1
|
Fuller KB, Requijo RM, Schneider DA, Lucius AL. NTPs compete in the active site of RNA polymerases I and II. Biophys Chem 2024; 314:107302. [PMID: 39180852 PMCID: PMC11401760 DOI: 10.1016/j.bpc.2024.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Eukaryotes express at least three RNA polymerases (Pols) carry out transcription, while bacteria and archaea use only one. Using transient state kinetics, we have extensively examined and compared the kinetics of both single and multi-nucleotide additions catalyzed by the three Pols. In single nucleotide addition experiments we have observed unexpected extension products beyond one incorporation, which can be attributed to misincorporation, the presence of nearly undetectable amounts of contaminating NTPs, or a mixture of the two. Here we report the development and validation of an analysis strategy to account for the presence of unexpected extension products, when they occur. Using this approach, we uncovered evidence showing that non-cognate nucleotide, thermodynamically, competes with cognate nucleotide for the active site within the elongation complex of Pol I, ΔA12 Pol I, and Pol II. This observation is unexpected because base pairing interactions provide favorable energetics for selectivity and competitive binding indicates that the affinities of cognate and non-cognate nucleotides are within an order of magnitude. Thus, we show that application of our approach will allow for the extraction of additional information that reports on the energetics of nucleotide entry and selectivity.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ryan M Requijo
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
2
|
Pilotto S, Sýkora M, Cackett G, Dulson C, Werner F. Structure of the recombinant RNA polymerase from African Swine Fever Virus. Nat Commun 2024; 15:1606. [PMID: 38383525 PMCID: PMC10881513 DOI: 10.1038/s41467-024-45842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
African Swine Fever Virus is a Nucleo-Cytoplasmic Large DNA Virus that causes an incurable haemorrhagic fever in pigs with a high impact on global food security. ASFV replicates in the cytoplasm of the infected cell and encodes its own transcription machinery that is independent of cellular factors, however, not much is known about how this system works at a molecular level. Here, we present methods to produce recombinant ASFV RNA polymerase, functional assays to screen for inhibitors, and high-resolution cryo-electron microscopy structures of the ASFV RNAP in different conformational states. The ASFV RNAP bears a striking resemblance to RNAPII with bona fide homologues of nine of its twelve subunits. Key differences include the fusion of the ASFV assembly platform subunits RPB3 and RPB11, and an unusual C-terminal domain of the stalk subunit vRPB7 that is related to the eukaryotic mRNA cap 2´-O-methyltransferase 1. Despite the high degree of structural conservation with cellular RNA polymerases, the ASFV RNAP is resistant to the inhibitors rifampicin and alpha-amanitin. The cryo-EM structures and fully recombinant RNAP system together provide an important tool for the design, development, and screening of antiviral drugs in a low biosafety containment environment.
Collapse
Affiliation(s)
- Simona Pilotto
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Michal Sýkora
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Gwenny Cackett
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Christopher Dulson
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Finn Werner
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
3
|
Normand C, Dez C, Dauban L, Queille S, Danché S, Abderrahmane S, Beckouet F, Gadal O. RNA polymerase I mutant affects ribosomal RNA processing and ribosomal DNA stability. RNA Biol 2024; 21:1-16. [PMID: 39049162 PMCID: PMC11275518 DOI: 10.1080/15476286.2024.2381910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Transcription is a major contributor to genomic instability. The ribosomal RNA (rDNA) gene locus consists of a head-to-tail repeat of the most actively transcribed genes in the genome. RNA polymerase I (RNAPI) is responsible for massive rRNA production, and nascent rRNA is co-transcriptionally assembled with early assembly factors in the yeast nucleolus. In Saccharomyces cerevisiae, a mutant form of RNAPI bearing a fusion of the transcription factor Rrn3 with RNAPI subunit Rpa43 (CARA-RNAPI) has been described previously. Here, we show that the CARA-RNAPI allele results in a novel type of rRNA processing defect, associated with rDNA genomic instability. A fraction of the 35S rRNA produced in CARA-RNAPI mutant escapes processing steps and accumulates. This accumulation is increased in mutants affecting exonucleolytic activities of the exosome complex. CARA-RNAPI is synthetic lethal with monopolin mutants that are known to affect the rDNA condensation. CARA-RNAPI strongly impacts rDNA organization and increases rDNA copy number variation. Reduced rDNA copy number suppresses lethality, suggesting that the chromosome segregation defect is caused by genomic rDNA instability. We conclude that a constitutive association of Rrn3 with transcribing RNAPI results in the accumulation of rRNAs that escape normal processing, impacting rDNA organization and affecting rDNA stability.
Collapse
Affiliation(s)
- Christophe Normand
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Christophe Dez
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Lise Dauban
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Sophie Queille
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Sarah Danché
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Sarra Abderrahmane
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Frederic Beckouet
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Gadal
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
4
|
Schwank K, Schmid C, Fremter T, Engel C, Milkereit P, Griesenbeck J, Tschochner H. Features of yeast RNA polymerase I with special consideration of the lobe binding subunits. Biol Chem 2023; 404:979-1002. [PMID: 37823775 DOI: 10.1515/hsz-2023-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/13/2023] [Indexed: 10/13/2023]
Abstract
Ribosomal RNAs (rRNAs) are structural components of ribosomes and represent the most abundant cellular RNA fraction. In the yeast Saccharomyces cerevisiae, they account for more than 60 % of the RNA content in a growing cell. The major amount of rRNA is synthesized by RNA polymerase I (Pol I). This enzyme transcribes exclusively the rRNA gene which is tandemly repeated in about 150 copies on chromosome XII. The high number of transcribed rRNA genes, the efficient recruitment of the transcription machinery and the dense packaging of elongating Pol I molecules on the gene ensure that enough rRNA is generated. Specific features of Pol I and of associated factors confer promoter selectivity and both elongation and termination competence. Many excellent reviews exist about the state of research about function and regulation of Pol I and how Pol I initiation complexes are assembled. In this report we focus on the Pol I specific lobe binding subunits which support efficient, error-free, and correctly terminated rRNA synthesis.
Collapse
Affiliation(s)
- Katrin Schwank
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Catharina Schmid
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Tobias Fremter
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Philipp Milkereit
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center of Biochemistry (RCB), Universität Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
5
|
Fuller KB, Jacobs RQ, Schneider DA, Lucius AL. The A12.2 Subunit Plays an Integral Role in Pyrophosphate Release of RNA Polymerase I. J Mol Biol 2023; 435:168186. [PMID: 37355033 PMCID: PMC10529642 DOI: 10.1016/j.jmb.2023.168186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
RNA polymerase I (Pol I) synthesizes ribosomal RNA (rRNA), which is the first and rate-limiting step in ribosome biosynthesis. A12.2 (A12) is a critical subunit of Pol I that is responsible for activating Pol I's exonuclease activity. We previously reported a kinetic mechanism for single-nucleotide incorporation catalyzed by Pol I lacking the A12 subunit (ΔA12 Pol I) purified from S. cerevisae and revealed that ΔA12 Pol I exhibited much slower incorporation compared to Pol I. However, it is unknown if A12 influences each nucleotide incorporation in the context of transcription elongation. Here, we show that A12 contributes to every repeating cycle of nucleotide addition and that deletion of A12 results in an entirely different kinetic mechanism compared to WT Pol I. We found that instead of one irreversible step between each nucleotide addition cycle, as reported for wild type (WT) Pol I, the ΔA12 variant requires one reversible step to describe each nucleotide addition. Reversibility fundamentally requires slow PPi release. Consistently, we show that Pol I is more pyrophosphate (PPi) concentration dependent than ΔA12 Pol I. This observation supports the model that PPi is retained in the active site of ΔA12 Pol I longer than WT Pol I. These results suggest that A12 promotes PPi release, revealing a larger role for the A12.2 subunit in the nucleotide addition cycle beyond merely activating exonuclease activity.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
6
|
Ford BL, Wei T, Liu H, Scull CE, Najmi SM, Pitts S, Fan W, Schneider DA, Laiho M. Expression of RNA polymerase I catalytic core is influenced by RPA12. PLoS One 2023; 18:e0285660. [PMID: 37167337 PMCID: PMC10174586 DOI: 10.1371/journal.pone.0285660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
RNA Polymerase I (Pol I) has recently been recognized as a cancer therapeutic target. The activity of this enzyme is essential for ribosome biogenesis and is universally activated in cancers. The enzymatic activity of this multi-subunit complex resides in its catalytic core composed of RPA194, RPA135, and RPA12, a subunit with functions in RNA cleavage, transcription initiation and elongation. Here we explore whether RPA12 influences the regulation of RPA194 in human cancer cells. We use a specific small-molecule Pol I inhibitor BMH-21 that inhibits transcription initiation, elongation and ultimately activates the degradation of Pol I catalytic subunit RPA194. We show that silencing RPA12 causes alterations in the expression and localization of Pol I subunits RPA194 and RPA135. Furthermore, we find that despite these alterations not only does the Pol I core complex between RPA194 and RPA135 remain intact upon RPA12 knockdown, but the transcription of Pol I and its engagement with chromatin remain unaffected. The BMH-21-mediated degradation of RPA194 was independent of RPA12 suggesting that RPA12 affects the basal expression, but not the drug-inducible turnover of RPA194. These studies add to knowledge defining regulatory factors for the expression of this Pol I catalytic subunit.
Collapse
Affiliation(s)
- Brittany L. Ford
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Department of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ting Wei
- Department of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Hester Liu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Catherine E. Scull
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Saman M. Najmi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Stephanie Pitts
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Wenjun Fan
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Marikki Laiho
- Department of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
7
|
Xie J, Libri D, Porrua O. Mechanisms of eukaryotic transcription termination at a glance. J Cell Sci 2023; 136:286227. [PMID: 36594557 DOI: 10.1242/jcs.259873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transcription termination is the final step of a transcription cycle, which induces the release of the transcript at the termination site and allows the recycling of the polymerase for the next round of transcription. Timely transcription termination is critical for avoiding interferences between neighbouring transcription units as well as conflicts between transcribing RNA polymerases (RNAPs) and other DNA-associated processes, such as replication or DNA repair. Understanding the mechanisms by which the very stable transcription elongation complex is dismantled is essential for appreciating how physiological gene expression is maintained and also how concurrent processes that occur synchronously on the DNA are coordinated. Although the strategies employed by the different classes of eukaryotic RNAPs are traditionally considered to be different, novel findings point to interesting commonalities. In this Cell Science at a Glance and the accompanying poster, we review the current understanding about the mechanisms of transcription termination by the three eukaryotic RNAPs.
Collapse
Affiliation(s)
- Juanjuan Xie
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Domenico Libri
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Odil Porrua
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| |
Collapse
|
8
|
How to Shut Down Transcription in Archaea during Virus Infection. Microorganisms 2022; 10:microorganisms10091824. [PMID: 36144426 PMCID: PMC9501531 DOI: 10.3390/microorganisms10091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Multisubunit RNA polymerases (RNAPs) carry out transcription in all domains of life; during virus infection, RNAPs are targeted by transcription factors encoded by either the cell or the virus, resulting in the global repression of transcription with distinct outcomes for different host–virus combinations. These repressors serve as versatile molecular probes to study RNAP mechanisms, as well as aid the exploration of druggable sites for the development of new antibiotics. Here, we review the mechanisms and structural basis of RNAP inhibition by the viral repressor RIP and the crenarchaeal negative regulator TFS4, which follow distinct strategies. RIP operates by occluding the DNA-binding channel and mimicking the initiation factor TFB/TFIIB. RIP binds tightly to the clamp and locks it into one fixed position, thereby preventing conformational oscillations that are critical for RNAP function as it progresses through the transcription cycle. TFS4 engages with RNAP in a similar manner to transcript cleavage factors such as TFS/TFIIS through the NTP-entry channel; TFS4 interferes with the trigger loop and bridge helix within the active site by occlusion and allosteric mechanisms, respectively. The conformational changes in RNAP described above are universally conserved and are also seen in inactive dimers of eukaryotic RNAPI and several inhibited RNAP complexes of both bacterial and eukaryotic RNA polymerases, including inactive states that precede transcription termination. A comparison of target sites and inhibitory mechanisms reveals that proteinaceous repressors and RNAP-specific antibiotics use surprisingly common ways to inhibit RNAP function.
Collapse
|
9
|
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat Rev Mol Cell Biol 2022; 23:603-622. [PMID: 35505252 DOI: 10.1038/s41580-022-00476-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.
Collapse
|
10
|
RNA polymerase I (Pol I) lobe-binding subunit Rpa12.2 promotes RNA cleavage and proofreading. J Biol Chem 2022; 298:101862. [PMID: 35341765 PMCID: PMC9108883 DOI: 10.1016/j.jbc.2022.101862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
Elongating nuclear RNA polymerases (Pols) frequently pause, backtrack, and are then reactivated by endonucleolytic cleavage. Pol backtracking and RNA cleavage are also crucial for proofreading, which contributes to transcription fidelity. RNA polymerase I (Pol I) of the yeast Saccharomyces cerevisiae synthesizes exclusively 35S rRNA, the precursor transcript of mature ribosomal 5.8S, 18S, and 25S rRNA. Pol I contains the specific heterodimeric subunits Rpa34.5/49 and subunit Rpa12.2, which have been implicated in RNA cleavage and elongation activity, respectively. These subunits are associated with the Pol I lobe structure and encompass different structural domains, but the contribution of these domains to RNA elongation is unclear. Here, we used Pol I mutants or reconstituted Pol I enzymes to study the effects of these subunits and/or their distinct domains on RNA cleavage, backtracking, and transcription fidelity in defined in vitro systems. Our findings suggest that the presence of the intact C-terminal domain of Rpa12.2 is sufficient to support the cleavage reaction, but that the N-terminal domains of Rpa12.2 and the heterodimer facilitate backtracking and RNA cleavage. Since both N-terminal and C-terminal domains of Rpa12.2 were also required to faithfully incorporate NTPs in the growing RNA chain, efficient backtracking and RNA cleavage might be a prerequisite for transcription fidelity. We propose that RNA Pols containing efficient RNA cleavage activity are able to add and remove nucleotides until the matching nucleotide supports RNA chain elongation, whereas cleavage-deficient enzymes can escape this proofreading process by incorporating incorrect nucleotides.
Collapse
|
11
|
Merkl PE, Schächner C, Pilsl M, Schwank K, Schmid C, Längst G, Milkereit P, Griesenbeck J, Tschochner H. Specialization of RNA Polymerase I in Comparison to Other Nuclear RNA Polymerases of Saccharomyces cerevisiae. Methods Mol Biol 2022; 2533:63-70. [PMID: 35796982 PMCID: PMC9761553 DOI: 10.1007/978-1-0716-2501-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In archaea and bacteria the major classes of RNAs are synthesized by one DNA-dependent RNA polymerase (RNAP). In contrast, most eukaryotes have three highly specialized RNAPs to transcribe the nuclear genome. RNAP I synthesizes almost exclusively ribosomal (r)RNA, RNAP II synthesizes mRNA as well as many noncoding RNAs involved in RNA processing or RNA silencing pathways and RNAP III synthesizes mainly tRNA and 5S rRNA. This review discusses functional differences of the three nuclear core RNAPs in the yeast S. cerevisiae with a particular focus on RNAP I transcription of nucleolar ribosomal (r)DNA chromatin.
Collapse
Affiliation(s)
- Philipp E Merkl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
- TUM ForTe, Technische Universität München, Munich, Germany
| | - Christopher Schächner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Michael Pilsl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Katrin Schwank
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Catharina Schmid
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Gernot Längst
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Philipp Milkereit
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| | - Joachim Griesenbeck
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Herbert Tschochner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| |
Collapse
|
12
|
Defining the Influence of the A12.2 Subunit on Transcription Elongation and Termination by RNA Polymerase I In Vivo. Genes (Basel) 2021; 12:genes12121939. [PMID: 34946888 PMCID: PMC8701712 DOI: 10.3390/genes12121939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Saccharomyces cerevisiae has approximately 200 copies of the 35S rDNA gene, arranged tandemly on chromosome XII. This gene is transcribed by RNA polymerase I (Pol I) and the 35S rRNA transcript is processed to produce three of the four rRNAs required for ribosome biogenesis. An intergenic spacer (IGS) separates each copy of the 35S gene and contains the 5S rDNA gene, the origin of DNA replication, and the promoter for the adjacent 35S gene. Pol I is a 14-subunit enzyme responsible for the majority of rRNA synthesis, thereby sustaining normal cellular function and growth. The A12.2 subunit of Pol I plays a crucial role in cleavage, termination, and nucleotide addition during transcription. Deletion of this subunit causes alteration of nucleotide addition kinetics and read-through of transcription termination sites. To interrogate both of these phenomena, we performed native elongating transcript sequencing (NET-seq) with an rpa12Δ strain of S. cerevisiae and evaluated the resultant change in Pol I occupancy across the 35S gene and the IGS. Compared to wild-type (WT), we observed template sequence-specific changes in Pol I occupancy throughout the 35S gene. We also observed rpa12Δ Pol I occupancy downstream of both termination sites and throughout most of the IGS, including the 5S gene. Relative occupancy of rpa12Δ Pol I increased upstream of the promoter-proximal Reb1 binding site and dropped significantly downstream, implicating this site as a third terminator for Pol I transcription. Collectively, these high-resolution results indicate that the A12.2 subunit of Pol I plays an important role in transcription elongation and termination.
Collapse
|
13
|
Scull CE, Lucius AL, Schneider DA. The N-terminal domain of the A12.2 subunit stimulates RNA polymerase I transcription elongation. Biophys J 2021; 120:1883-1893. [PMID: 33737158 DOI: 10.1016/j.bpj.2021.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/26/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022] Open
Abstract
Eukaryotes express three DNA-dependent RNA polymerases (Pols) that are responsible for the entirety of cellular genomic expression. The three Pols have evolved to express specific cohorts of RNAs and thus have diverged both structurally and functionally to efficiently execute their specific transcriptional roles. One example of this divergence is Pol I's inclusion of a proofreading factor as a bona fide subunit, as opposed to Pol II, which recruits a transcription factor, TFIIS, for proofreading. The A12.2 (A12) subunit of Pol I shares homology with both the Rpb9 subunit of Pol II as well as the transcription factor TFIIS, which promotes RNA cleavage and proofreading by Pol II. In this study, the functional contribution of the TFIIS-like C-terminal domain and the Rpb9-like N-terminal domain of the A12 subunit are probed through mutational analysis. We found that a Pol I mutant lacking the C-terminal domain of the A12 subunit (ΔA12CTD Pol I) is slightly faster than wild-type Pol I in single-nucleotide addition, but ΔA12CTD Pol I lacks RNA cleavage activity. ΔA12CTD Pol I is likewise similar to wild-type Pol I in elongation complex stability, whereas removal of the entire A12 subunit (ΔA12 Pol I) was previously demonstrated to stabilize transcription elongation complexes. Furthermore, the ΔA12CTD Pol I is sensitive to downstream sequence context, as ΔA12CTD Pol I exposed to AT-rich downstream DNA is more arrest prone than ΔA12 Pol I. These data demonstrate that the N-terminal domain of A12 does not stimulate Pol I intrinsic RNA cleavage activity, but rather contributes to core transcription elongation properties of Pol I.
Collapse
Affiliation(s)
- Catherine E Scull
- The Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aaron L Lucius
- the Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - David A Schneider
- The Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
14
|
Jacobs RQ, Ingram ZM, Lucius AL, Schneider DA. Defining the divergent enzymatic properties of RNA polymerases I and II. J Biol Chem 2021; 296:100051. [PMID: 33168625 PMCID: PMC7948988 DOI: 10.1074/jbc.ra120.015904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 01/22/2023] Open
Abstract
Eukaryotes express at least three nuclear DNA-dependent RNA polymerases (Pols) responsible for synthesizing all RNA required by the cell. Despite sharing structural homology, they have functionally diverged to suit their distinct cellular roles. Although the Pols have been studied extensively, direct comparison of their enzymatic properties is difficult because studies are often conducted under disparate experimental conditions and techniques. Here, we directly compare and reveal functional differences between Saccharomyces cerevisiae Pols I and II using a series of quantitative in vitro transcription assays. We find that Pol I single-nucleotide and multinucleotide addition rate constants are faster than those of Pol II. Pol I elongation complexes are less stable than Pol II elongation complexes, and Pol I is more error prone than Pol II. Collectively, these data show that the enzymatic properties of the Pols have diverged over the course of evolution, optimizing these enzymes for their unique cellular responsibilities.
Collapse
Affiliation(s)
- Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zachariah M Ingram
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
15
|
Turowski TW, Petfalski E, Goddard BD, French SL, Helwak A, Tollervey D. Nascent Transcript Folding Plays a Major Role in Determining RNA Polymerase Elongation Rates. Mol Cell 2020; 79:488-503.e11. [PMID: 32585128 PMCID: PMC7427326 DOI: 10.1016/j.molcel.2020.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/01/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Transcription elongation rates influence RNA processing, but sequence-specific regulation is poorly understood. We addressed this in vivo, analyzing RNAPI in S. cerevisiae. Mapping RNAPI by Miller chromatin spreads or UV crosslinking revealed 5' enrichment and strikingly uneven local polymerase occupancy along the rDNA, indicating substantial variation in transcription speed. Two features of the nascent transcript correlated with RNAPI distribution: folding energy and GC content in the transcription bubble. In vitro experiments confirmed that strong RNA structures close to the polymerase promote forward translocation and limit backtracking, whereas high GC in the transcription bubble slows elongation. A mathematical model for RNAPI elongation confirmed the importance of nascent RNA folding in transcription. RNAPI from S. pombe was similarly sensitive to transcript folding, as were S. cerevisiae RNAPII and RNAPIII. For RNAPII, unstructured RNA, which favors slowed elongation, was associated with faster cotranscriptional splicing and proximal splice site use, indicating regulatory significance for transcript folding.
Collapse
Affiliation(s)
- Tomasz W Turowski
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK.
| | - Elisabeth Petfalski
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | - Benjamin D Goddard
- School of Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, Edinburgh, UK
| | - Sarah L French
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Aleksandra Helwak
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
16
|
Merkl PE, Pilsl M, Fremter T, Schwank K, Engel C, Längst G, Milkereit P, Griesenbeck J, Tschochner H. RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure. J Biol Chem 2020; 295:4782-4795. [PMID: 32060094 DOI: 10.1074/jbc.ra119.011827] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/11/2020] [Indexed: 02/02/2023] Open
Abstract
RNA polymerase I (Pol I) is a highly efficient enzyme specialized in synthesizing most ribosomal RNAs. After nucleosome deposition at each round of rDNA replication, the Pol I transcription machinery has to deal with nucleosomal barriers. It has been suggested that Pol I-associated factors facilitate chromatin transcription, but it is unknown whether Pol I has an intrinsic capacity to transcribe through nucleosomes. Here, we used in vitro transcription assays to study purified WT and mutant Pol I variants from the yeast Saccharomyces cerevisiae and compare their abilities to pass a nucleosomal barrier with those of yeast Pol II and Pol III. Under identical conditions, purified Pol I and Pol III, but not Pol II, could transcribe nucleosomal templates. Pol I mutants lacking either the heterodimeric subunit Rpa34.5/Rpa49 or the C-terminal part of the specific subunit Rpa12.2 showed a lower processivity on naked DNA templates, which was even more reduced in the presence of a nucleosome. Our findings suggest that the lobe-binding subunits Rpa34.5/Rpa49 and Rpa12.2 facilitate passage through nucleosomes, suggesting possible cooperation among these subunits. We discuss the contribution of Pol I-specific subunit domains to efficient Pol I passage through nucleosomes in the context of transcription rate and processivity.
Collapse
Affiliation(s)
- Philipp E Merkl
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Michael Pilsl
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Tobias Fremter
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Katrin Schwank
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Christoph Engel
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Gernot Längst
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Philipp Milkereit
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Herbert Tschochner
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| |
Collapse
|
17
|
Scull CE, Clarke AM, Lucius AL, Schneider DA. Downstream sequence-dependent RNA cleavage and pausing by RNA polymerase I. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Scull CE, Clarke AM, Lucius AL, Schneider DA. Downstream sequence-dependent RNA cleavage and pausing by RNA polymerase I. J Biol Chem 2019; 295:1288-1299. [PMID: 31843971 DOI: 10.1074/jbc.ra119.011354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/03/2019] [Indexed: 01/12/2023] Open
Abstract
The sequence of the DNA template has long been thought to influence the rate of transcription by DNA-dependent RNA polymerases, but the influence of DNA sequence on transcription elongation properties of eukaryotic RNA polymerase I (Pol I) from Saccharomyces cerevisiae has not been defined. In this study, we observe changes in dinucleotide production, transcription elongation complex stability, and Pol I pausing in vitro in response to downstream DNA. In vitro studies demonstrate that AT-rich downstream DNA enhances pausing by Pol I and inhibits Pol I nucleolytic cleavage activity. Analysis of Pol I native elongating transcript sequencing data in Saccharomyces cerevisiae suggests that these downstream sequence elements influence Pol I in vivo Native elongating transcript sequencing studies reveal that Pol I occupancy increases as downstream AT content increases and decreases as downstream GC content increases. Collectively, these data demonstrate that the downstream DNA sequence directly impacts the kinetics of transcription elongation prior to the sequence entering the active site of Pol I both in vivo and in vitro.
Collapse
Affiliation(s)
- Catherine E Scull
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Andrew M Clarke
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - David Alan Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
19
|
Scull CE, Schneider DA. Coordinated Control of rRNA Processing by RNA Polymerase I. Trends Genet 2019; 35:724-733. [PMID: 31358304 DOI: 10.1016/j.tig.2019.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 11/19/2022]
Abstract
Ribosomal RNA (rRNA) is co- and post-transcriptionally processed into active ribosomes. This process is dynamically regulated by direct covalent modifications of the polymerase that synthesizes the rRNA, RNA polymerase I (Pol I), and by interactions with cofactors that influence initiation, elongation, and termination activities of Pol I. The rate of transcription elongation by Pol I directly influences processing of nascent rRNA, and changes in Pol I transcription rate result in alternative rRNA processing events that lead to cellular signaling alterations and stress. It is clear that in divergent species, there exists robust organization of nascent rRNA processing events during transcription elongation. This review evaluates the current state of our understanding of the complex relationship between transcription elongation and rRNA processing.
Collapse
Affiliation(s)
- Catherine E Scull
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
20
|
The A12.2 Subunit Is an Intrinsic Destabilizer of the RNA Polymerase I Elongation Complex. Biophys J 2019; 114:2507-2515. [PMID: 29874602 DOI: 10.1016/j.bpj.2018.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 01/25/2023] Open
Abstract
Despite sharing a highly conserved core architecture with their prokaryotic counterparts, eukaryotic multisubunit RNA polymerases (Pols) have undergone structural divergence and biological specialization. Interesting examples of structural divergence are the A12.2 and C11 subunits of Pols I and III, respectively. Whereas all known cellular Pols possess cognate protein factors that stimulate cleavage of the nascent RNA, Pols I and III have incorporated their cleavage factors as bona fide subunits. Although it is not yet clear why these polymerases have incorporated their cleavage factors as subunits, a picture is emerging that identifies roles for these subunits beyond providing nucleolytic activity. Specifically, it appears that both A12.2 and C11 are required for efficient termination of transcription by Pols I and III. Given that termination involves destabilization of the elongation complex (EC), we tested whether A12.2 influences stability of the Pol I EC. Using, to our knowledge, a novel assay to measure EC dissociation kinetics, we have determined that A12.2 is an intrinsic destabilizer of the Pol I EC. In addition, the salt concentration dependence of Pol I EC dissociation kinetics suggests that A12.2 alters electrostatic interactions within the EC. Importantly, these data present a mechanistic basis for the requirement of A12.2 in Pol I termination. Combined with recent work demonstrating the direct involvement of A12.2 in Pol I nucleotide incorporation, this study further supports the concept that A12.2 cannot be viewed solely as a cleavage factor.
Collapse
|
21
|
Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I. PLoS Genet 2019; 15:e1008157. [PMID: 31136569 PMCID: PMC6555540 DOI: 10.1371/journal.pgen.1008157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 06/07/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Most transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous to PAF53/CAST heterodimer in human Pol I), which might be responsible for the specific functions of the Pol I. Previous studies provided insight in the involvement of Rpa49 in initiation, elongation, docking and releasing of Rrn3, an essential Pol I transcription factor. Here, we took advantage of the spontaneous occurrence of extragenic suppressors of the growth defect of the rpa49 null mutant to better understand the activity of Pol I. Combining genetic approaches, biochemical analysis of rRNA synthesis and investigation of the transcription rate at the individual gene scale, we characterized mutated residues of the Pol I as novel extragenic suppressors of the growth defect caused by the absence of Rpa49. When mapped on the Pol I structure, most of these mutations cluster within the jaw-lobe module, at an interface formed by the lobe in Rpa135 and the jaw made up of regions of Rpa190 and Rpa12. In vivo, the suppressor allele RPA135-F301S restores normal rRNA synthesis and increases Pol I density on rDNA genes when Rpa49 is absent. Growth of the Rpa135-F301S mutant is impaired when combined with exosome mutation rrp6Δ and it massively accumulates pre-rRNA. Moreover, Pol I bearing Rpa135-F301S is a hyper-active RNA polymerase in an in vitro tailed-template assay. We conclude that RNA polymerase I can be engineered to produce more rRNA in vivo and in vitro. We propose that the mutated area undergoes a conformational change that supports the DNA insertion into the cleft of the enzyme resulting in a super-active form of Pol I. The nuclear genome of eukaryotic cells is transcribed by three RNA polymerases. RNA polymerase I (Pol I) is a multimeric enzyme specialized in the synthesis of ribosomal RNA. Deregulation of the Pol I function is linked to the etiology of a broad range of human diseases. Understanding the Pol I activity and regulation represents therefore a major challenge. We chose the budding yeast Saccharomyces cerevisiae as a model, because Pol I transcription apparatus is genetically amenable in this organism. Analyses of phenotypic consequences of deletion/truncation of Pol I subunits-coding genes in yeast indeed provided insights into the activity and regulation of the enzyme. Here, we characterized mutations in Pol I that can alleviate the growth defect caused by the absence of Rpa49, one of the subunits composing this multi-protein enzyme. We mapped these mutations on the Pol I structure and found that they all cluster in a well-described structural element, the jaw-lobe module. Combining genetic and biochemical approaches, we showed that Pol I bearing one of these mutations in the Rpa135 subunit is able to produce more ribosomal RNA in vivo and in vitro. We propose that this super-activity is explained by structural rearrangement of the Pol I jaw/lobe interface.
Collapse
|
22
|
Abou Elela S, Ji X. Structure and function of Rnt1p: An alternative to RNAi for targeted RNA degradation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1521. [PMID: 30548404 DOI: 10.1002/wrna.1521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022]
Abstract
The double-stranded RNA-binding protein (dsRBP) family controls RNA editing, stability, and function in all eukaryotes. The central feature of this family is the recognition of a generic RNA duplex using highly conserved double-stranded RNA-binding domain (dsRBD) that recognizes the characteristic distance between the minor grooves created by the RNA helix. Variations on this theme that confer species and functional specificities have been reported but most dsRBPs retain their capacity to bind generic dsRNA. The ribonuclease III (RNase III) family members fall into four classes, represented by bacterial RNase III, yeast Rnt1p, human Drosha, and human Dicer, respectively. Like all dsRBPs and most members of the RNase III family, Rnt1p has a dsRBD, but unlike most of its kin, it poorly binds to generic RNA helices. Instead, Rnt1p, the only known RNase III expressed in Saccharomyces cerevisiae that lacks the RNAi (RNA interference) machinery, recognizes a specific class of stem-loop structures. To recognize the specific substrates, the dsRBD of Rnt1p is specialized, featuring a αβββααα topology and a sequence-specific RNA-binding motif at the C-terminus. Since the discovery of Rnt1p in 1996, significant progress has been made in studies of its genetics, function, structure, and mechanism of action, explaining the reasons and mechanisms for the increased specificity of this enzyme and its impact on the mechanism of RNA degradation. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sherif Abou Elela
- Microbiology and Infectiology Department, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Xinhua Ji
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
23
|
Analysis of rRNA synthesis using quantitative transcription run-on (qTRO) in yeast. Biotechniques 2018; 65:163-168. [PMID: 30227741 DOI: 10.2144/btn-2018-0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Comparative transcriptional analyses require appropriate and precise normalization. Here we describe a modified transcription run-on (TRO) method, named quantitative TRO (qTRO), that allows quantification of nascent transcription activity. The most critical improvement it introduces is a new standardization method for RNA isolation and hybridization steps, enabling transcription activity quantification and comparative biological analysis. We used this technique with chromatin immunoprecipitation to investigate RNA polymerase I (RNAPI) transcription activity and its rDNA gene profiles in Saccharomyces cerevisiae. We designed a set of new oligonucleotide probes complementary to nascent ribosomal RNA (rRNA) transcripts and standardized their hybridization strength. The qTRO method could be successfully implemented to study RNAPI transcription in response to oxidative stress and in two mutant strains with impaired rRNA synthesis.
Collapse
|
24
|
Peyresaubes F, Zeledon C, Guintini L, Charton R, Muguet A, Conconi A. RNA Polymerase-I-Dependent Transcription-coupled Nucleotide Excision Repair of UV-Induced DNA Lesions at Transcription Termination Sites, in Saccharomyces cerevisiae. Photochem Photobiol 2017; 93:363-374. [PMID: 27935059 DOI: 10.1111/php.12690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/16/2016] [Indexed: 11/28/2022]
Abstract
If not repaired, ultraviolet light-induced DNA damage can lead to genome instability. Nucleotide excision repair (NER) of UV photoproducts is generally fast in the coding region of genes, where RNA polymerase-II (RNAP2) arrest at damage sites and trigger transcription-coupled NER (TC-NER). In Saccharomyces cerevisiae, there is RNA polymerase-I (RNAP1)-dependent TC-NER, but this process remains elusive. Therefore, we wished to characterize TC-NER efficiency in different regions of the rDNA locus: where RNAP1 are present at high density and start transcription elongation, where the elongation rate is slow, and in the transcription terminator where RNAP1 pause, accumulate and then are released. The Rpa12 subunit of RNAP1 and the Nsi1 protein participate in transcription termination, and NER efficiency was compared between wild type and cells lacking Rpa12 or Nsi1. The presence of RNAP1 was determined by chromatin endogenous cleavage and chromatin immunoprecipitation, and repair was followed at nucleotide precision with an assay that is based on the blockage of Taq polymerase by UV photoproducts. We describe that TC-NER, which is modulated by the RNAP1 level and elongation rate, ends at the 35S rRNA gene transcription termination site.
Collapse
Affiliation(s)
- François Peyresaubes
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Carlos Zeledon
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Laetitia Guintini
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Romain Charton
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexia Muguet
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Antonio Conconi
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
25
|
Zhang Y, Najmi SM, Schneider DA. Transcription factors that influence RNA polymerases I and II: To what extent is mechanism of action conserved? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:246-255. [PMID: 27989933 DOI: 10.1016/j.bbagrm.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/07/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023]
Abstract
In eukaryotic cells, nuclear RNA synthesis is accomplished by at least three unique, multisubunit RNA polymerases. The roles of these enzymes are generally partitioned into the synthesis of the three major classes of RNA: rRNA, mRNA, and tRNA for RNA polymerases I, II, and III respectively. Consistent with their unique cellular roles, each enzyme has a complement of specialized transcription factors and enzymatic properties. However, not all transcription factors have evolved to affect only one eukaryotic RNA polymerase. In fact, many factors have been shown to influence the activities of multiple nuclear RNA polymerases. This review focuses on a subset of these factors, specifically addressing the mechanisms by which these proteins influence RNA polymerases I and II.
Collapse
Affiliation(s)
- Yinfeng Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Saman M Najmi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
26
|
Roche B, Arcangioli B, Martienssen RA. RNA interference is essential for cellular quiescence. Science 2016; 354:science.aah5651. [PMID: 27738016 DOI: 10.1126/science.aah5651] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022]
Abstract
Quiescent cells play a predominant role in most organisms. Here we identify RNA interference (RNAi) as a major requirement for quiescence (G0 phase of the cell cycle) in Schizosaccharomyces pombe RNAi mutants lose viability at G0 entry and are unable to maintain long-term quiescence. We identified suppressors of G0 defects in cells lacking Dicer (dcr1Δ), which mapped to genes involved in chromosome segregation, RNA polymerase-associated factors, and heterochromatin formation. We propose a model in which RNAi promotes the release of RNA polymerase in cycling and quiescent cells: (i) RNA polymerase II release mediates heterochromatin formation at centromeres, allowing proper chromosome segregation during mitotic growth and G0 entry, and (ii) RNA polymerase I release prevents heterochromatin formation at ribosomal DNA during quiescence maintenance. Our model may account for the codependency of RNAi and histone H3 lysine 9 methylation throughout eukaryotic evolution.
Collapse
Affiliation(s)
- B Roche
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - B Arcangioli
- Dynamics of the Genome Unit, Department of Genomes and Genetics, Institut Pasteur, UMR3525, 25-28 rue du Docteur Roux, Paris 75015, France
| | - R A Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
27
|
Yadav KK, Singh N, Rajvanshi PK, Rajasekharan R. The RNA polymerase I subunit Rpa12p interacts with the stress-responsive transcription factor Msn4p to regulate lipid metabolism in budding yeast. FEBS Lett 2016; 590:3559-3573. [DOI: 10.1002/1873-3468.12422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Kamlesh Kumar Yadav
- Lipidomics Centre; Department of Lipid Science; Council of Scientific and Industrial Research (CSIR) - Central Food Technological Research Institute (CFTRI); Mysore Karnataka India
- Academy of Scientific and Innovative Research; CSIR-CFTRI; Mysore Karnataka India
| | - Neelima Singh
- Lipidomics Centre; Department of Lipid Science; Council of Scientific and Industrial Research (CSIR) - Central Food Technological Research Institute (CFTRI); Mysore Karnataka India
- Academy of Scientific and Innovative Research; CSIR-CFTRI; Mysore Karnataka India
| | - Praveen Kumar Rajvanshi
- Lipidomics Centre; Department of Lipid Science; Council of Scientific and Industrial Research (CSIR) - Central Food Technological Research Institute (CFTRI); Mysore Karnataka India
- Academy of Scientific and Innovative Research; CSIR-CFTRI; Mysore Karnataka India
| | - Ram Rajasekharan
- Lipidomics Centre; Department of Lipid Science; Council of Scientific and Industrial Research (CSIR) - Central Food Technological Research Institute (CFTRI); Mysore Karnataka India
- Academy of Scientific and Innovative Research; CSIR-CFTRI; Mysore Karnataka India
| |
Collapse
|
28
|
Porrua O, Boudvillain M, Libri D. Transcription Termination: Variations on Common Themes. Trends Genet 2016; 32:508-522. [DOI: 10.1016/j.tig.2016.05.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/28/2016] [Accepted: 05/31/2016] [Indexed: 11/29/2022]
|
29
|
Functional architecture of the Reb1-Ter complex of Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 2016; 113:E2267-76. [PMID: 27035982 DOI: 10.1073/pnas.1525465113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reb1 ofSchizosaccharomyces pomberepresents a family of multifunctional proteins that bind to specific terminator sites (Ter) and cause polar termination of transcription catalyzed by RNA polymerase I (pol I) and arrest of replication forks approaching the Ter sites from the opposite direction. However, it remains to be investigated whether the same mechanism causes arrest of both DNA transactions. Here, we present the structure of Reb1 as a complex with a Ter site at a resolution of 2.7 Å. Structure-guided molecular genetic analyses revealed that it has distinct and well-defined DNA binding and transcription termination (TTD) domains. The region of the protein involved in replication termination is distinct from the TTD. Mechanistically, the data support the conclusion that transcription termination is not caused by just high affinity Reb1-Ter protein-DNA interactions. Rather, protein-protein interactions between the TTD with the Rpa12 subunit of RNA pol I seem to be an integral part of the mechanism. This conclusion is further supported by the observation that double mutations in TTD that abolished its interaction with Rpa12 also greatly reduced transcription termination thereby revealing a conduit for functional communications between RNA pol I and the terminator protein.
Collapse
|
30
|
Viktorovskaya OV, Schneider DA. Functional divergence of eukaryotic RNA polymerases: unique properties of RNA polymerase I suit its cellular role. Gene 2014; 556:19-26. [PMID: 25445273 DOI: 10.1016/j.gene.2014.10.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 02/08/2023]
Abstract
Eukaryotic cells express at least three unique nuclear RNA polymerases. The selective advantage provided by this enhanced complexity is a topic of fundamental interest in cell biology. It has long been known that the gene targets and transcription initiation pathways for RNA polymerases (Pols) I, II and III are distinct; however, recent genetic, biochemical and structural data suggest that even the core enzymes have evolved unique properties. Among the three eukaryotic RNA polymerases, Pol I is considered the most divergent. Transcription of the ribosomal DNA by Pol I is unmatched in its high rate of initiation, complex organization within the nucleolus and functional connection to ribosome assembly. Furthermore, ribosome synthesis is intimately linked to cell growth and proliferation. Thus, there is intense selective pressure on Pol I. This review describes key features of Pol I transcription, discusses catalytic activities of the enzyme and focuses on recent advances in understanding its unique role among eukaryotic RNA polymerases.
Collapse
Affiliation(s)
- Olga V Viktorovskaya
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, United States
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, United States.
| |
Collapse
|
31
|
Binding of the termination factor Nsi1 to its cognate DNA site is sufficient to terminate RNA polymerase I transcription in vitro and to induce termination in vivo. Mol Cell Biol 2014; 34:3817-27. [PMID: 25092870 DOI: 10.1128/mcb.00395-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Different models have been proposed explaining how eukaryotic gene transcription is terminated. Recently, Nsi1, a factor involved in silencing of ribosomal DNA (rDNA), was shown to be required for efficient termination of rDNA transcription by RNA polymerase I (Pol I) in the yeast Saccharomyces cerevisiae. Nsi1 contains Myb-like DNA binding domains and associates in vivo near the 3' end of rRNA genes to rDNA, but information about which and how DNA sequences might influence Nsi1-dependent termination is lacking. Here, we show that binding of Nsi1 to a stretch of 11 nucleotides in the correct orientation was sufficient to pause elongating Pol I shortly upstream of the Nsi1 binding site and to release the transcripts in vitro. The same minimal DNA element triggered Nsi1-dependent termination of pre-rRNA synthesis using an in vivo reporter assay. Termination efficiency in the in vivo system could be enhanced by inclusion of specific DNA sequences downstream of the Nsi1 binding site. These data and the finding that Nsi1 blocks efficiently only Pol I-dependent RNA synthesis in an in vitro transcription system improve our understanding of a unique mechanism of transcription termination.
Collapse
|
32
|
Fernández-Tornero C, Moreno-Morcillo M, Rashid UJ, Taylor NMI, Ruiz FM, Gruene T, Legrand P, Steuerwald U, Müller CW. Crystal structure of the 14-subunit RNA polymerase I. Nature 2013; 502:644-9. [PMID: 24153184 DOI: 10.1038/nature12636] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/04/2013] [Indexed: 01/21/2023]
Abstract
Protein biosynthesis depends on the availability of ribosomes, which in turn relies on ribosomal RNA production. In eukaryotes, this process is carried out by RNA polymerase I (Pol I), a 14-subunit enzyme, the activity of which is a major determinant of cell growth. Here we present the crystal structure of Pol I from Saccharomyces cerevisiae at 3.0 Å resolution. The Pol I structure shows a compact core with a wide DNA-binding cleft and a tightly anchored stalk. An extended loop mimics the DNA backbone in the cleft and may be involved in regulating Pol I transcription. Subunit A12.2 extends from the A190 jaw to the active site and inserts a transcription elongation factor TFIIS-like zinc ribbon into the nucleotide triphosphate entry pore, providing insight into the role of A12.2 in RNA cleavage and Pol I insensitivity to α-amanitin. The A49-A34.5 heterodimer embraces subunit A135 through extended arms, thereby contacting and potentially regulating subunit A12.2.
Collapse
Affiliation(s)
- Carlos Fernández-Tornero
- 1] Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain [2]
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
RNA polymerase I structure and transcription regulation. Nature 2013; 502:650-5. [DOI: 10.1038/nature12712] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/24/2013] [Indexed: 01/25/2023]
|
34
|
Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast. Exp Gerontol 2013; 48:1455-68. [PMID: 24126084 DOI: 10.1016/j.exger.2013.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 09/28/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022]
Abstract
Caloric restriction (CR) is the best-studied intervention known to delay aging and extend lifespan in evolutionarily distant organisms ranging from yeast to mammals in the laboratory. Although the effect of CR on lifespan extension has been investigated for nearly 80years, the molecular mechanisms of CR are still elusive. Consequently, it is important to understand the fundamental mechanisms of when and how lifespan is affected by CR. In this study, we first identified the time-windows during which CR assured cellular longevity by switching cells from culture media containing 2% or 0.5% glucose to water, which allows us to observe CR and non-calorically-restricted cells under the same conditions. We also constructed time-dependent gene expression profiles and selected 646 genes that showed significant changes and correlations with the lifespan-extending effect of CR. The positively correlated genes participated in transcriptional regulation, ribosomal RNA processing and nuclear genome stability, while the negatively correlated genes were involved in the regulation of several metabolic pathways, endoplasmic reticulum function, stress response and cell cycle progression. Furthermore, we discovered major upstream regulators of those significantly changed genes, including AZF1 (YOR113W), HSF1 (YGL073W) and XBP1 (YIL101C). Deletions of two genes, AZF1 and XBP1 (HSF1 is essential and was thus not tested), were confirmed to lessen the lifespan extension mediated by CR. The absence of these genes in the tor1Δ and ras2Δ backgrounds did show non-overlapping effects with regard to CLS, suggesting differences between the CR mechanism for Tor and Ras signaling.
Collapse
|
35
|
Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:491-513. [PMID: 23545199 DOI: 10.1016/j.bbagrm.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022]
Abstract
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly destroy unnecessary cellular RNAs. In recent years our knowledge of the nature, functions and structures of these enzymes in bacteria, archaea and eukaryotes has dramatically expanded. We present here a synthetic overview of the recent development in this dynamic area which has seen the identification of many new endoribonucleases and exoribonucleases. Moreover, the increasing pace at which the structures of these enzymes, or of their catalytic domains, have been solved has provided atomic level detail into their mechanisms of action. Based on sequence conservation and structural data, these proteins have been grouped into families, some of which contain only ribonuclease members, others including a variety of nucleolytic enzymes that act upon DNA and/or RNA. At the other extreme some ribonucleases belong to families of proteins involved in a wide variety of enzymatic reactions. Functional characterization of these fascinating enzymes has provided evidence for the extreme diversity of their biological functions that include, for example, removal of poly(A) tails (deadenylation) or poly(U) tails from eukaryotic RNAs, processing of tRNA and mRNA 3' ends, maturation of rRNAs and destruction of unnecessary mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
36
|
Hamperl S, Wittner M, Babl V, Perez-Fernandez J, Tschochner H, Griesenbeck J. Chromatin states at ribosomal DNA loci. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:405-17. [PMID: 23291532 DOI: 10.1016/j.bbagrm.2012.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/16/2012] [Accepted: 12/21/2012] [Indexed: 12/29/2022]
Abstract
Eukaryotic transcription of ribosomal RNAs (rRNAs) by RNA polymerase I can account for more than half of the total cellular transcripts depending on organism and growth condition. To support this level of expression, eukaryotic rRNA genes are present in multiple copies. Interestingly, these genes co-exist in different chromatin states that may differ significantly in their nucleosome content and generally correlate well with transcriptional activity. Here we review how these chromatin states have been discovered and characterized focusing particularly on their structural protein components. The establishment and maintenance of rRNA gene chromatin states and their impact on rRNA synthesis are discussed. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Stephan Hamperl
- Lehrstuhl Biochemie III, Universität Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Goodfellow SJ, Zomerdijk JCBM. Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes. Subcell Biochem 2013; 61:211-36. [PMID: 23150253 PMCID: PMC3855190 DOI: 10.1007/978-94-007-4525-4_10] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RNA Polymerase (Pol) I produces ribosomal (r)RNA, an essential component of the cellular protein synthetic machinery that drives cell growth, underlying many fundamental cellular processes. Extensive research into the mechanisms governing transcription by Pol I has revealed an intricate set of control mechanisms impinging upon rRNA production. Pol I-specific transcription factors guide Pol I to the rDNA promoter and contribute to multiple rounds of transcription initiation, promoter escape, elongation and termination. In addition, many accessory factors are now known to assist at each stage of this transcription cycle, some of which allow the integration of transcriptional activity with metabolic demands. The organisation and accessibility of rDNA chromatin also impinge upon Pol I output, and complex mechanisms ensure the appropriate maintenance of the epigenetic state of the nucleolar genome and its effective transcription by Pol I. The following review presents our current understanding of the components of the Pol I transcription machinery, their functions and regulation by associated factors, and the mechanisms operating to ensure the proper transcription of rDNA chromatin. The importance of such stringent control is demonstrated by the fact that deregulated Pol I transcription is a feature of cancer and other disorders characterised by abnormal translational capacity.
Collapse
Affiliation(s)
- Sarah J. Goodfellow
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee , Dundee DD1 5EH , UK
| | - Joost C. B. M. Zomerdijk
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee , Dundee DD1 5EH , UK
| |
Collapse
|
38
|
Németh A, Perez-Fernandez J, Merkl P, Hamperl S, Gerber J, Griesenbeck J, Tschochner H. RNA polymerase I termination: Where is the end? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:306-17. [PMID: 23092677 DOI: 10.1016/j.bbagrm.2012.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/10/2012] [Accepted: 10/17/2012] [Indexed: 01/01/2023]
Abstract
The synthesis of ribosomal RNA (rRNA) precursor molecules by RNA polymerase I (Pol I) terminates with the dissociation of the protein-DNA-RNA ternary complex. Based on in vitro results the mechanism of Pol I termination appeared initially to be rather conserved and simple until this process was more thoroughly re-investigated in vivo. A picture emerged that Pol I termination seems to be connected to co-transcriptional processing, re-initiation of transcription and, possibly, other processes downstream of Pol I transcription units. In this article, our current understanding of the mechanism of Pol I termination and how this process might be implicated in other biological processes in yeast and mammals is summarized and discussed. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Attila Németh
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Lehrstuhl Biochemie III, 93053 Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Enzymes from the ribonuclease III family bind and cleave double-stranded RNA to initiate RNA processing and degradation of a large number of transcripts in bacteria and eukaryotes. This chapter focuses on the description of the diverse functions of fungal RNase III members in the processing and degradation of cellular RNAs, with a particular emphasis on the well-characterized representative in Saccharomyces cerevisiae, Rnt1p. RNase III enzymes fulfill important functions in the processing of the precursors of various stable noncoding RNAs such as ribosomal RNAs and small nuclear and nucleolar RNAs. In addition, they cleave and promote the degradation of specific mRNAs or improperly processed forms of certain mRNAs. The cleavage of these mRNAs serves both surveillance and regulatory functions. Finally, recent advances have shown that RNase III enzymes are involved in mediating fail-safe transcription termination by RNA polymerase II (Pol II), by cleaving intergenic stem-loop structures present downstream from Pol II transcription units. Many of these processing functions appear to be conserved in fungal species close to the Saccharomyces genus, and even in more distant eukaryotic species.
Collapse
Affiliation(s)
- Kevin Roy
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California, USA.
| |
Collapse
|
40
|
The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast. EMBO J 2012; 31:3480-93. [PMID: 22805593 DOI: 10.1038/emboj.2012.185] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/19/2012] [Indexed: 12/27/2022] Open
Abstract
Several DNA cis-elements and trans-acting factors were described to be involved in transcription termination and to release the elongating RNA polymerases from their templates. Different models for the molecular mechanism of transcription termination have been suggested for eukaryotic RNA polymerase I (Pol I) from results of in vitro and in vivo experiments. To analyse the molecular requirements for yeast RNA Pol I termination, an in vivo approach was used in which efficient termination resulted in growth inhibition. This led to the identification of a Myb-like protein, Ydr026c, as bona fide termination factor, now designated Nsi1 (NTS1 silencing protein 1), since it was very recently described as silencing factor of ribosomal DNA. Possible Nsi1 functions in regard to the mechanism of transcription termination are discussed.
Collapse
|
41
|
Jennebach S, Herzog F, Aebersold R, Cramer P. Crosslinking-MS analysis reveals RNA polymerase I domain architecture and basis of rRNA cleavage. Nucleic Acids Res 2012; 40:5591-601. [PMID: 22396529 PMCID: PMC3384336 DOI: 10.1093/nar/gks220] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA polymerase (Pol) I contains a 10-subunit catalytic core that is related to the core of Pol II and includes subunit A12.2. In addition, Pol I contains the heterodimeric subcomplexes A14/43 and A49/34.5, which are related to the Pol II subcomplex Rpb4/7 and the Pol II initiation factor TFIIF, respectively. Here we used lysine-lysine crosslinking, mass spectrometry (MS) and modeling based on five crystal structures, to extend the previous homology model of the Pol I core, to confirm the location of A14/43 and to position A12.2 and A49/34.5 on the core. In the resulting model of Pol I, the C-terminal ribbon (C-ribbon) domain of A12.2 reaches the active site via the polymerase pore, like the C-ribbon of the Pol II cleavage factor TFIIS, explaining why the intrinsic RNA cleavage activity of Pol I is strong, in contrast to the weak cleavage activity of Pol II. The A49/34.5 dimerization module resides on the polymerase lobe, like TFIIF, whereas the A49 tWH domain resides above the cleft, resembling parts of TFIIE. This indicates that Pol I and also Pol III are distantly related to a Pol II-TFIIS-TFIIF-TFIIE complex.
Collapse
Affiliation(s)
- Stefan Jennebach
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | | | |
Collapse
|
42
|
Krzyszton M, Zakrzewska-Placzek M, Koper M, Kufel J. Rat1 and Xrn2: The Diverse Functions of the Nuclear Rat1/Xrn2 Exonuclease. EUKARYOTIC RNASES AND THEIR PARTNERS IN RNA DEGRADATION AND BIOGENESIS, PART A 2012; 31:131-63. [DOI: 10.1016/b978-0-12-404740-2.00007-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Abstract
In most eukaryotes, the generation of the 3' end and transcription termination are initiated by cleavage of the pre-mRNA upstream of the polyadenylation site. This cleavage initiates 5'-3' degradation of the 3' end cleavage product by the exoribonuclease Rat1p leading to the dissociation of the RNA polymerase II (RNAPII) complex. The Rat1p-dependent transcription termination was also shown to be initiated by a polyadenylation-independent cleavage performed by the double-stranded RNA-specific ribonuclease (RNase) III (Rnt1p) suggesting that the majority of transcription termination events are RNase dependent. Therefore, it became essential for future studies on transcription termination to carefully consider both the nature of the RNase-dependent RNA transcripts and the association pattern of the RNAPII with the transcriptional unit. Here, we present methods allowing the evaluation of the impact of yeast RNases on the 3' end formation and their contribution to transcription termination. Northern blot analysis of transcripts generated downstream of known genes in the absence of RNases identifies potential transcription termination sites while chromatin immunoprecipitation of RNAPII differentiates between termination- and transcription-independent processing events.
Collapse
|
44
|
Wang Z, Hartman E, Roy K, Chanfreau G, Feigon J. Structure of a yeast RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into binding specificity of dsRBDs. Structure 2011; 19:999-1010. [PMID: 21742266 DOI: 10.1016/j.str.2011.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/01/2011] [Accepted: 03/31/2011] [Indexed: 11/15/2022]
Abstract
dsRBDs often bind dsRNAs with some specificity, yet the basis for this is poorly understood. Rnt1p, the major RNase III in Saccharomyces cerevisiae, cleaves RNA substrates containing hairpins capped by A/uGNN tetraloops, using its dsRBD to recognize a conserved tetraloop fold. However, the identification of a Rnt1p substrate with an AAGU tetraloop raised the question of whether Rnt1p binds to this noncanonical substrate differently than to A/uGNN tetraloops. The solution structure of Rnt1p dsRBD bound to an AAGU-capped hairpin reveals that the tetraloop undergoes a structural rearrangement upon binding to Rnt1p dsRBD to adopt a backbone conformation that is essentially the same as the AGAA tetraloop, and indicates that a conserved recognition mode is used for all Rnt1p substrates. Comparison of free and RNA-bound Rnt1p dsRBD reveals that tetraloop-specific binding requires a conformational change in helix α1. Our findings provide a unified model of binding site selection by this dsRBD.
Collapse
Affiliation(s)
- Zhonghua Wang
- Department of Chemistry and Biochemistry, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | | | |
Collapse
|
45
|
Meaux S, Lavoie M, Gagnon J, Abou Elela S, van Hoof A. Reporter mRNAs cleaved by Rnt1p are exported and degraded in the cytoplasm. Nucleic Acids Res 2011; 39:9357-67. [PMID: 21821655 PMCID: PMC3241649 DOI: 10.1093/nar/gkr627] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
For most protein coding genes, termination of transcription by RNA polymerase II is preceded by an endonucleolytic cleavage of the nascent transcript. The 3' product of this cleavage is rapidly degraded via the 5' exoribonuclease Rat1p which is thought to destabilize the RNA polymerase II complex. It is not clear whether RNA cleavage is sufficient to trigger nuclear RNA degradation and transcription termination or whether the fate of the RNA depends on additional elements. For most mRNAs, this cleavage is mediated by the cleavage and polyadenylation machinery, but it can also be mediated by Rnt1p. We show that Rnt1p cleavage of an mRNA is not sufficient to trigger nuclear degradation or transcription termination. Insertion of an Rnt1p target site into a reporter mRNA did not block transcription downstream of the cleavage site, but instead produced two unstable cleavage products, neither of which were stabilized by inactivation of Rat1p. In contrast, the 3' and 5' cleavage products were stabilized by the deletion of the cytoplasmic 5' exoribonuclease (Xrn1p) or by inactivation of the cytoplasmic RNA exosome. These data indicate that transcription termination and nuclear degradation is not the default fate of cleaved RNAs and that specific promoter and/or sequence elements are required to determine the fate of the cleavage products.
Collapse
Affiliation(s)
- Stacie Meaux
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
46
|
Ruan W, Lehmann E, Thomm M, Kostrewa D, Cramer P. Evolution of two modes of intrinsic RNA polymerase transcript cleavage. J Biol Chem 2011; 286:18701-7. [PMID: 21454497 DOI: 10.1074/jbc.m111.222273] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During gene transcription, the RNA polymerase (Pol) active center can catalyze RNA cleavage. This intrinsic cleavage activity is strong for Pol I and Pol III but very weak for Pol II. The reason for this difference is unclear because the active centers of the polymerases are virtually identical. Here we show that Pol II gains strong cleavage activity when the C-terminal zinc ribbon domain (C-ribbon) of subunit Rpb9 is replaced by its counterpart from the Pol III subunit C11. X-ray analysis shows that the C-ribbon has detached from its site on the Pol II surface and is mobile. Mutagenesis indicates that the C-ribbon transiently inserts into the Pol II pore to complement the active center. This mechanism is also used by transcription factor IIS, a factor that can bind Pol II and induce strong RNA cleavage. Together with published data, our results indicate that Pol I and Pol III contain catalytic C-ribbons that complement the active center, whereas Pol II contains a non-catalytic C-ribbon that is immobilized on the enzyme surface. Evolution of the Pol II system may have rendered mRNA transcript cleavage controllable by the dissociable factor transcription factor IIS to enable promoter-proximal gene regulation and elaborate 3'-processing and transcription termination.
Collapse
Affiliation(s)
- Wenjie Ruan
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
47
|
Braglia P, Kawauchi J, Proudfoot NJ. Co-transcriptional RNA cleavage provides a failsafe termination mechanism for yeast RNA polymerase I. Nucleic Acids Res 2010; 39:1439-48. [PMID: 20972219 PMCID: PMC3045592 DOI: 10.1093/nar/gkq894] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ribosomal RNA, transcribed by RNA polymerase (Pol) I, accounts for most cellular RNA. Since Pol I transcribes rDNA repeats with high processivity and polymerase density, transcription termination is a critical process. Early in vitro studies proposed polymerase pausing by Reb1 and transcript release at the T-rich element T1 determined transcription termination. However recent in vivo studies revealed a ‘torpedo’ mechanism for Pol I termination: co-transcriptional RNA cleavage by Rnt1 provides an entry site for the 5′–3′ exonuclease Rat1 that degrades Pol I-associated transcripts destabilizing the transcription complex. Significantly Rnt1 inactivation in vivo reveals a second co-transcriptional RNA cleavage event at T1 which provides Pol I with an alternative termination pathway. An intact Reb1-binding site is also required for Rnt1-independent termination. Consequently our results reconcile the original Reb1-mediated termination pathway as part of a failsafe mechanism for this essential transcription process.
Collapse
Affiliation(s)
- Priscilla Braglia
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | | | | |
Collapse
|
48
|
Rondón AG, Mischo HE, Kawauchi J, Proudfoot NJ. Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae. Mol Cell 2009; 36:88-98. [PMID: 19818712 PMCID: PMC2779338 DOI: 10.1016/j.molcel.2009.07.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 06/05/2009] [Accepted: 07/22/2009] [Indexed: 12/15/2022]
Abstract
Transcription termination of RNA polymerase II (Pol II) on protein-coding genes in S. cerevisiae relies on pA site recognition by 3′ end processing factors. Here we demonstrate the existence of two alternative termination mechanisms that rescue polymerases failing to disengage from the template at pA sites. One of these fail-safe mechanisms is mediated by the NRD complex, similar to termination of short noncoding genes. The other termination mechanism is mediated by Rnt1 cleavage of the nascent transcript. Both fail-safe termination mechanisms trigger degradation of readthrough transcripts by the exosome. However, Rnt1-mediated termination can also enhance the usage of weak pA signals and thereby generate functional mRNA. We propose that these alternative Pol II termination pathways serve the dual function of avoiding transcription interference and promoting rapid removal of aberrant transcripts.
Collapse
Affiliation(s)
- Ana G Rondón
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | |
Collapse
|
49
|
Structure-function analysis of RNA polymerases I and III. Curr Opin Struct Biol 2009; 19:740-5. [PMID: 19896367 DOI: 10.1016/j.sbi.2009.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/04/2009] [Accepted: 10/08/2009] [Indexed: 11/20/2022]
Abstract
Recent advances in elucidating the structure of yeast Pol I and III are based on a combination of X-ray crystal analysis, electron microscopy and homology modelling. They allow a better comparison of the three eukaryotic nuclear RNA polymerases, underscoring the most obvious difference existing between the three enzymes, which lies in the existence of additional Pol-I-specific and Pol-III-specific subunits. Their location on the cognate RNA polymerases is now fairly well known, suggesting precise hypotheses as to their function in transcription during initiation, elongation, termination and/or reinitiation. Unexpectedly, even though Pol I and III, but not Pol II, have an intrinsic RNA cleavage activity, it was found that TFIIS Pol II cleavage stimulation factor also played a general role in Pol III transcription.
Collapse
|
50
|
Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev 2009; 23:1247-69. [PMID: 19487567 DOI: 10.1101/gad.1792809] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene transcription in the cell nucleus is a complex and highly regulated process. Transcription in eukaryotes requires three distinct RNA polymerases, each of which employs its own mechanisms for initiation, elongation, and termination. Termination mechanisms vary considerably, ranging from relatively simple to exceptionally complex. In this review, we describe the present state of knowledge on how each of the three RNA polymerases terminates and how mechanisms are conserved, or vary, from yeast to human.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|