carlos Oscar S Sorzano
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain
| | - Jose Maria Carazo
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain
| |
Collapse
|
15
|
Greenswag AR, Muok A, Li X, Crane BR. Conformational Transitions that Enable Histidine Kinase Autophosphorylation and Receptor Array Integration. J Mol Biol 2015; 427:3890-907. [PMID: 26522934 PMCID: PMC4721237 DOI: 10.1016/j.jmb.2015.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 01/07/2023]
Abstract
During bacterial chemotaxis, transmembrane chemoreceptor arrays regulate autophosphorylation of the dimeric histidine kinase CheA. The five domains of CheA (P1-P5) each play a specific role in coupling receptor stimulation to CheA activity. Biochemical and X-ray scattering studies of thermostable CheA from Thermotoga maritima determine that the His-containing substrate domain (P1) is sequestered by interactions that depend upon P1 of the adjacent subunit. Non-hydrolyzable ATP analogs (but not ATP or ADP) release P1 from the protein core (domains P3P4P5) and increase its mobility. Detachment of both P1 domains or removal of one within a dimer increases net autophosphorylation substantially at physiological temperature (55°C). However, nearly all activity is lost without the dimerization domain (P3). The linker length between P1 and P3 dictates intersubunit (trans) versus intrasubunit (cis) autophosphorylation, with the trans reaction requiring a minimum length of 47 residues. A new crystal structure of the most active dimerization-plus-kinase unit (P3P4) reveals trans directing interactions between the tether connecting P3 to P2-P1 and the adjacent ATP-binding (P4) domain. The orientation of P4 relative to P3 in the P3P4 structure supports a planar CheA conformation that is required by membrane array models, and it suggests that the ATP lid of CheA may be poised to interact with receptors and coupling proteins. Collectively, these data suggest that the P1 domains are restrained in the off-state as a result of cross-subunit interactions. Perturbations at the nucleotide-binding pocket increase P1 mobility and access of the substrate His to P4-bound ATP.
Collapse
|
16
|
Pandini A, Kleinjung J, Rasool S, Khan S. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor. PLoS One 2015; 10:e0142407. [PMID: 26561852 PMCID: PMC4642947 DOI: 10.1371/journal.pone.0142407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/21/2015] [Indexed: 02/08/2023] Open
Abstract
Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) “torque” helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity.
Collapse
Affiliation(s)
- Alessandro Pandini
- Department of Computer Science and Synthetic Biology Theme, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Jens Kleinjung
- Mathematical Biology, Francis Crick Institute, Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Shafqat Rasool
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
- * E-mail:
| |
Collapse
|
17
|
Pandey N, Nobles CL, Zechiedrich L, Maresso AW, Silberg JJ. Combining random gene fission and rational gene fusion to discover near-infrared fluorescent protein fragments that report on protein-protein interactions. ACS Synth Biol 2015; 4:615-24. [PMID: 25265085 PMCID: PMC4487222 DOI: 10.1021/sb5002938] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.
Collapse
Affiliation(s)
- Naresh Pandey
- Department
of Biosciences, Rice University, Houston, Texas 77005, United States
| | | | | | | | - Jonathan J. Silberg
- Department
of Biosciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
18
|
Andreani J, Guerois R. Evolution of protein interactions: From interactomes to interfaces. Arch Biochem Biophys 2014; 554:65-75. [DOI: 10.1016/j.abb.2014.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/28/2014] [Accepted: 05/12/2014] [Indexed: 12/16/2022]
|
19
|
Li X, Fleetwood AD, Bayas C, Bilwes AM, Ortega DR, Falke JJ, Zhulin IB, Crane BR. The 3.2 Å resolution structure of a receptor: CheA:CheW signaling complex defines overlapping binding sites and key residue interactions within bacterial chemosensory arrays. Biochemistry 2013; 52:3852-65. [PMID: 23668907 PMCID: PMC3694592 DOI: 10.1021/bi400383e] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial chemosensory arrays are composed of extended networks of chemoreceptors (also known as methyl-accepting chemotaxis proteins, MCPs), the histidine kinase CheA, and the adaptor protein CheW. Models of these arrays have been developed from cryoelectron microscopy, crystal structures of binary and ternary complexes, NMR spectroscopy, mutational, data and biochemical studies. A new 3.2 Å resolution crystal structure of a Thermotoga maritima MCP protein interaction region in complex with the CheA kinase-regulatory module (P4-P5) and adaptor protein CheW provides sufficient detail to define residue contacts at the interfaces formed among the three proteins. As in a previous 4.5 Å resolution structure, CheA-P5 and CheW interact through conserved hydrophobic surfaces at the ends of their β-barrels to form pseudo 6-fold symmetric rings in which the two proteins alternate around the circumference. The interface between P5 subdomain 1 and CheW subdomain 2 was anticipated from previous studies, whereas the related interface between CheW subdomain 1 and P5 subdomain 2 has only been observed in these ring assemblies. The receptor forms an unexpected structure in that the helical hairpin tip of each subunit has "unzipped" into a continuous α-helix; four such helices associate into a bundle, and the tetramers bridge adjacent P5-CheW rings in the lattice through interactions with both P5 and CheW. P5 and CheW each bind a receptor helix with a groove of conserved hydrophobic residues between subdomains 1 and 2. P5 binds the receptor helix N-terminal to the tip region (lower site), whereas CheW binds the same helix with inverted polarity near the bundle end (upper site). Sequence comparisons among different evolutionary classes of chemotaxis proteins show that the binding partners undergo correlated changes at key residue positions that involve the lower site. Such evolutionary analyses argue that both CheW and P5 bind to the receptor tip at overlapping positions. Computational genomics further reveal that two distinct CheW proteins in Thermotogae utilize the analogous recognition motifs to couple different receptor classes to the same CheA kinase. Important residues for function previously identified by mutagenesis, chemical modification and biophysical approaches also map to these same interfaces. Thus, although the native CheW-receptor interaction is not observed in the present crystal structure, the bioinformatics and previous data predict key features of this interface. The companion study of the P5-receptor interface in native arrays (accompanying paper Piasta et al. (2013) Biochemistry, DOI: 10.1021/bi400385c) shows that, despite the non-native receptor fold in the present crystal structure, the local helix-in-groove contacts of the crystallographic P5-receptor interaction are present in native arrays and are essential for receptor regulation of kinase activity.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Aaron D. Fleetwood
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 United States and Department of Microbiology, University of Tennessee, Knoxville TN 37996 United States
| | - Camille Bayas
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Alexandrine M. Bilwes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Davi R. Ortega
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 United States and Department of Microbiology, University of Tennessee, Knoxville TN 37996 United States
| | | | - Igor B. Zhulin
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 United States and Department of Microbiology, University of Tennessee, Knoxville TN 37996 United States,To whom correspondence should be addressed , Tel (607) 254-8634 (B.R.C); (I.B.Z), Tel (865) 201-1860
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States,To whom correspondence should be addressed , Tel (607) 254-8634 (B.R.C); (I.B.Z), Tel (865) 201-1860
| |
Collapse
|
20
|
Kastritis PL, Bonvin AMJJ. On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J R Soc Interface 2012; 10:20120835. [PMID: 23235262 PMCID: PMC3565702 DOI: 10.1098/rsif.2012.0835] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interactions between proteins are orchestrated in a precise and time-dependent manner, underlying cellular function. The binding affinity, defined as the strength of these interactions, is translated into physico-chemical terms in the dissociation constant (Kd), the latter being an experimental measure that determines whether an interaction will be formed in solution or not. Predicting binding affinity from structural models has been a matter of active research for more than 40 years because of its fundamental role in drug development. However, all available approaches are incapable of predicting the binding affinity of protein–protein complexes from coordinates alone. Here, we examine both theoretical and experimental limitations that complicate the derivation of structure–affinity relationships. Most work so far has concentrated on binary interactions. Systems of increased complexity are far from being understood. The main physico-chemical measure that relates to binding affinity is the buried surface area, but it does not hold for flexible complexes. For the latter, there must be a significant entropic contribution that will have to be approximated in the future. We foresee that any theoretical modelling of these interactions will have to follow an integrative approach considering the biology, chemistry and physics that underlie protein–protein recognition.
Collapse
Affiliation(s)
- Panagiotis L Kastritis
- Bijvoet Center for Biomolecular Research, Faculty of Science, Chemistry, Utrecht University, , Padualaan 8, Utrecht, The Netherlands
| | | |
Collapse
|
21
|
Ahn DR, Song H, Kim J, Lee S, Park S. The crystal structure of an activated Thermotoga maritima CheY with N-terminal region of FliM. Int J Biol Macromol 2012; 54:76-83. [PMID: 23237794 DOI: 10.1016/j.ijbiomac.2012.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 11/28/2022]
Abstract
In bacterial chemotaxis, the levels of phosphorylated CheY in association with FliM determine the sense of the flagella rotation, which in turn controls the bacterial swimming behavior. We report the 1.7Å resolution crystallographic structure of the Thermotoga maritima BeF(3)(-)-activated CheY in complex with the CheY-binding N-terminal region of FliM. Analysis of the structure in comparison to the previously reported Escherichia coli counterpart reveals that similar regions of H4-β5-H5 in CheY and the helix in FliM are used for the complex interfaces. Our structure also indicates that the correlated movement of Phe101 and Ser82 (F-S coupling) in T. maritima CheY upon phosphorylation and FliM binding, parallels that of Tyr106 and Thr87 (Y-T coupling) demonstrated in E. coli CheY. Furthermore, significant displacements of the β4-H4 loop in both CheYs impose a crucial role of this loop, which can be related to flagellar switch component binding or to propagating changes that is necessary during the CheY-mediated reversal of the motor.
Collapse
Affiliation(s)
- Dae-Ro Ahn
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | | | | | | | | |
Collapse
|
22
|
Hamp T, Rost B. Alternative protein-protein interfaces are frequent exceptions. PLoS Comput Biol 2012; 8:e1002623. [PMID: 22876170 PMCID: PMC3410849 DOI: 10.1371/journal.pcbi.1002623] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 06/11/2012] [Indexed: 11/18/2022] Open
Abstract
The intricate molecular details of protein-protein interactions (PPIs) are crucial for function. Therefore, measuring the same interacting protein pair again, we expect the same result. This work measured the similarity in the molecular details of interaction for the same and for homologous protein pairs between different experiments. All scores analyzed suggested that different experiments often find exceptions in the interfaces of similar PPIs: up to 22% of all comparisons revealed some differences even for sequence-identical pairs of proteins. The corresponding number for pairs of close homologs reached 68%. Conversely, the interfaces differed entirely for 12-29% of all comparisons. All these estimates were calculated after redundancy reduction. The magnitude of interface differences ranged from subtle to the extreme, as illustrated by a few examples. An extreme case was a change of the interacting domains between two observations of the same biological interaction. One reason for different interfaces was the number of copies of an interaction in the same complex: the probability of observing alternative binding modes increases with the number of copies. Even after removing the special cases with alternative hetero-interfaces to the same homomer, a substantial variability remained. Our results strongly support the surprising notion that there are many alternative solutions to make the intricate molecular details of PPIs crucial for function.
Collapse
Affiliation(s)
- Tobias Hamp
- TUM, Bioinformatik - I12, Informatik, Garching, Germany
| | - Burkhard Rost
- TUM, Bioinformatik - I12, Informatik, Garching, Germany
- Institute of Advanced Study (IAS), TUM, Garching, Germany
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Mo G, Zhou H, Kawamura T, Dahlquist FW. Solution structure of a complex of the histidine autokinase CheA with its substrate CheY. Biochemistry 2012; 51:3786-98. [PMID: 22494339 DOI: 10.1021/bi300147m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the bacterial chemotaxis two-component signaling system, the histidine-containing phosphotransfer domain (the "P1" domain) of CheA receives a phosphoryl group from the catalytic domain (P4) of CheA and transfers it to the cognate response regulator (RR) CheY, which is docked by the P2 domain of CheA. Phosphorylated CheY then diffuses into the cytoplasm and interacts with the FliM moiety of the flagellar motors, thereby modulating the direction of flagellar rotation. Structures of various histidine phosphotransfer domains (HPt) complexed with their cognate RR domains have been reported. Unlike the Escherichia coli chemotaxis system, however, these systems lack the additional domains dedicated to binding to the response regulators, and the interaction of an HPt domain with an RR domain in the presence of such a domain has not been examined on a structural basis. In this study, we used modern nuclear magnetic resonance techniques to construct a model for the interaction of the E. coli CheA P1 domain (HPt) and CheY (RR) in the presence of the CheY-binding domain, P2. Our results indicate that the presence of P2 may lead to a slightly different relative orientation of the HPt and RR domains versus those seen in such complex structures previously reported.
Collapse
Affiliation(s)
- Guoya Mo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | | | | | | |
Collapse
|
24
|
Park S, Crane BR. Structural insight into the low affinity between Thermotoga maritima CheA and CheB compared to their Escherichia coli/Salmonella typhimurium counterparts. Int J Biol Macromol 2011; 49:794-800. [PMID: 21816169 PMCID: PMC3204391 DOI: 10.1016/j.ijbiomac.2011.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 01/07/2023]
Abstract
CheA-mediated CheB phosphorylation and the subsequent CheB-mediated demethylation of the chemoreceptors are important steps required for the bacterial chemotactic adaptation response. Although Escherichia coli CheB has been reported to interact with CheA competitively against CheY, we have observed that Thermotoga maritima CheB has no detectable CheA-binding. By determining the CheY-like domain crystal structure of T. maritima CheB, and comparing against the T. maritima CheY and Salmonella typhimurium CheB structures, we propose that the two consecutive glutamates in the β4/α4 loop of T. maritima CheB that is absent in T. maritima CheY and in E. coli/S. typhimurium CheB may be one factor contributing to the low CheA affinity.
Collapse
Affiliation(s)
- SangYoun Park
- School of Systems Biomedical Science, Soongsil University, Seoul, Korea,To whom correspondence should be addressed: SangYoun Park, PhD, School of Systems Biomedical Science, College of Natural Sciences, Soongsil University, 511 Sangdo-Dong, Dongjak-Gu, Seoul 156-743, Korea, Phone: 82-2-820-0456, Fax: 82-2-824-4383,
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
25
|
Comparative structural bioinformatics analysis of Bacillus amyloliquefaciens chemotaxis proteins within Bacillus subtilis group. Appl Microbiol Biotechnol 2011; 92:997-1008. [DOI: 10.1007/s00253-011-3582-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 08/17/2011] [Accepted: 09/15/2011] [Indexed: 10/16/2022]
|
26
|
Abstract
After a childhood in Germany and being a youth in Grand Forks, North Dakota, I went to Harvard University, then to graduate school in biochemistry at the University of Wisconsin. Then to Washington University and Stanford University for postdoctoral training in biochemistry and genetics. Then at the University of Wisconsin, as a professor in the Department of Biochemistry and the Department of Genetics, I initiated research on bacterial chemotaxis. Here, I review this research by me and by many, many others up to the present moment. During the past few years, I have been studying chemotaxis and related behavior in animals, namely in Drosophila fruit flies, and some of these results are presented here. My current thinking is described.
Collapse
Affiliation(s)
- Julius Adler
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA.
| |
Collapse
|
27
|
Paul K, Gonzalez-Bonet G, Bilwes AM, Crane BR, Blair D. Architecture of the flagellar rotor. EMBO J 2011; 30:2962-71. [PMID: 21673656 DOI: 10.1038/emboj.2011.188] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 05/18/2011] [Indexed: 12/16/2022] Open
Abstract
Rotation and switching of the bacterial flagellum depends on a large rotor-mounted protein assembly composed of the proteins FliG, FliM and FliN, with FliG most directly involved in rotation. The crystal structure of a complex between the central domains of FliG and FliM, in conjunction with several biochemical and molecular-genetic experiments, reveals the arrangement of the FliG and FliM proteins in the rotor. A stoichiometric mismatch between FliG (26 subunits) and FliM (34 subunits) is explained in terms of two distinct positions for FliM: one where it binds the FliG central domain and another where it binds the FliG C-terminal domain. This architecture provides a structural framework for addressing the mechanisms of motor rotation and direction switching and for unifying the large body of data on motor performance. Recently proposed alternative models of rotor assembly, based on a subunit contact observed in crystals, are not supported by experiment.
Collapse
Affiliation(s)
- Koushik Paul
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | |
Collapse
|
28
|
Tuncbag N, Gursoy A, Keskin O. Prediction of protein-protein interactions: unifying evolution and structure at protein interfaces. Phys Biol 2011; 8:035006. [PMID: 21572173 DOI: 10.1088/1478-3975/8/3/035006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The vast majority of the chores in the living cell involve protein-protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein-protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations.
Collapse
Affiliation(s)
- Nurcan Tuncbag
- Koc University, Center for Computational Biology and Bioinformatics, and College of Engineering, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | | | | |
Collapse
|
29
|
Karanicolas J, Corn JE, Chen I, Joachimiak LA, Dym O, Peck SH, Albeck S, Unger T, Hu W, Liu G, Delbecq S, Montelione G, Spiegel C, Liu DR, Baker D. A de novo protein binding pair by computational design and directed evolution. Mol Cell 2011; 42:250-60. [PMID: 21458342 PMCID: PMC3102007 DOI: 10.1016/j.molcel.2011.03.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/19/2010] [Accepted: 02/07/2011] [Indexed: 12/25/2022]
Abstract
The de novo design of protein-protein interfaces is a stringent test of our understanding of the principles underlying protein-protein interactions and would enable unique approaches to biological and medical challenges. Here we describe a motif-based method to computationally design protein-protein complexes with native-like interface composition and interaction density. Using this method we designed a pair of proteins, Prb and Pdar, that heterodimerize with a Kd of 130 nM, 1000-fold tighter than any previously designed de novo protein-protein complex. Directed evolution identified two point mutations that improve affinity to 180 pM. Crystal structures of an affinity-matured complex reveal binding is entirely through the designed interface residues. Surprisingly, in the in vitro evolved complex one of the partners is rotated 180° relative to the original design model, yet still maintains the central computationally designed hotspot interaction and preserves the character of many peripheral interactions. This work demonstrates that high-affinity protein interfaces can be created by designing complementary interaction surfaces on two noninteracting partners and underscores remaining challenges.
Collapse
Affiliation(s)
- John Karanicolas
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350
- Center for Bioinformatics and Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045-7534
| | - Jacob E. Corn
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-7350
| | - Irwin Chen
- Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | | | - Orly Dym
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, Israel
| | - Sun H. Peck
- Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Shira Albeck
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, Israel
| | - Wenxin Hu
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-7350
| | - Gaohua Liu
- Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, and Robert Wood Johnson Medical School, Piscataway, NJ
| | - Scott Delbecq
- Department of Chemistry, Western Washington University, Bellingham, WA
| | - Gaetano Montelione
- Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, and Robert Wood Johnson Medical School, Piscataway, NJ
| | - Clint Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA
| | - David R. Liu
- Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-7350
| |
Collapse
|
30
|
Hamer R, Luo Q, Armitage JP, Reinert G, Deane CM. i-Patch: interprotein contact prediction using local network information. Proteins 2011; 78:2781-97. [PMID: 20635422 DOI: 10.1002/prot.22792] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Biological processes are commonly controlled by precise protein-protein interactions. These connections rely on specific amino acids at the binding interfaces. Here we predict the binding residues of such interprotein complexes. We have developed a suite of methods, i-Patch, which predict the interprotein contact sites by considering the two proteins as a network, with residues as nodes and contacts as edges. i-Patch starts with two proteins, A and B, which are assumed to interact, but for which the structure of the complex is not available. However, we assume that for each protein, we have a reference structure and a multiple sequence alignment of homologues. i-Patch then uses the propensities of patches of residues to interact, to predict interprotein contact sites. i-Patch outperforms several other tested algorithms for prediction of interprotein contact sites. It gives 59% precision with 20% recall on a blind test set of 31 protein pairs. Combining the i-Patch scores with an existing correlated mutation algorithm, McBASC, using a logistic model gave little improvement. Results from a case study, on bacterial chemotaxis protein complexes, demonstrate that our predictions can identify contact residues, as well as suggesting unknown interfaces in multiprotein complexes.
Collapse
Affiliation(s)
- Rebecca Hamer
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Choi K, Kim S. Building interacting partner predictors using co-varying residue pairs between histidine kinase and response regulator pairs of 48 bacterial two-component systems. Proteins 2011; 79:1118-31. [DOI: 10.1002/prot.22948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 11/11/2022]
|
32
|
Stein A, Céol A, Aloy P. 3did: identification and classification of domain-based interactions of known three-dimensional structure. Nucleic Acids Res 2010; 39:D718-23. [PMID: 20965963 PMCID: PMC3013799 DOI: 10.1093/nar/gkq962] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The database of three-dimensional interacting domains (3did) is a collection of protein interactions for which high-resolution three-dimensional structures are known. 3did exploits the availability of structural data to provide molecular details on interactions between two globular domains as well as novel domain–peptide interactions, derived using a recently published method from our lab. The interface residues are presented for each interaction type individually, plus global domain interfaces at which one or more partners (domains or peptides) bind. The 3did web server at http://3did.irbbarcelona.org visualizes these interfaces along with atomic details of individual interactions using Jmol. The complete contents are also available for download.
Collapse
Affiliation(s)
- Amelie Stein
- Institute for Research in Biomedicine, Join IRB-BSC Program in Computational Biology, 08028 Barcelona, Spain
| | | | | |
Collapse
|
33
|
Bhatnagar J, Borbat PP, Pollard AM, Bilwes AM, Freed JH, Crane BR. Structure of the ternary complex formed by a chemotaxis receptor signaling domain, the CheA histidine kinase, and the coupling protein CheW as determined by pulsed dipolar ESR spectroscopy. Biochemistry 2010; 49:3824-41. [PMID: 20355710 DOI: 10.1021/bi100055m] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The signaling apparatus that controls bacterial chemotaxis is composed of a core complex containing chemoreceptors, the histidine autokinase CheA, and the coupling protein CheW. Site-specific spin labeling and pulsed dipolar ESR spectroscopy (PDS) have been applied to investigate the structure of a soluble ternary complex formed by Thermotoga maritima CheA (TmCheA), CheW, and receptor signaling domains. Thirty-five symmetric spin-label sites (SLSs) were engineered into the five domains of the CheA dimer and CheW to provide distance restraints within the CheA:CheW complex in the absence and presence of a soluble receptor that inhibits kinase activity (Tm14). Additional PDS restraints among spin-labeled CheA, CheW, and an engineered single-chain receptor labeled at six different sites allow docking of the receptor structure relative to the CheA:CheW complex. Disulfide cross-linking between selectively incorporated Cys residues finds two pairs of positions that provide further constraints within the ternary complex: one involving Tm14 and CheW and another involving Tm14 and CheA. The derived structure of the ternary complex indicates a primary site of interaction between CheW and Tm14 that agrees well with previous biochemical and genetic data for transmembrane chemoreceptors. The PDS distance distributions are most consistent with only one CheW directly engaging one dimeric Tm14. The CheA dimerization domain (P3) aligns roughly antiparallel to the receptor-conserved signaling tip but does not interact strongly with it. The angle of the receptor axis with respect to P3 and the CheW-binding P5 domains is bound by two limits differing by approximately 20 degrees . In one limit, Tm14 aligns roughly along P3 and may interact to some extent with the hinge region near the P3 hairpin loop. In the other limit, Tm14 tilts to interact with the P5 domain of the opposite subunit in an interface that mimics that observed with the P5 homologue CheW. The time domain ESR data can be simulated from the model only if orientational variability is introduced for the P5 and, especially, P3 domains. The Tm14 tip also binds beside one of the CheA kinase domains (P4); however, in both bound and unbound states, P4 samples a broad range of distributions that are only minimally affected by Tm14 binding. The CheA P1 domains that contain the substrate histidine are also broadly distributed in space under all conditions. In the context of the hexagonal lattice formed by trimeric transmembrane chemoreceptors, the PDS structure is best accommodated with the P3 domain in the center of a honeycomb edge.
Collapse
Affiliation(s)
- Jaya Bhatnagar
- Center for Advanced ESR Studies, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
34
|
Nguyen PQ, Silberg JJ. A selection that reports on protein-protein interactions within a thermophilic bacterium. Protein Eng Des Sel 2010; 23:529-36. [PMID: 20418388 DOI: 10.1093/protein/gzq024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many proteins can be split into fragments that exhibit enhanced function upon fusion to interacting proteins. While this strategy has been widely used to create protein-fragment complementation assays (PCAs) for discovering protein-protein interactions within mesophilic organisms, similar assays have not yet been developed for studying natural and engineered protein complexes at the temperatures where thermophilic microbes grow. We describe the development of a selection for protein-protein interactions within Thermus thermophilus that is based upon growth complementation by fragments of Thermotoga neapolitana adenylate kinase (AK(Tn)). Complementation studies with an engineered thermophile (PQN1) that is not viable above 75 degrees C because its adk gene has been replaced by a Geobacillus stearothermophilus ortholog revealed that growth could be restored at 78 degrees C by a vector that coexpresses polypeptides corresponding to residues 1-79 and 80-220 of AK(Tn). In contrast, PQN1 growth was not complemented by AK(Tn) fragments harboring a C156A mutation within the zinc-binding tetracysteine motif unless these fragments were fused to Thermotoga maritima chemotaxis proteins that heterodimerize (CheA and CheY) or homodimerize (CheX). This enhanced complementation is interpreted as arising from chemotaxis protein-protein interactions, since AK(Tn)-C156A fragments having only one polypeptide fused to a chemotaxis protein did not complement PQN1 to the same extent. This selection increases the maximum temperature where a PCA can be used to engineer thermostable protein complexes and to map protein-protein interactions.
Collapse
Affiliation(s)
- Peter Q Nguyen
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | |
Collapse
|
35
|
Nury H, Bocquet N, Le Poupon C, Raynal B, Haouz A, Corringer PJ, Delarue M. Crystal Structure of the Extracellular Domain of a Bacterial Ligand-Gated Ion Channel. J Mol Biol 2010; 395:1114-27. [DOI: 10.1016/j.jmb.2009.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/06/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
|
36
|
Eaton AK, Stewart RC. The two active sites of Thermotoga maritima CheA dimers bind ATP with dramatically different affinities. Biochemistry 2009; 48:6412-22. [PMID: 19505148 DOI: 10.1021/bi900474g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CheA is a central component of the chemotaxis signal transduction pathway that allows prokaryotic cells to control their movements in response to environmental cues. This dimeric protein histidine kinase autophosphorylates via an intersubunit phosphorylation reaction in which each protomer of the dimer binds ATP, at an active site located in its P4 domain and then catalyzes transfer of the gamma-phosphoryl group of ATP to the His(45) side chain within the P1 domain of the trans protomer. Here we utilize the fluorescent nucleotide analogue TNP-ATP [2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate] to investigate the two ATP-binding sites of the Thermotoga maritima CheA dimer (TmCheA) and the single site of the isolated TmP4 domain (a monomer). We define the affinity of CheA for TNP nucleotides and, by competition, for unmodified ATP. The two ATP-binding sites of the TmCheA dimer exhibit dramatically different affinities for TNP-ATP (K(d1)(TNP) approximately 0.0016 muM and K(d2)(TNP) approximately 22 muM at 4 degrees C in the presence of Mg(2+)) as well as for ATP (K(d1)(ATP) approximately 6 muM and K(d2)(ATP) approximately 5000 muM at 4 degrees C in the presence of Mg(2+)) and in their ability to influence the fluorescence of bound TNP-ATP. The ATP-binding site of the isolated TmP4 domain interacts with ATP and TNP-ATP in a manner similar to that of the high-affinity site of the TmCheA dimer. These results suggest that the two active sites of TmCheA homodimers exhibit large differences in their interactions with ATP. We consider possible implications of these differences for the CheA autophosphorylation mechanism and for CheA function in bacterial cells.
Collapse
Affiliation(s)
- Anna K Eaton
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
37
|
Stein A, Panjkovich A, Aloy P. 3did Update: domain-domain and peptide-mediated interactions of known 3D structure. Nucleic Acids Res 2008; 37:D300-4. [PMID: 18953040 PMCID: PMC2686500 DOI: 10.1093/nar/gkn690] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The database of 3D interacting domains (3did) is a collection of protein interactions for which high-resolution 3D structures are known. 3did exploits structural information to provide the crucial molecular details necessary for understanding how protein interactions occur. Besides interactions between globular domains, the new release of 3did also contains a hand-curated set of transient peptide-mediated interactions. The interactions are grouped in Interaction Types, based on the mode of binding, and the different binding interfaces used in each type are also identified and catalogued. A web-based tool to query 3did is available at http://3did.irbbarcelona.org.
Collapse
Affiliation(s)
- Amelie Stein
- Institute for Research in Biomedicine, Barcelona Supercomputing Center, c/ Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | | | | |
Collapse
|
38
|
Levy ED, Pereira-Leal JB. Evolution and dynamics of protein interactions and networks. Curr Opin Struct Biol 2008; 18:349-57. [DOI: 10.1016/j.sbi.2008.03.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 03/04/2008] [Accepted: 03/04/2008] [Indexed: 12/29/2022]
|
39
|
Wuichet K, Alexander RP, Zhulin IB. Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis. Methods Enzymol 2007; 422:1-31. [PMID: 17628132 PMCID: PMC2754700 DOI: 10.1016/s0076-6879(06)22001-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Molecular machinery governing bacterial chemotaxis consists of the CheA-CheY two-component system, an array of specialized chemoreceptors, and several auxiliary proteins. It has been studied extensively in Escherichia coli and, to a significantly lesser extent, in several other microbial species. Emerging evidence suggests that homologous signal transduction pathways regulate not only chemotaxis, but several other cellular functions in various bacterial species. The availability of genome sequence data for hundreds of organisms enables productive study of this system using comparative genomics and protein sequence analysis. This chapter describes advances in genomics of the chemotaxis signal transduction system, provides information on relevant bioinformatics tools and resources, and outlines approaches toward developing a computational framework for predicting important biological functions from raw genomic data based on available experimental evidence.
Collapse
Affiliation(s)
- Kristin Wuichet
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | |
Collapse
|
40
|
Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM. Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 2006; 30:872-905. [PMID: 17064285 DOI: 10.1111/j.1574-6976.2006.00039.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
High-throughput sequencing of microbial genomes has allowed the application of functional genomics methods to species lacking well-developed genetic systems. For the model hyperthermophile Thermotoga maritima, microarrays have been used in comparative genomic hybridization studies to investigate diversity among Thermotoga species. Transcriptional data have assisted in prediction of pathways for carbohydrate utilization, iron-sulfur cluster synthesis and repair, expolysaccharide formation, and quorum sensing. Structural genomics efforts aimed at the T. maritima proteome have yielded hundreds of high-resolution datasets and predicted functions for uncharacterized proteins. The information gained from genomics studies will be particularly useful for developing new biotechnology applications for T. maritima enzymes.
Collapse
Affiliation(s)
- Shannon B Conners
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | |
Collapse
|
41
|
Perez E, Stock AM. Characterization of the Thermotoga maritima chemotaxis methylation system that lacks pentapeptide-dependent methyltransferase CheR:MCP tethering. Mol Microbiol 2006; 63:363-78. [PMID: 17163981 PMCID: PMC3645907 DOI: 10.1111/j.1365-2958.2006.05518.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sensory adaptation in bacterial chemotaxis is mediated by covalent modifications of specific glutamate and glutamine residues within the cytoplasmic domains of methyl-accepting chemotaxis proteins (MCPs). In Escherichia coli and Salmonella enterica, efficient methylation of MCPs depends on the localization of methyltransferase CheR to MCP clusters through an interaction between the CheR beta-subdomain and a pentapeptide sequence (NWETF or NWESF) at the C-terminus of the MCP. In vitro methylation analyses utilizing S. enterica and Thermotoga maritima CheR proteins and MCPs indicate that MCP methylation in T. maritima occurs independently of a pentapeptide-binding motif. Kinetic and binding measurements demonstrate that despite efficient methylation, the interaction between T. maritima CheR and T. maritima MCPs is of relatively low affinity. Comparative protein sequence analyses of CheR beta-subdomains from organisms having MCPs that contain and/or lack pentapeptide-binding motifs identified key similarities and differences in residue conservation, suggesting the existence of two distinct classes of CheR proteins: pentapeptide-dependent and pentapeptide-independent methyltransferases. Analysis of MCP C-terminal ends showed that only approximately 10% of MCPs contain a putative C-terminal binding motif, the majority of which are restricted to the different proteobacteria classes (alpha, beta, gamma, delta). These findings suggest that tethering of CheR to MCPs is a relatively recent event in evolution and that the pentapeptide-independent methylation system is more common than the well-characterized pentapeptide-dependent methylation system.
Collapse
Affiliation(s)
- Eduardo Perez
- Center for Advanced Biotechnology and Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
- Howard Hughes Medical Institute, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
- Corresponding Author: Mailing address: CABM, 679 Hoes Lane, Piscataway, NJ 08854-5627. Phone: (732) 235-4844. Fax: (732) 235-5289.
| |
Collapse
|
42
|
Miller AS, Kohout SC, Gilman KA, Falke JJ. CheA Kinase of bacterial chemotaxis: chemical mapping of four essential docking sites. Biochemistry 2006; 45:8699-711. [PMID: 16846213 PMCID: PMC2904553 DOI: 10.1021/bi060580y] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chemotaxis pathway of Escherichia coli and Salmonella typhimurium is the paradigm for the ubiquitous class of 2-component signaling pathways in prokaryotic organisms. Chemosensing begins with the binding of a chemical attractant to a transmembrane receptor on the cell surface. The resulting transmembrane signal regulates a cytoplasmic, multiprotein signaling complex that controls cellular swimming behavior by generating a diffusible phosphoprotein. The minimal functional unit of this signaling complex, termed the core complex, consists of the transmembrane receptor, the coupling protein CheW, and the histidine kinase CheA. Though the structures of individual components are largely known and the core complex can be functionally reconstituted, the architecture of the assembled core complex has remained elusive. To probe this architecture, the present study has utilized an enhanced version of the protein-interactions-by-cysteine-modification method (PICM-beta) to map out docking surfaces on CheA essential for kinase activity and for core complex assembly. The approach employed a library of 70 single, engineered cysteine residues, scattered uniformly over the surfaces of the five CheA domains in a cysteine-free CheA background. These surface Cys residues were further modified by the sulfhydryl-specific alkylating agent, 5-fluorescein-maleimide (5FM). The functional effects of individual Cys and 5FM-Cys surface modifications were measured by kinase assays of CheA activity in both the free and core complex-associated states, and by direct binding assays of CheA associations with CheW and the receptor. The results define (i) two mutual docking surfaces on the CheA substrate and catalytic domains essential for the association of these domains during autophosphorylation, (ii) a docking surface on the CheA regulatory domain essential for CheW binding, and (iii) a large docking surface encompassing regions of the CheA dimerization, catalytic, and regulatory domains proposed to bind the receptor. To test the generality of these findings, a CheA sequence alignment was analyzed, revealing that the newly identified docking surfaces are highly conserved among CheA homologues. These results strongly suggest that the same docking sites are widely utilized in prokaryotic sensory pathways. Finally, the results provide new structural constraints allowing the development of improved models for core complex architecture.
Collapse
Affiliation(s)
| | | | | | - Joseph J. Falke
- To whom correspondence should be addressed., ; tel, (303) 492-3503; fax, (303) 492-5894
| |
Collapse
|
43
|
Park SY, Lowder B, Bilwes AM, Blair DF, Crane BR. Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. Proc Natl Acad Sci U S A 2006; 103:11886-91. [PMID: 16882724 PMCID: PMC1567671 DOI: 10.1073/pnas.0602811103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteria switch the direction their flagella rotate to control movement. FliM, along with FliN and FliG, compose a complex in the motor that, upon binding phosphorylated CheY, reverses the sense of flagellar rotation. The 2.0-A resolution structure of the FliM middle domain (FliM(M)) from Thermotoga maritima reveals a pseudo-2-fold symmetric topology similar to the CheY phosphatases CheC and CheX. A variable structural element, which, in CheC, mediates binding to CheD (alpha2') and, in CheX, mediates dimerization (beta'(x)), has a truncated structure unique to FliM (alpha2'). An exposed helix of FliM(M) (alpha1) does not contain the catalytic residues of CheC and CheX but does include positions conserved in FliM sequences. Cross-linking experiments with site-directed cysteine mutants show that FliM self-associates through residues on alpha1 and alpha2'. CheY activated by BeF(3)(-) binds to FliM with approximately 40-fold higher affinity than CheY (K(d) = 0.04 microM vs. 2 microM). Mapping residue conservation, suppressor mutation sites, binding data, and deletion analysis onto the FliM(M) surface defines regions important for contacts with the stator-interacting protein FliG and for either counterclockwise or clockwise rotation. Association of 33-35 FliM subunits would generate a 44- to 45-nm-diameter disk, consistent with the known dimensions of the C-ring. The localization of counterclockwise- and clockwise-biasing mutations to distinct surfaces suggests that the binding of phosphorylated CheY cooperatively realigns FliM around the ring.
Collapse
Affiliation(s)
- Sang-Youn Park
- *Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850; and
| | - Bryan Lowder
- Department of Biology, University of Utah, Salt Lake City, UT 84112
| | - Alexandrine M. Bilwes
- *Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850; and
| | - David F. Blair
- Department of Biology, University of Utah, Salt Lake City, UT 84112
| | - Brian R. Crane
- *Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Kim WK, Henschel A, Winter C, Schroeder M. The many faces of protein-protein interactions: A compendium of interface geometry. PLoS Comput Biol 2006; 2:e124. [PMID: 17009862 PMCID: PMC1584320 DOI: 10.1371/journal.pcbi.0020124] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 07/31/2006] [Indexed: 11/18/2022] Open
Abstract
A systematic classification of protein-protein interfaces is a valuable resource for understanding the principles of molecular recognition and for modelling protein complexes. Here, we present a classification of domain interfaces according to their geometry. Our new algorithm uses a hybrid approach of both sequential and structural features. The accuracy is evaluated on a hand-curated dataset of 416 interfaces. Our hybrid procedure achieves 83% precision and 95% recall, which improves the earlier sequence-based method by 5% on both terms. We classify virtually all domain interfaces of known structure, which results in nearly 6,000 distinct types of interfaces. In 40% of the cases, the interacting domain families associate in multiple orientations, suggesting that all the possible binding orientations need to be explored for modelling multidomain proteins and protein complexes. In general, hub proteins are shown to use distinct surface regions (multiple faces) for interactions with different partners. Our classification provides a convenient framework to query genuine gene fusion, which conserves binding orientation in both fused and separate forms. The result suggests that the binding orientations are not conserved in at least one-third of the gene fusion cases detected by a conventional sequence similarity search. We show that any evolutionary analysis on interfaces can be skewed by multiple binding orientations and multiple interaction partners. The taxonomic distribution of interface types suggests that ancient interfaces common to the three major kingdoms of life are enriched by symmetric homodimers. The classification results are online at http://www.scoppi.org.
Collapse
Affiliation(s)
- Wan Kyu Kim
- Bioinformatics Group, Biotechnological Centre, Technische Universität Dresden, Dresden, Germany
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Andreas Henschel
- Bioinformatics Group, Biotechnological Centre, Technische Universität Dresden, Dresden, Germany
| | - Christof Winter
- Bioinformatics Group, Biotechnological Centre, Technische Universität Dresden, Dresden, Germany
| | - Michael Schroeder
- Bioinformatics Group, Biotechnological Centre, Technische Universität Dresden, Dresden, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Perez E, Zheng H, Stock AM. Identification of methylation sites in Thermotoga maritima chemotaxis receptors. J Bacteriol 2006; 188:4093-100. [PMID: 16707700 PMCID: PMC1482916 DOI: 10.1128/jb.00181-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 03/17/2006] [Indexed: 11/20/2022] Open
Abstract
Adaptation in bacterial chemotaxis involves reversible methylation of specific glutamate residues within the cytoplasmic domains of methyl-accepting chemotaxis proteins. The specific sites of methylation in Salmonella enterica and Escherichia coli chemoreceptors, identified 2 decades ago, established a consensus sequence for methylation by methyltransferase CheR. Here we report the in vitro methylation of chemoreceptors from Thermotoga maritima, a hyperthermophile that has served as a useful source of chemotaxis proteins for structural analysis. Sites of methylation have been identified by liquid chromatography-mass spectrometry/mass spectrometry. Fifteen sites of methylation were identified within the cytoplasmic domains of four different T. maritima chemoreceptors. The results establish a consensus sequence for chemoreceptor methylation sites in T. maritima that is distinct from the previously identified consensus sequence for E. coli and S. enterica. These findings suggest that consensus sequences for posttranslational modifications in one organism may not be directly extrapolated to analogous modifications in other bacteria.
Collapse
Affiliation(s)
- Eduardo Perez
- Department of Biochemistry, Center for Advanced Biotechnology and Medicine, UMDNJ-Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854-5627, USA
| | | | | |
Collapse
|
46
|
Nilsson M, Rasmussen U, Bergman B. Cyanobacterial chemotaxis to extracts of host and nonhost plants. FEMS Microbiol Ecol 2006; 55:382-90. [PMID: 16466377 DOI: 10.1111/j.1574-6941.2005.00043.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Chemotaxis may be important when forming cyanobacterial symbioses. However, knowledge of cyanobacterial attraction towards plants and factors affecting chemotaxis is limited. Chemo-attraction was observed in Nostoc strains 8964:3 and PCC 73102 towards exudate or crushed extract of the natural hosts Gunnera manicata, Cycas revoluta and Blasia pusilla, and the nonhost plants Trifolium repens, Arabidopsis thaliana and Oryza sativa. As all tested plant extracts generated chemotaxis, the possibility to attract cyanobacteria may be widespread in plants. Chemotaxis was reduced by increased temperature and darkness and was stimulated by phosphorous and iron starvation and elevated salt concentration. Sugars (arabinose, galactose, and glucose) had a positive effect on chemotaxis, whereas flavonoids (chrysin and naringenin) and amino acids (methionine, glycine, serine, phenylalanine, glutamine, and lysine) had no effect.
Collapse
Affiliation(s)
- Malin Nilsson
- Department of Botany, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
47
|
Abstract
Much of systems biology aims to predict the behaviour of biological systems on the basis of the set of molecules involved. Understanding the interactions between these molecules is therefore crucial to such efforts. Although many thousands of interactions are known, precise molecular details are available for only a tiny fraction of them. The difficulties that are involved in experimentally determining atomic structures for interacting proteins make predictive methods essential for progress. Structural details can ultimately turn abstract system representations into models that more accurately reflect biological reality.
Collapse
Affiliation(s)
- Patrick Aloy
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | | |
Collapse
|
48
|
Zhao G, Zhou X, Wang L, Li G, Kisker C, Lennarz WJ, Schindelin H. Structure of the mouse peptide N-glycanase-HR23 complex suggests co-evolution of the endoplasmic reticulum-associated degradation and DNA repair pathways. J Biol Chem 2006; 281:13751-13761. [PMID: 16500903 DOI: 10.1074/jbc.m600137200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptide N-glycanase removes N-linked oligosaccharides from misfolded glycoproteins as part of the endoplasmic reticulum-associated degradation pathway. This process involves the formation of a tight complex of peptide N-glycanase with Rad23 in yeast and the orthologous HR23 proteins in mammals. In addition to its function in endoplasmic reticulum-associated degradation, HR23 is also involved in DNA repair, where it plays an important role in damage recognition in complex with the xeroderma pigmentosum group C protein. To characterize the dual role of HR23, we have determined the high resolution crystal structure of the mouse peptide N-glycanase catalytic core in complex with the xeroderma pigmentosum group C binding domain from HR23B. Peptide N-glycanase features a large cleft between its catalytic cysteine protease core and zinc binding domain. Opposite the zinc binding domain is the HR23B-interacting region, and surprisingly, the complex interface is fundamentally different from the orthologous yeast peptide N-glycanase-Rad23 complex. Different regions on both proteins are involved in complex formation, revealing an amazing degree of divergence in the interaction between two highly homologous proteins. Furthermore, the mouse peptide N-glycanase-HR23B complex mimics the interaction between xeroderma pigmentosum group C and HR23B, thereby providing a first structural model of how the two proteins interact within the nucleotide excision repair cascade in higher eukaryotes. The different interaction interfaces of the xeroderma pigmentosum group C binding domains in yeast and mammals suggest a co-evolution of the endoplasmic reticulum-associated degradation and DNA repair pathways.
Collapse
Affiliation(s)
- Gang Zhao
- Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794
| | - Xiaoke Zhou
- Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794
| | - Liqun Wang
- Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794
| | - Guangtao Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794
| | - Caroline Kisker
- Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794; Rudolf Virchow Center for Experimental Biomedicine and Institute of Structural Biology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - William J Lennarz
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794
| | - Hermann Schindelin
- Center for Structural Biology, Stony Brook University, Stony Brook, New York 11794; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794; Rudolf Virchow Center for Experimental Biomedicine and Institute of Structural Biology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany.
| |
Collapse
|
49
|
Abstract
The understanding of protein-protein interactions is a major goal in the postgenomic era. The prediction of interaction from sequence and the subsequent generation of full-length dimeric models is therefore of great interest especially because the number of structurally characterized protein-protein complexes is sparse. A quality assessment of a benchmark comprised of 170 weakly homologous dimeric target-template pairs is presented. They are predicted in a two-step method, similar to the previously described MULTIPROSPECTOR algorithm: each target sequence is assigned to a monomeric template structure by threading; then, those templates that belong to the same physically interacting dimer template are selected. Additionally we use structural alignments as the "gold standard" to assess the percentage of correctly assigned monomer and dimer templates and to evaluate the threading results with a focus on the quality of the alignments in the interfacial region. This work aims to give a quantitative picture of the quality of dimeric threading. Except for one, all monomer templates are identified correctly, but approximately 40% of the dimer templates are still problematic or incorrect. Preliminary results for three full-length dimeric models generated with the TASSER method show on average a significant improvement of the final model over the initial template.
Collapse
Affiliation(s)
- Vera Grimm
- Center of Excellence in Bioinformatics, University at Buffalo, Buffalo, New York, USA
| | | | | |
Collapse
|
50
|
Corn JE, Pease PJ, Hura GL, Berger JM. Crosstalk between primase subunits can act to regulate primer synthesis in trans. Mol Cell 2005; 20:391-401. [PMID: 16285921 DOI: 10.1016/j.molcel.2005.09.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 08/12/2005] [Accepted: 09/06/2005] [Indexed: 10/25/2022]
Abstract
The coordination of primase function within the replisome is an essential but poorly understood feature of lagging strand synthesis. By using crystallography and small-angle X-ray scattering (SAXS), we show that functional elements of bacterial primase transition between two dominant conformations: an extended form that uncouples a regulatory domain from its associated RNA polymerase core and a compact state that sequesters the regulatory region from the site of primer synthesis. FRET studies and priming assays reveal that the regulatory domain of one primase subunit productively associates with nucleic acid that is bound to the polymerase domain of a second protomer in trans. This intersubunit interaction allows primase to select initiation sites on template DNA and implicates the regulatory domain as a "molecular brake" that restricts primer length. Our data suggest that the replisome may cooperatively use multiple primases and this conformational switch to control initiation frequency, processivity, and ultimately, Okazaki fragment synthesis.
Collapse
Affiliation(s)
- Jacob E Corn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|