1
|
D’Ursi P, Rondina A, Zani A, Uggeri M, Messali S, Caruso A, Caccuri F. Molecular Mechanisms Involved in the B Cell Growth and Clonogenic Activity of HIV-1 Matrix Protein p17 Variants. Viruses 2024; 16:1048. [PMID: 39066211 PMCID: PMC11281387 DOI: 10.3390/v16071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The human immunodeficiency virus (HIV-1) matrix protein p17 (p17) is released from infected cells as a protein capable of deregulating the biological activity of different cells. P17 variants (vp17s), more frequently detected in the plasma of HIV-1+ patients with rather than without lymphoma and characterized by amino acids insertions in their C-terminal region, were found to trigger B cell growth and clonogenicity. Vp17s endowed with B-cell-growth-promoting activity are drastically destabilized, whereas, in a properly folded state, reference p17 (refp17) does not exert any biological activity on B cell growth and clonogenicity. However, misfolding of refp17 is necessary to expose a masked functional epitope, interacting with the protease-activated receptor 1 (PAR-1), endowed with B cell clonogenicity. Indeed, it is worth noting that changes in the secondary structure can strongly impact the function of a protein. Here, we performed computational studies to show that the gain of function of vp17s is linked to dramatic conformational changes due to structural modification in the secondary-structure elements and in the rearrangement of the hydrogen bond (H-bond) network. In particular, all clonogenic vp17s showed the disengagement of two critical residues, namely Trp16 and Tyr29, from their hydrophobic core. Biological data showed that the mutation of Trp16 and Tyr29 to Ala in the refp17 backbone, alone or in combination, resulted in a protein endowed with B cell clonogenic activity. These data show the pivotal role of the hydrophobic component in maintaining refp17 stability and identify a novel potential therapeutic target to counteract vp17-driven lymphomagenesis in HIV-1+ patients.
Collapse
Affiliation(s)
- Pasqualina D’Ursi
- Institute of Technologies in Biomedicine, National Research Council, 20090 Segrate, Italy
| | - Alessandro Rondina
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy (M.U.)
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy (M.U.)
| | - Matteo Uggeri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy (M.U.)
- Lifescience Innovation Good Healthcare Technology—LIGHT s.c.ar.l., 25123 Brescia, Italy
| | - Serena Messali
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy (M.U.)
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy (M.U.)
- Centre for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy (M.U.)
- Centre for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
2
|
Agarwal HK, Chhikara BS, Ye G, Bhavaraju S, Dixit A, Kumar A, Doncel GF, Parang K. Synthesis and Biological Evaluation of 5'- O-Fatty Acyl Ester Derivatives of 3'-Fluoro-2',3'-dideoxythymidine as Potential Anti-HIV Microbicides. Molecules 2022; 27:3352. [PMID: 35630829 PMCID: PMC9143043 DOI: 10.3390/molecules27103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/23/2022] Open
Abstract
A number of 5′-O-fatty acyl derivatives of 3′-fluoro-2′,3′-dideoxythymidine (FLT, 1) were synthesized. These conjugates were evaluated for their potential as topical microbicides with anti-HIV activity against cell-free (X4 and R5), cell-associated, and multidrug-resistant viruses. Compared to FLT and 3′-azido-2′,3′-dideoxythymidine (AZT), 5′-O-(12-azidododecanoyl) (5), 5′-O-myristoyl (6), and 5′-O-(12-thioethyldodecanoyl) (8) derivatives of FLT were found to be more active against both cell-free viruses (lymphocytotropic and monocytotropic strains) with EC50 values of 0.4 μM, 1.1 μM, and <0.2 μM, respectively, as well as cell-associated virus with EC50 values of 12.6, 6.4, and 2.3 μM, respectively. Conjugates 5, 6, and 8 exhibited >4 and >30 times better antiviral index than FLT and AZT, respectively. Conjugates 5 and 8 were significantly more potent than FLT against many multidrug-resistant strains. A comparison of the anti-HIV activity with the corresponding non-hydrolyzable ether conjugates suggested that ester hydrolysis to FLT and fatty acids is critical to enable anti-HIV activity. Cellular uptake studies were conducted using fluorescent derivatives of FLT attached with 5(6)-carboxyfluorescein through either β-alanine (23) or 12-aminododecanoic acid (24) spacers. The lipophilic fluorescent analog with a long chain (24) showed more than 12 times higher cellular uptake profile than the fluorescent analog with a short chain (23). These studies further confirmed that the attachment of fatty acids improved the cellular uptake of nucleoside conjugates. In addition, 5, 6, and 8 were the least cytotoxic and did not alter vaginal cell and sperm viability compared to the positive control, a commercial topical spermicide (N-9), which significantly decreased sperm and vaginal cell viability inducing the generation of proinflammatory cytokines.
Collapse
Affiliation(s)
- Hitesh K. Agarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, 709 Mall Boulevard, Savannah, GA 31406, USA
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
| | - Bhupender S. Chhikara
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
| | - Guofeng Ye
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
| | - Sitaram Bhavaraju
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
| | - Ajay Dixit
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
- ITC Life Science & Technology Center, #3, 1st Main, Peenya Industrial Area, 1st Phase, Bangalore 560058, India
| | - Anil Kumar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
| | - Gustavo F. Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (B.S.C.); (G.Y.); (S.B.); (A.D.); (A.K.)
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
3
|
Hanna CC, Kriegesmann J, Dowman LJ, Becker CFW, Payne RJ. Chemical Synthesis and Semisynthesis of Lipidated Proteins. Angew Chem Int Ed Engl 2022; 61:e202111266. [PMID: 34611966 PMCID: PMC9303669 DOI: 10.1002/anie.202111266] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/24/2022]
Abstract
Lipidation is a ubiquitous modification of peptides and proteins that can occur either co- or post-translationally. An array of different lipid classes can adorn proteins and has been shown to influence a number of crucial biological activities, including the regulation of signaling, cell-cell adhesion events, and the anchoring of proteins to lipid rafts and phospholipid membranes. Whereas nature employs a range of enzymes to install lipid modifications onto proteins, the use of these for the chemoenzymatic generation of lipidated proteins is often inefficient or impractical. An alternative is to harness the power of modern synthetic and semisynthetic technologies to access lipid-modified proteins in a pure and homogeneously modified form. This Review aims to highlight significant advances in the development of lipidation and ligation chemistry and their implementation in the synthesis and semisynthesis of homogeneous lipidated proteins that have enabled the influence of these modifications on protein structure and function to be uncovered.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of ChemistryThe University of SydneySydneyNSW2006Australia
| | - Julia Kriegesmann
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaViennaAustria
| | - Luke J. Dowman
- School of ChemistryThe University of SydneySydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australia
| | | | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
4
|
Hanna CC, Kriegesmann J, Dowman LJ, Becker CFW, Payne RJ. Chemische Synthese und Semisynthese von lipidierten Proteinen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202111266. [PMID: 38504765 PMCID: PMC10947004 DOI: 10.1002/ange.202111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/11/2022]
Abstract
AbstractLipidierung ist eine ubiquitäre Modifikation von Peptiden und Proteinen, die entweder co‐ oder posttranslational auftreten kann. Für die Vielzahl von Lipidklassen wurde gezeigt, dass diese viele entscheidende biologische Aktivitäten, z. B. die Regulierung der Signalweiterleitung, Zell‐Zell‐Adhäsion sowie die Anlagerung von Proteinen an Lipid‐Rafts und Phospholipidmembranen, beeinflussen. Während die Natur Enzyme nutzt, um Lipidmodifikationen in Proteine einzubringen, ist ihre Nutzung für die chemoenzymatische Herstellung von lipidierten Proteinen häufig ineffizient. Eine Alternative ist die Kombination moderner synthetischer und semisynthetischer Techniken, um lipidierte Proteine in reiner und homogen modifizierter Form zu erhalten. Dieser Aufsatz erörtert Fortschritte in der Entwicklung der Lipidierungs‐ und Ligationschemie und deren Anwendung in der Synthese und Semisynthese homogen lipidierter Proteine, die es ermöglichen, den Einfluss dieser Modifikationen auf die Proteinstruktur und ‐funktion zu untersuchen.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of ChemistryThe University of SydneySydneyNSW2006Australien
| | - Julia Kriegesmann
- Institut für Biologische ChemieFakultät für ChemieUniversität WienWienÖsterreich
| | - Luke J. Dowman
- School of ChemistryThe University of SydneySydneyNSW2006Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australien
| | | | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSW2006Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australien
| |
Collapse
|
5
|
He W, Mazzuca P, Yuan W, Varney K, Bugatti A, Cagnotto A, Giagulli C, Rusnati M, Marsico S, Diomede L, Salmona M, Caruso A, Lu W, Caccuri F. Identification of amino acid residues critical for the B cell growth-promoting activity of HIV-1 matrix protein p17 variants. Biochim Biophys Acta Gen Subj 2018; 1863:13-24. [PMID: 30248376 DOI: 10.1016/j.bbagen.2018.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND HIV-1 matrix protein p17 variants (vp17s) detected in HIV-1-infected patients with non-Hodgkin's lymphoma (HIV-NHL) display, differently from the wild-type protein (refp17), B cell growth-promoting activity. Biophysical analysis revealed that vp17s are destabilized as compared to refp17, motivating us to explore structure-function relationships. METHODS We used: biophysical techniques (circular dichroism (CD), nuclear magnetic resonance (NMR) and thermal/GuHCL denaturation) to study protein conformation and stability; Surface plasmon resonance (SPR) to study interactions; Western blot to investigate signaling pathways; and Colony Formation and Soft Agar assays to study B cell proliferation and clonogenicity. RESULTS By forcing the formation of a disulfide bridge between Cys residues at positions 57 and 87 we obtained a destabilized p17 capable of promoting B cell proliferation. This finding prompted us to dissect refp17 to identify the functional epitope. A synthetic peptide (F1) spanning from amino acid (aa) 2 to 21 was found to activate Akt and promote B cell proliferation and clonogenicity. Three positively charged aa (Arg15, Lys18 and Arg20) proved critical for sustaining the proliferative activity of both F1 and HIV-NHL-derived vp17s. Lack of any interaction of F1 with the known refp17 receptors suggests an alternate one involved in cell proliferation. CONCLUSIONS The molecular reasons for the proliferative activity of vp17s, compared to refp17, relies on the exposure of a functional epitope capable of activating Akt. GENERAL SIGNIFICANCE Our findings pave the way for identifying the receptor(s) responsible for B cell proliferation and offer new opportunities to identify novel treatment strategies in combating HIV-related NHL.
Collapse
Affiliation(s)
- Wangxiao He
- Center for Translational Medicine, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China.
| | - Pietro Mazzuca
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| | - Weirong Yuan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA.
| | - Kristen Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA.
| | - Antonella Bugatti
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| | - Alfredo Cagnotto
- IRCCS Istituto Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | - Cinzia Giagulli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy.
| | - Luisa Diomede
- IRCCS Istituto Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | - Mario Salmona
- IRCCS Istituto Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| | - Wuyuan Lu
- Center for Translational Medicine, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China; Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA.
| | - Francesca Caccuri
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| |
Collapse
|
6
|
Socas LBP, Ambroggio EE. Myristoylation and Oligonucleotide Interaction Modulate Peptide and Protein Surface Properties: The Case of the HIV-1 Matrix Domain. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6051-6062. [PMID: 29727193 DOI: 10.1021/acs.langmuir.8b01005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Myristoylated proteins typically develop a tight association with membranes. One example is the matrix domain (MA) of the HIV-1 Gag protein. In addition, MA is able to bind the Sel25 RNA sequence, a ligand that can act as a competitor for the interaction with the membrane. These properties make HIV-1 MA an attractive molecule to understand how protein and peptide surface properties can be controlled by myristoylation and oligonucleotide interaction. In this line, we analyzed the stability, thermodynamics, and the topography of Langmuir monolayers composed of the myristoylated or unmyristoylated versions of MA in the presence or the absence of a single-strand DNA (ssDNASel25) analogue of the Sel25 RNA sequence. With a similar approach, we compared the MA surface properties with those obtained from monolayers of myristoylated and unmyristoylated MA-derived peptides (first 21 residues of the MA sequence). Our results show that the protein or peptide films are destabilized by the presence of ssDNASel25, inducing solubilization of the monolayer components into the bulk phase. In addition, the oligonucleotide affects the protein-protein or peptide-peptide lateral interactions, provoking interfacial topography changes of the monolayers, visualized by Brewster angle microscopy. Furthermore, we also show how the myristoyl group has major effects on the lateral stability and the elasticity of the monolayers. Altogether, here we propose a general model considering the effect of myristoylation and the interaction with oligonucleotides on the interfacial properties of MA and derived peptides. In this model, we introduce a new role of the core region of MA (sequence of MA after the 21st residue) that confers higher lateral interfacial stability to the protein.
Collapse
Affiliation(s)
- Luis B P Socas
- Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , Haya de la Torre y Medina Allende s/n , Córdoba X5000HUA , Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) , Haya de la Torre y Medina Allende s/n , Córdoba X5000HUA , Argentina
| | - Ernesto E Ambroggio
- Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , Haya de la Torre y Medina Allende s/n , Córdoba X5000HUA , Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) , Haya de la Torre y Medina Allende s/n , Córdoba X5000HUA , Argentina
| |
Collapse
|
7
|
Abstract
Chemical methods have enabled the total synthesis of protein molecules of ever-increasing size and complexity. However, methods to engineer synthetic proteins comprising noncanonical amino acids have not kept pace, even though this capability would be a distinct advantage of the total synthesis approach to protein science. In this work, we report a platform for protein engineering based on the screening of synthetic one-bead one-compound protein libraries. Screening throughput approaching that of cell surface display was achieved by a combination of magnetic bead enrichment, flow cytometry analysis of on-bead screens, and high-throughput MS/MS-based sequencing of identified active compounds. Direct screening of a synthetic protein library by these methods resulted in the de novo discovery of mirror-image miniprotein-based binders to a ∼150-kDa protein target, a task that would be difficult or impossible by other means.
Collapse
|
8
|
Zhou T, Su H, Dash P, Lin Z, Dyavar Shetty BL, Kocher T, Szlachetka A, Lamberty B, Fox HS, Poluektova L, Gorantla S, McMillan J, Gautam N, Mosley RL, Alnouti Y, Edagwa B, Gendelman HE. Creation of a nanoformulated cabotegravir prodrug with improved antiretroviral profiles. Biomaterials 2017; 151:53-65. [PMID: 29059541 PMCID: PMC5926202 DOI: 10.1016/j.biomaterials.2017.10.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 01/24/2023]
Abstract
Long-acting parenteral (LAP) antiretroviral drugs have generated considerable interest for treatment and prevention of HIV-1 infection. One new LAP is cabotegravir (CAB), a highly potent integrase inhibitor, with a half-life of up to 54 days, allowing for every other month parenteral administrations. Despite this excellent profile, high volume dosing, injection site reactions and low body fluid drug concentrations affect broad use for virus infected and susceptible people. To improve the drug delivery profile, we created a myristoylated CAB prodrug (MCAB). MCAB formed crystals that were formulated into nanoparticles (NMCAB) of stable size and shape facilitating avid monocyte-macrophage entry, retention and reticuloendothelial system depot formulation. Drug release kinetics paralleled sustained protection against HIV-1 challenge. After a single 45 mg/kg intramuscular injection to BALB/cJ mice, the NMCAB pharmacokinetic profiles was 4-times greater than that recorded for CAB LAP. These observations paralleled replicate measurements in rhesus macaques. The results coupled with improved viral restriction in human adult lymphocyte reconstituted NOD/SCID/IL2Rγc-/- mice led us to conclude that NMCAB can improve biodistribution and viral clearance profiles upon current CAB LAP formulations.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hang Su
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prasanta Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zhiyi Lin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhagya Laxmi Dyavar Shetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ted Kocher
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adam Szlachetka
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; Nebraska Nanomedicine Production Plant, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin Lamberty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
9
|
Zeinolabediny Y, Caccuri F, Colombo L, Morelli F, Romeo M, Rossi A, Schiarea S, Ciaramelli C, Airoldi C, Weston R, Donghui L, Krupinski J, Corpas R, García-Lara E, Sarroca S, Sanfeliu C, Slevin M, Caruso A, Salmona M, Diomede L. HIV-1 matrix protein p17 misfolding forms toxic amyloidogenic assemblies that induce neurocognitive disorders. Sci Rep 2017; 7:10313. [PMID: 28871125 PMCID: PMC5583282 DOI: 10.1038/s41598-017-10875-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/16/2017] [Indexed: 12/26/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1)-associated neurocognitive disorder (HAND) remains an important neurological manifestation that adversely affects a patient’s quality of life. HIV-1 matrix protein p17 (p17) has been detected in autoptic brain tissue of HAND individuals who presented early with severe AIDS encephalopathy. We hypothesised that the ability of p17 to misfold may result in the generation of toxic assemblies in the brain and may be relevant for HAND pathogenesis. A multidisciplinary integrated approach has been applied to determine the ability of p17 to form soluble amyloidogenic assemblies in vitro. To provide new information into the potential pathogenic role of soluble p17 species in HAND, their toxicological capability was evaluated in vivo. In C. elegans, capable of recognising toxic assemblies of amyloidogenic proteins, p17 induces a specific toxic effect which can be counteracted by tetracyclines, drugs able to hinder the formation of large oligomers and consequently amyloid fibrils. The intrahippocampal injection of p17 in mice reduces their cognitive function and induces behavioral deficiencies. These findings offer a new way of thinking about the possible cause of neurodegeneration in HIV-1-seropositive patients, which engages the ability of p17 to form soluble toxic assemblies.
Collapse
Affiliation(s)
- Yasmin Zeinolabediny
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Francesca Caccuri
- Department of Molecular and Translational Medicine, University of Brescia, Piazza del Mercato 15, 25121, Brescia, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Federica Morelli
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Margherita Romeo
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Alessandro Rossi
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Silvia Schiarea
- Department of Environmental Health Sciences, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnologies and Biosciences, University of Milano Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnologies and Biosciences, University of Milano Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milano, Italy
| | - Ria Weston
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Liu Donghui
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Jerzy Krupinski
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.,Hospital Universitari Mútua de Terrassa, Department of Neurology, Terrassa, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigaciones Biomèdiques de Barcelona, CSIC and IDIBAPS, Barcelona, Spain
| | - Elisa García-Lara
- Institut d'Investigaciones Biomèdiques de Barcelona, CSIC and IDIBAPS, Barcelona, Spain.,University of Medicine and Pharmacy, Targu Mures, Romania
| | - Sara Sarroca
- Institut d'Investigaciones Biomèdiques de Barcelona, CSIC and IDIBAPS, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigaciones Biomèdiques de Barcelona, CSIC and IDIBAPS, Barcelona, Spain
| | - Mark Slevin
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.,University of Medicine and Pharmacy, Targu Mures, Romania.,Department of Pathology/Medicine, Griffith University, Brisbane, Australia
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, University of Brescia, Piazza del Mercato 15, 25121, Brescia, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Via G. La Masa 19, 20156, Milano, Italy.
| |
Collapse
|
10
|
A single amino acid substitution confers B-cell clonogenic activity to the HIV-1 matrix protein p17. Sci Rep 2017; 7:6555. [PMID: 28747658 PMCID: PMC5529431 DOI: 10.1038/s41598-017-06848-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022] Open
Abstract
Recent data highlight the presence, in HIV-1-seropositive patients with lymphoma, of p17 variants (vp17s) endowed with B-cell clonogenicity, suggesting a role of vp17s in lymphomagenesis. We investigated the mechanisms responsible for the functional disparity on B cells between a wild-type p17 (refp17) and a vp17 named S75X. Here, we show that a single Arginine (R) to Glycine (G) mutation at position 76 in the refp17 backbone (p17R76G), as in the S75X variant, is per se sufficient to confer a B-cell clonogenic potential to the viral protein and modulate, through activation of the PTEN/PI3K/Akt signaling pathway, different molecules involved in apoptosis inhibition (CASP-9, CASP-7, DFF-45, NPM, YWHAZ, Src, PAX2, MAPK8), cell cycle promotion and cancer progression (CDK1, CDK2, CDK8, CHEK1, CHEK2, GSK-3 beta, NPM, PAK1, PP2C-alpha). Moreover, the only R to G mutation at position 76 was found to strongly impact on protein folding and oligomerization by altering the hydrogen bond network. This generates a conformational shift in the p17 R76G mutant which enables a functional epitope(s), masked in refp17, to elicit B-cell growth-promoting signals after its interaction with a still unknown receptor(s). Our findings offer new opportunities to understand the molecular mechanisms accounting for the B-cell growth-promoting activity of vp17s.
Collapse
|
11
|
Abstract
Supplemental Digital Content is Available in the Text. Background: Antiretroviral drug discovery and formulation design will facilitate viral clearance in infectious reservoirs. Although progress has been realized for selected hydrophobic integrase and nonnucleoside reverse transcriptase inhibitors, limited success has been seen to date with hydrophilic nucleosides. To overcome these limitations, hydrophobic long-acting drug nanoparticles were created for the commonly used nucleoside reverse transcriptase inhibitor, lamivudine (2′,3′-dideoxy-3′-thiacytidine, 3TC). Methods: A 2-step synthesis created a slow-release long-acting hydrophobic 3TC. Conjugation of 3TC to a fatty acid created a myristoylated prodrug which was encased into a folate-decorated poloxamer 407. Both in vitro antiretroviral efficacy in human monocyte-derived macrophages and pharmacokinetic profiles in mice were evaluated for the decorated nanoformulated drug. Results: A stable drug formulation was produced by poloxamer encasement that improved monocyte–macrophage uptake, antiretroviral activities, and drug pharmacokinetic profiles over native drug formulations. Conclusions: Sustained release of long-acting antiretroviral therapy is a new therapeutic frontier for HIV/AIDS. 3TC depot formation in monocyte-derived macrophages can be facilitated through stable subcellular internalization and slow drug release.
Collapse
|
12
|
Konagaya Y, Miyakawa R, Sato M, Matsugami A, Watanabe S, Hayashi F, Kigawa T, Nishimura C. Effect of Glu12-His89 Interaction on Dynamic Structures in HIV-1 p17 Matrix Protein Elucidated by NMR. PLoS One 2016; 11:e0167176. [PMID: 27907055 PMCID: PMC5132258 DOI: 10.1371/journal.pone.0167176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022] Open
Abstract
To test the existence of the salt bridge and stability of the HIV-1 p17 matrix protein, an E12A (mutated at helix 1) was established to abolish possible electrostatic interactions. The chemical shift perturbation from the comparison between wild type and E12A suggested the existence of an electrostatic interaction in wild type between E12 and H89 (located in helix 4). Unexpectedly, the studies using urea denaturation indicated that the E12A substitution slightly stabilized the protein. The dynamic structure of E12A was examined under physiological conditions by both amide proton exchange and relaxation studies. The quick exchange method of amide protons revealed that the residues with faster exchange were located at the mutated region, around A12, compared to those of the wild-type protein. In addition, some residues at the region of helix 4, including H89, exhibited faster exchange in the mutant. In contrast, the average values of the kinetic rate constants for amide proton exchange for residues located in all loop regions were slightly lower in E12A than in wild type. Furthermore, the analyses of the order parameter revealed that less flexible structures existed at each loop region in E12A. Interestingly, the structures of the regions including the alpha1-2 loop and helix 5 of E12A exhibited more significant conformational exchanges with the NMR time-scale than those of wild type. Under lower pH conditions, for further destabilization, the helix 1 and alpha2-3 loop in E12A became more fluctuating than at physiological pH. Because the E12A mutant lacks the activities for trimer formation on the basis of the analytical ultra-centrifuge studies on the sedimentation distribution of p17 (Fledderman et al. Biochemistry 49, 9551–9562, 2010), it is possible that the changes in the dynamic structures induced by the absence of the E12-H89 interaction in the p17 matrix protein contributes to a loss of virus assembly.
Collapse
Affiliation(s)
- Yuta Konagaya
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, Japan
| | - Rina Miyakawa
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, Japan
| | - Masumi Sato
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, Japan
| | - Akimasa Matsugami
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Satoru Watanabe
- Laboratory for Biomolecular Structure and Dynamics, RIKEN Quantitative Biology Center, Yokohama, Kanagawa, Japan
| | - Fumiaki Hayashi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Takanori Kigawa
- Laboratory for Biomolecular Structure and Dynamics, RIKEN Quantitative Biology Center, Yokohama, Kanagawa, Japan
| | - Chiaki Nishimura
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, Japan
- * E-mail:
| |
Collapse
|
13
|
Caccuri F, Iaria ML, Campilongo F, Varney K, Rossi A, Mitola S, Schiarea S, Bugatti A, Mazzuca P, Giagulli C, Fiorentini S, Lu W, Salmona M, Caruso A. Cellular aspartyl proteases promote the unconventional secretion of biologically active HIV-1 matrix protein p17. Sci Rep 2016; 6:38027. [PMID: 27905556 PMCID: PMC5131311 DOI: 10.1038/srep38027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022] Open
Abstract
The human immune deficiency virus type 1 (HIV-1) matrix protein p17 (p17), although devoid of a signal sequence, is released by infected cells and detected in blood and in different organs and tissues even in HIV-1-infected patients undergoing successful combined antiretroviral therapy (cART). Extracellularly, p17 deregulates the function of different cells involved in AIDS pathogenesis. The mechanism of p17 secretion, particularly during HIV-1 latency, still remains to be elucidated. A recent study showed that HIV-1-infected cells can produce Gag without spreading infection in a model of viral latency. Here we show that in Gag-expressing cells, secretion of biologically active p17 takes place at the plasma membrane and occurs following its interaction with phosphatidylinositol-(4,5)-bisphosphate and its subsequent cleavage from the precursor Gag (Pr55Gag) operated by cellular aspartyl proteases. These enzymes operate a more complex Gag polypeptide proteolysis than the HIV-1 protease, thus hypothetically generating slightly truncated or elongated p17s in their C-terminus. A 17 C-terminal residues excised p17 was found to be structurally and functionally identical to the full-length p17 demonstrating that the final C-terminal region of p17 is irrelevant for the protein’s biological activity. These findings offer new opportunities to identify treatment strategies for inhibiting p17 release in the extracellular microenvironment.
Collapse
Affiliation(s)
- Francesca Caccuri
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Maria Luisa Iaria
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Federica Campilongo
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Kristen Varney
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alessandro Rossi
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri" Milan, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Silvia Schiarea
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri" Milan, Italy
| | - Antonella Bugatti
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Pietro Mazzuca
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Cinzia Giagulli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Simona Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland, Baltimore, Maryland, USA
| | - Mario Salmona
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri" Milan, Italy
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| |
Collapse
|
14
|
Singh D, McMillan J, Hilaire J, Gautam N, Palandri D, Alnouti Y, Gendelman HE, Edagwa B. Development and characterization of a long-acting nanoformulated abacavir prodrug. Nanomedicine (Lond) 2016; 11:1913-27. [PMID: 27456759 DOI: 10.2217/nnm-2016-0164] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM A myristoylated abacavir (ABC) prodrug was synthesized to extend drug half-life and bioavailability. METHODS Myristoylated ABC (MABC) was made by esterifying myristic acid to the drug's 5-hydroxy-cyclopentene group. Chemical composition, antiretroviral activity, cell uptake and retention and cellular trafficking of free MABC and poloxamer nanoformulations of MABC were assessed by proton nuclear magnetic resonance and tested in human monocyte-derived macrophages. Pharmacokinetics of ABC and nanoformulated MABC were evaluated after intramuscular injection into mice. RESULTS MABC antiretroviral activity in monocyte-derived macrophages was comparable to native drug. Encasement of MABC into poloxamer nanoparticles extended drug bioavailability for 2 weeks. CONCLUSION MABC synthesis and encasement in polymeric nanoformulations improved intracellular drug accumulation and demonstrate translational potential as part of a long-acting antiretroviral regimen.
Collapse
Affiliation(s)
- Dhirender Singh
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - James Hilaire
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Diana Palandri
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
15
|
Basta D, Latinovic O, Lafferty MK, Sun L, Bryant J, Lu W, Caccuri F, Caruso A, Gallo R, Garzino-Demo A. Angiogenic, lymphangiogenic and adipogenic effects of HIV-1 matrix protein p17. Pathog Dis 2015; 73:ftv062. [PMID: 26333571 DOI: 10.1093/femspd/ftv062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2015] [Indexed: 11/13/2022] Open
Abstract
Lymphangiogenesis and concurrent angiogenesis are essential in supporting proliferation and survival of AIDS-related lymphomas, which are often metastatic. In vitro studies suggest a candidate angiogienic and lymphangiogenic factor encoded by HIV: the matrix protein p17. p17 accumulates in lymph nodes of patients even when they are undergoing highly active antiretroviral therapy. p17 has been found to affect immune cells, and recent data showed that a variant p17, called S75X, induces cell growth by triggering MAPK/ERK and PI3K/AKT pathways. We tested the in vivo angiogenic activity of p17 by injecting it in Matrigel plugs in nude mice. Plugs were retrieved 7 days after injection, and assessed macroscopically, and by light and confocal microscopy. Our data revealed that both reference and S75X variant p17 promote angiogenesis and lymphangiogenesis in vivo. Our results suggest that the induction of angiogenesis and lymphangiogenesis by HIV-1 p17 may generate a favorable microenvironment that could trigger tumor growth and maintenance. Moreover, the presence of adipocytes infiltration observed at the histological level suggests a possible interplay between angiogenesis, lymphangiogenesis and adipogenesis. These findings offer new opportunities for the development of treatment strategies to combat HIV-related cancers.
Collapse
Affiliation(s)
- Daniele Basta
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Microbiology Section, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Olga Latinovic
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Microbiology and Immunology, Baltimore, MD 21201, USA
| | - Mark K Lafferty
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lingling Sun
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Biochemistry and Molecular Biology, Baltimore, MD 21201, USA
| | - Francesca Caccuri
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Arnaldo Caruso
- Microbiology Section, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Robert Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alfredo Garzino-Demo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Microbiology and Immunology, Baltimore, MD 21201, USA Department of Molecular Medicine, University of Padova, 35123, Italy
| |
Collapse
|
16
|
Flexible and rigid structures in HIV-1 p17 matrix protein monitored by relaxation and amide proton exchange with NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:520-6. [PMID: 24373876 DOI: 10.1016/j.bbapap.2013.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/06/2013] [Accepted: 12/18/2013] [Indexed: 11/22/2022]
Abstract
The HIV-1 p17 matrix protein is a multifunctional protein that interacts with other molecules including proteins and membranes. The dynamic structure between its folded and partially unfolded states can be critical for the recognition of interacting molecules. One of the most important roles of the p17 matrix protein is its localization to the plasma membrane with the Gag polyprotein. The myristyl group attached to the N-terminus on the p17 matrix protein functions as an anchor for binding to the plasma membrane. Biochemical studies revealed that two regions are important for its function: D14-L31 and V84-V88. Here, the dynamic structures of the p17 matrix protein were studied using NMR for relaxation and amide proton exchange experiments at the physiological pH of 7.0. The results revealed that the α12-loop, which includes the 14-31 region, was relatively flexible, and that helix 4, including the 84-88 region, was the most protected helix in this protein. However, the residues in the α34-loop near helix 4 had a low order parameter and high exchange rate of amide protons, indicating high flexibility. This region is probably flexible because this loop functions as a hinge for optimizing the interactions between helices 3 and 4. The C-terminal long region of K113-Y132 adopted a disordered structure. Furthermore, the C-terminal helix 5 appeared to be slightly destabilized due to the flexible C-terminal tail based on the order parameters. Thus, the dynamic structure of the p17 matrix protein may be related to its multiple functions.
Collapse
|
17
|
Barmania F, Pepper MS. C-C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection. Appl Transl Genom 2013; 2:3-16. [PMID: 27942440 PMCID: PMC5133339 DOI: 10.1016/j.atg.2013.05.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 05/19/2013] [Accepted: 05/21/2013] [Indexed: 12/25/2022]
Abstract
When HIV was initially discovered as the causative agent of AIDS, many expected to find a vaccine within a few years. This has however proven to be elusive; it has been approximately 30 years since HIV was first discovered, and a suitable vaccine is still not in effect. In 2009, a paper published by Hutter et al. reported on a bone marrow transplant performed on an HIV positive individual using stem cells that were derived from a donor who was homozygous for a mutation in the CCR5 gene known as CCR5 delta-32 (Δ32) (Hütter et al., 2009). The HIV positive individual became HIV negative and remained free of viral detection after transplantation despite having halted anti-retroviral (ARV) treatment. This review will focus on CCR5 as a key component in HIV immunity and will discuss the role of CCR5 in the control of HIV infection.
Collapse
Affiliation(s)
| | - Michael S. Pepper
- Corresponding author at: Dept. of Immunology, Faculty of Health Sciences, University of Pretoria, P.O. Box 2034, Pretoria 0001, South Africa. Tel.: + 27 12 319 2190; fax: + 27 12 319 2946.
| |
Collapse
|
18
|
Pang HB, Hevroni L, Kol N, Eckert DM, Tsvitov M, Kay MS, Rousso I. Virion stiffness regulates immature HIV-1 entry. Retrovirology 2013; 10:4. [PMID: 23305456 PMCID: PMC3564805 DOI: 10.1186/1742-4690-10-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/29/2012] [Indexed: 01/29/2023] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1) undergoes a protease-mediated maturation process that is required for its infectivity. Little is known about how the physical properties of viral particles change during maturation and how these changes affect the viral lifecycle. Using Atomic Force Microscopy (AFM), we previously discovered that HIV undergoes a “stiffness switch”, a dramatic reduction in particle stiffness during maturation that is mediated by the viral Envelope (Env) protein. Results In this study, we show that transmembrane-anchored Env cytoplasmic tail (CT) domain is sufficient to regulate the particle stiffness of immature HIV-1. Using this construct expressed in trans with viral Env lacking the CT domain, we show that increasing particle stiffness reduces viral entry activity in immature virions. A similar effect was also observed for immature HIV-1 pseudovirions containing Env from vesicular stomatitis virus. Conclusions This linkage between particle stiffness and viral entry activity illustrates a novel level of regulation for viral replication, providing the first evidence for a biological role of virion physical properties and suggesting a new inhibitory strategy.
Collapse
Affiliation(s)
- Hong-Bo Pang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Agarwal HK, Chhikara BS, Hanley MJ, Ye G, Doncel GF, Parang K. Synthesis and Biological Evaluation of Fatty Acyl Ester Derivatives of (−)-2′,3′-Dideoxy-3′-thiacytidine. J Med Chem 2012; 55:4861-71. [PMID: 22533850 DOI: 10.1021/jm300492q] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hitesh K. Agarwal
- Department of Biomedical and
Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode
Island 02881, United States
| | - Bhupender S. Chhikara
- Department of Biomedical and
Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode
Island 02881, United States
| | - Michael J. Hanley
- Department of Biomedical and
Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode
Island 02881, United States
| | - Guofeng Ye
- Department of Biomedical and
Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode
Island 02881, United States
| | - Gustavo F. Doncel
- CONRAD, Department of Obstetrics
and Gynecology, Eastern Virginia Medical School, 601 Colley Avenue, Norfolk, Virginia, 23507, United States
| | - Keykavous Parang
- Department of Biomedical and
Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode
Island 02881, United States
| |
Collapse
|
20
|
Zhan C, Varney K, Yuan W, Zhao L, Lu W. Interrogation of MDM2 phosphorylation in p53 activation using native chemical ligation: the functional role of Ser17 phosphorylation in MDM2 reexamined. J Am Chem Soc 2012; 134:6855-64. [PMID: 22444248 DOI: 10.1021/ja301255n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The E3 ubiquitin ligase MDM2 functions as a crucial negative regulator of the p53 tumor suppressor protein by antagonizing p53 transactivation activity and targeting p53 for degradation. Cellular stress activates p53 by alleviating MDM2-mediated functional inhibition, even though the molecular mechanisms of stress-induced p53 activation still remain poorly understood. Two opposing models have been proposed to describe the functional and structural role in p53 activation of Ser17 phosphorylation in the N-terminal "lid" (residues 1-24) of MDM2. Using the native chemical ligation technique, we synthesized the p53-binding domain (1-109)MDM2 and its Ser17-phosphorylated analogue (1-109)MDM2 pS17 as well as (1-109)MDM2 S17D and (25-109)MDM2, and comparatively characterized their interactions with a panel of p53-derived peptide ligands using surface plasmon resonance, fluorescence polarization, and NMR and CD spectroscopic techniques. We found that the lid is partially structured in apo-MDM2 and occludes p53 peptide binding in a ligand size-dependent manner. Binding of (1-109)MDM2 by the (15-29)p53 peptide fully displaces the lid and renders it completely disordered in the peptide-protein complex. Importantly, neither Ser17 phosphorylation nor the phospho-mimetic mutation S17D has any functional impact on p53 peptide binding to MDM2. Although Ser17 phosphorylation or its mutation to Asp contributes marginally to the stability of the lid conformation in apo-MDM2, neither modification stabilizes apo-MDM2 globally or the displaced lid locally. Our findings demonstrate that Ser17 phosphorylation is functionally neutral with respect to p53 binding, suggesting that MDM2 phosphorylation at a single site is unlikely to play a dominant role in stress-induced p53 activation.
Collapse
Affiliation(s)
- Changyou Zhan
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
21
|
Nguyen AT, Feasley CL, Jackson KW, Nitz TJ, Salzwedel K, Air GM, Sakalian M. The prototype HIV-1 maturation inhibitor, bevirimat, binds to the CA-SP1 cleavage site in immature Gag particles. Retrovirology 2011; 8:101. [PMID: 22151792 PMCID: PMC3267693 DOI: 10.1186/1742-4690-8-101] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/07/2011] [Indexed: 12/31/2022] Open
Abstract
Background Bevirimat, the prototype Human Immunodeficiency Virus type 1 (HIV-1) maturation inhibitor, is highly potent in cell culture and efficacious in HIV-1 infected patients. In contrast to inhibitors that target the active site of the viral protease, bevirimat specifically inhibits a single cleavage event, the final processing step for the Gag precursor where p25 (CA-SP1) is cleaved to p24 (CA) and SP1. Results In this study, photoaffinity analogs of bevirimat and mass spectrometry were employed to map the binding site of bevirimat to Gag within immature virus-like particles. Bevirimat analogs were found to crosslink to sequences overlapping, or proximal to, the CA-SP1 cleavage site, consistent with previous biochemical data on the effect of bevirimat on Gag processing and with genetic data from resistance mutations, in a region predicted by NMR and mutational studies to have α-helical character. Unexpectedly, a second region of interaction was found within the Major Homology Region (MHR). Extensive prior genetic evidence suggests that the MHR is critical for virus assembly. Conclusions This is the first demonstration of a direct interaction between the maturation inhibitor, bevirimat, and its target, Gag. Information gained from this study sheds light on the mechanisms by which the virus develops resistance to this class of drug and may aid in the design of next-generation maturation inhibitors.
Collapse
Affiliation(s)
- Albert T Nguyen
- Department of Microbiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Srb P, Vlach J, Prchal J, Grocký M, Ruml T, Lang J, Hrabal R. Oligomerization of a retroviral matrix protein is facilitated by backbone flexibility on nanosecond time scale. J Phys Chem B 2011; 115:2634-44. [PMID: 21366213 DOI: 10.1021/jp110420m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oligomerization capacity of the retroviral matrix protein is an important feature that affects assembly of immature virions and their interaction with cellular membrane. A combination of NMR relaxation measurements and advanced analysis of molecular dynamics simulation trajectory provided an unprecedentedly detailed insight into internal mobility of matrix proteins of the Mason-Pfizer monkey virus. Strong evidence have been obtained that the oligomerization capacity of the wild-type matrix protein is closely related to the enhanced dynamics of several parts of its backbone on a nanosecond time scale. Increased flexibility has been observed for two regions: the loop between α-helices α2 and α3 and the C-terminal half of α-helix α3 which accommodate amino acid residues that form the oligomerization interface. On the other hand, matrix mutant R55F that has changed structure and does not exhibit any specific oligomerization in solution was found considerably more rigid. Our results document that conformational selection mechanism together with induced fit and favorable structural preorganization play an important role in the control of the oligomerization process.
Collapse
Affiliation(s)
- Pavel Srb
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University , V Holešovičkách 2, 18000 Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
23
|
Agarwal HK, Loethan K, Mandal D, Doncel GF, Parang K. Synthesis and biological evaluation of fatty acyl ester derivatives of 2',3'-didehydro-2',3'-dideoxythymidine. Bioorg Med Chem Lett 2011; 21:1917-21. [PMID: 21382714 DOI: 10.1016/j.bmcl.2011.02.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
A number of 5'-O-fatty acyl derivatives of 2',3'-didehydro-2',3'-dideoxythymidine (stavudine, d4T) were synthesized and evaluated for anti-HIV activities against cell-free and cell-associated virus, cellular cytotoxicity, and cellular uptake studies. The conjugates were found to be more potent than d4T. Among these conjugates, 5'-O-12-azidododecanoyl derivative of d4T (2), displaying EC(50) = 3.1-22.4 μM, showed 4- to 9-fold higher activities than d4T against cell-free and cell-associated virus. Cellular uptake studies were conducted on CCRF-CEM cell line using 5(6)-carboxyfluorescein derivatives of d4T attached through β-alanine (9) or 12-aminododecanoic acid (10) as linkers. The fluorescein-substituted analog of d4T with long chain length (10) showed 12- to 15-fold higher cellular uptake profile than the corresponding analog with short chain length (9). These studies reveal that conjugation of fatty acids to d4T enhances the cellular uptake and anti-HIV activity of stavudine.
Collapse
Affiliation(s)
- Hitesh K Agarwal
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | |
Collapse
|
24
|
Shen F, Zhang ZP, Li JB, Lin Y, Liu L. Hydrazine-Sensitive Thiol Protecting Group for Peptide and Protein Chemistry. Org Lett 2011; 13:568-71. [DOI: 10.1021/ol1028755] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fei Shen
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China, and Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhi-Ping Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China, and Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jia-Bin Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China, and Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yun Lin
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China, and Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China, and Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Energetics and mechanisms of folding and flipping the myristoyl switch in the {beta}-trefoil protein, hisactophilin. Proc Natl Acad Sci U S A 2010; 107:20952-7. [PMID: 21097705 DOI: 10.1073/pnas.1008026107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Myristoylation, the covalent linkage of a saturated, C(14) fatty acyl chain to the N-terminal glycine in a protein, plays a vital role in reversible membrane binding and signaling by the modified proteins. Currently, little is known about the effects of myristoylation on protein folding and stability, or about the energetics and molecular mechanisms of switching involving states with sequestered versus accessible myristoyl group. Our analysis of these effects in hisactophilin, a histidine-rich protein that binds cell membranes and actin in a pH-dependent manner, shows that myristoylation significantly increases hisactophilin stability, while also markedly increasing global protein folding and unfolding rates. The switching between sequestered and accessible states is pH dependent, with an apparent pK(switch) of 6.95, and an apparent free energy change of 2.0 kcal·mol(-1). The myristoyl switch is linked to the reversible uptake of ∼1.5 protons, likely by histidine residues. This pH dependence of switching appears to be the physical basis of the sensitive, pH-dependent regulation of membrane binding observed in vivo. We conclude that an increase in protein stability upon modification and burial of the attached group is likely to occur in numerous proteins modified with fatty acyl or other hydrophobic groups, and that the biophysical effects of such modification are likely to play an important role in their functional switches. In addition, the increased global dynamics caused by myristoylation of hisactophilin reveals a general mechanism whereby hydrophobic moieties can make nonnative interactions or relieve strain in transition states, thereby increasing the rates of interconversion between different states.
Collapse
|
26
|
Li C, Li X, Lu W. Total chemical synthesis of human T-cell leukemia virus type 1 protease via native chemical ligation. Biopolymers 2010; 94:487-94. [PMID: 20593478 DOI: 10.1002/bip.21375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human T-cell leukemia virus 1 (HTLV-1) protease, a member of the aspartic acid protease family, plays critical roles in the pathogenesis of the virus and is an attractive viral target for therapeutic intervention. HTLV-1 protease consists of 125 amino acid residues and functions as a homodimer stabilized in part by a four-stranded beta-sheet comprising the N- and C-termini. Compared with many other viral proteases such as HIV-1 protease, HTLV-1 protease is elongated by an extra 10 amino acid residue "tail" at the C-terminus. The structural and functional role of the extra C-terminal residues in the catalysis of HTLV-1 protease has been a subject of debate for years. Using the native chemical ligation technique pioneered by Kent and coworkers, we chemically synthesized a full-length HTLV protease and a C-terminally truncated form encompassing residues 1-116. Enzyme kinetic analysis using three different peptide substrates indicated that truncation of the C-terminal tail lowered the turnover number of the viral enzyme by a factor of 2 and its catalytic efficiency by roughly 10-fold. Our findings differ from the two extreme views that the C-terminal tail of HTLV-1 protease is either fully dispensable or totally required for enzyme dimerization and/or catalysis.
Collapse
Affiliation(s)
- Changqing Li
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
27
|
|
28
|
Vlach J, Srb P, Prchal J, Grocký M, Lang J, Ruml T, Hrabal R. Nonmyristoylated matrix protein from the Mason-Pfizer monkey virus forms oligomers. J Mol Biol 2009; 390:967-80. [PMID: 19481092 DOI: 10.1016/j.jmb.2009.05.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 11/26/2022]
Abstract
We studied the oligomeric properties of betaretroviral nonmyristoylated matrix protein (MA) and its R55F mutant from the Mason-Pfizer monkey virus in solution by means of chemical crosslinking and NMR spectroscopy. By analyzing crosslinked products and using concentration-dependent NMR chemical shift mapping, we have proven that the wild-type (WT) MA forms oligomers in solution. Conversely, no oligomerization was observed for the R55F mutant. Structural comparison of MAs explained their different behaviors in solution, concluding that the key residues involved in intermonomeric interaction are exposed in the WT MA but buried in the mutant, preventing the oligomerization of R55F. The final model of oligomerization of the WT MA was derived by concerted use of chemical shift mapping and diffusion-ordered spectroscopy measured on a set of protein samples with varying concentrations. We found that the Mason-Pfizer monkey virus WT MA exists in a monomer-dimer-trimer equilibrium in solution, with the corresponding dissociation constants of 2.3 and 0.24 mM, respectively. Structures of the oligomers calculated with HADDOCK software are closely related to the structures of other retroviral MA trimers.
Collapse
Affiliation(s)
- Jirí Vlach
- Institute of Chemical Technology, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
29
|
Barr SD, Smiley JR, Bushman FD. The interferon response inhibits HIV particle production by induction of TRIM22. PLoS Pathog 2008; 4:e1000007. [PMID: 18389079 PMCID: PMC2279259 DOI: 10.1371/journal.ppat.1000007] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 01/16/2008] [Indexed: 12/20/2022] Open
Abstract
Treatment of human cells with Type 1 interferons restricts HIV replication. Here we report that the tripartite motif protein TRIM22 is a key mediator. We used transcriptional profiling to identify cellular genes that were induced by interferon treatment and identified TRIM22 as one of the most strongly up-regulated genes. We confirmed, as in previous studies, that TRIM22 over-expression inhibited HIV replication. To assess the role of TRIM22 expressed under natural inducing conditions, we compared the effects of interferon in cells depleted for TRIM22 using RNAi and found that HIV particle release was significantly increased in the knockdown, implying that TRIM22 acts as a natural antiviral effector. Further studies showed that TRIM22 inhibited budding of virus-like particles containing Gag only, indicating that Gag was the target of TRIM22. TRIM22 did not block the release of MLV or EIAV Gag particles. Inhibition was associated with diffuse cytoplasmic staining of HIV Gag rather than accumulation at the plasma membrane, suggesting TRIM22 disrupts proper trafficking. Mutational analyses of TRIM22 showed that the catalytic amino acids Cys15 and Cys18 of the RING domain are required for TRIM22 antiviral activity. These data disclose a pathway by which Type 1 interferons obstruct HIV replication. Interferons are produced by cells in response to challenge by foreign pathogens such as viruses. The molecular mechanisms by which Type I interferons (e.g., IFNβ) inhibit the replication of HIV-1 are not fully clarified. We identified a gene called TRIM22 that belongs to the tripartite motif (TRIM) family that was strongly induced by IFNβ. Using RNA interference to reduce the expression of TRIM22, we showed that TRIM22 is a key mediator of the IFNβ response when expressed at natural levels. We demonstrate that TRIM22 blocks the intracellular trafficking of the viral structural protein Gag to the surface of the cell, and that the antiviral activity of TRIM22 is dependent on two cysteine residues (Cys15 and Cys18) that are critical for the E3 ligase activity of RING-containing proteins. This report describes a mechanism by which Type I interferons block HIV-1 replication.
Collapse
Affiliation(s)
- Stephen D Barr
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta Institute for Viral Immunology, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
30
|
An integrative bioinformatic approach for studying escape mutations in human immunodeficiency virus type 1 gag in the Pumwani Sex Worker Cohort. J Virol 2007; 82:1980-92. [PMID: 18057233 DOI: 10.1128/jvi.02742-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is able to evade the host cytotoxic T-lymphocyte (CTL) response through a variety of escape avenues. Epitopes that are presented to CTLs are first processed in the presenting cell in several steps, including proteasomal cleavage, transport to the endoplasmic reticulum, binding by the HLA molecule, and finally presentation to the T-cell receptor. An understanding of the potential of the virus to escape CTL responses can aid in designing an effective vaccine. To investigate such a potential, we analyzed HIV-1 gag from 468 HIV-1-positive Kenyan women by using several bioinformatic approaches that allowed the identification of positively selected amino acids in the HIV-1 gag region and study of the effects that these mutations could have on the various stages of antigen processing. Correlations between positively selected residues and mean CD4 counts also allowed study of the effect of mutation on HIV disease progression. A number of mutations that could create or destroy proteasomal cleavage sites or reduce binding affinity of the transport antigen processing protein, effectively hindering epitope presentation, were identified. Many mutations correlated with the presence of specific HLA alleles and with lower or higher CD4 counts. For instance, the mutation V190I in subtype A1-infected individuals is associated with HLA-B*5802 (P = 4.73 x 10(-4)), a rapid-progression allele according to other studies, and also to a decreased mean CD4 count (P = 0.019). Thus, V190I is a possible HLA escape mutant. This method classifies many positively selected mutations across the entire gag region according to their potential for immune escape and their effect on disease progression.
Collapse
|
31
|
Saad JS, Kim A, Ghanam RH, Dalton AK, Vogt VM, Wu Z, Lu W, Summers MF. Mutations that mimic phosphorylation of the HIV-1 matrix protein do not perturb the myristyl switch. Protein Sci 2007; 16:1793-7. [PMID: 17656588 PMCID: PMC2203364 DOI: 10.1110/ps.072987607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent studies indicate that the matrix domain (MA) of the HIV-1 Gag polyprotein directs Gag to the plasma membrane for virus assembly via a phosphatidylinositol-4,5-bisphosphate (PIP(2))-dependent myristyl switch mechanism. MA also has been reported to direct nuclear trafficking via nuclear import and export functions, and some studies suggest that nuclear targeting may be regulated by MA phosphorylation (although this proposal remains controversial). We have prepared and studied a series of HIV-1 MA mutants containing Ser-to-Asp substitutions designed to mimic phosphorylation, including substitutions in regions of the protein involved in protein-protein interactions and known to influence the myristyl switch (S6D, S9D, S67D, S72D, S6D/S9D, and S67D/S72D). We were particularly interested in substitutions at residue 6, since conservative mutations adjacent to this site strongly perturb the myristyl switch equilibrium, and this site had not been genetically tested due to its involvement in post-translational myristylation. Our studies reveal that none of these mutations, including S6D, influences the PIP(2)- or concentration-dependent myristyl switch equilibrium. In addition, all of the mutants bind liposomes with affinities that are only slightly reduced in comparison with the native protein. In contrast, the myristylated mutants bind liposomes with substantially greater affinity than that of the native, unmyristylated protein. These findings support the hypothesis that phosphorylation is unlikely to significantly influence membrane-mediated intracellular trafficking.
Collapse
Affiliation(s)
- Jamil S Saad
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bang D, Pentelute BL, Kent SBH. Kinetically controlled ligation for the convergent chemical synthesis of proteins. Angew Chem Int Ed Engl 2007; 45:3985-8. [PMID: 16639756 DOI: 10.1002/anie.200600702] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Duhee Bang
- Department of Chemistry, Institute for Biophysical Dynamics, Center for Integrative Science, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
33
|
Torbeev VY, Kent SBH. Convergent chemical synthesis and crystal structure of a 203 amino acid "covalent dimer" HIV-1 protease enzyme molecule. Angew Chem Int Ed Engl 2007; 46:1667-70. [PMID: 17397076 DOI: 10.1002/anie.200604087] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Vladimir Yu Torbeev
- Department of Chemistry, Institute for Biophysical Dynamics, Gordon Center for Integrative Science, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | |
Collapse
|
34
|
Abstract
The HIV-1 structural protein matrix (MA) is involved in a number of essential steps during infection and appears to possess multiple, seemingly conflicting targeting signals. Although MA has long been known to be crucial for virion assembly, details regarding this function, and the domains responsible for mediating it, are still emerging. MA has also been implicated in nuclear import of HIV cDNA and is purported to contain a nuclear targeting signal. Little is known about how these opposing plasma membrane and nuclear targeting signals are regulated and which signals predominate at various stages of infection. Additionally, MA has recently been implicated in a number of novel roles during infection including viral entry/uncoating, cytoskeletal-mediated transport, and targeting viral assembly to lipid rafts. Here we discuss our current understanding of MA's functions during infection and explore the recent advancements made in elucidating the mechanism of these processes. It appears that MA possesses a cache of targeting signals that are likely to be regulated throughout the infectious cycle by a combination of structural and biochemical modifications including phosphorylation, myristoylation, and multimerization. The ability of HIV to modify the properties of MA at specific stages of infection is central to the multifunctional behavior of MA and the efficiency of HIV infection. The recently reported success of drugs specifically designed to block MA function (Haffar O, Dubrovsky L, and Lowe R et al. J Virol 2005;79:13028-13036) confirms the importance of this protein for HIV infection and highlights a potentially new avenue in multivalent drug therapy.
Collapse
Affiliation(s)
- Anna C Hearps
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | |
Collapse
|
35
|
Torbeev V, Kent S. Convergent Chemical Synthesis and Crystal Structure of a 203 Amino Acid “Covalent Dimer” HIV-1 Protease Enzyme Molecule. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604087] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Adamson CS, Freed EO. Human Immunodeficiency Virus Type 1 Assembly, Release, and Maturation. ADVANCES IN PHARMACOLOGY 2007; 55:347-87. [PMID: 17586320 DOI: 10.1016/s1054-3589(07)55010-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Catherine S Adamson
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | |
Collapse
|
37
|
Li X, Zou G, Yuan W, Lu W. Defining the native disulfide topology in the somatomedin B domain of human vitronectin. J Biol Chem 2006; 282:5318-26. [PMID: 17189256 DOI: 10.1074/jbc.m611396200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal 44 amino acid residues of the human plasma glycoprotein vitronectin, known as the somatomedin B (SMB) domain, mediates the interaction between vitronectin and plasminogen activator inhibitor 1 (PAI-1) in a variety of important biological processes. Despite the functional importance of the Cys-rich SMB domain, how its four disulfide bridges are arranged in the molecule remains highly controversial, as evidenced by three different disulfide connectivities reported by several laboratories. Using native chemical ligation and orthogonal protection of selected Cys residues, we chemically synthesized all three topological analogs of SMB with predefined disulfide connectivities corresponding to those previously published. In addition, we oxidatively folded a fully reduced SMB in aqueous solution, and prepared, by CNBr cleavage, the N-terminal segment of 51 amino acid residues of intact vitronectin purified from human blood. Proteolysis coupled with mass spectrometric analysis and functional characterization using a surface plasmon resonance based vitronectin-PAI-1-SMB competition assay allowed us to conclude that 1) only the Cys(5)-Cys(21), Cys(9)-Cys(39), Cys(19)-Cys(32), and Cys(25)-Cys(31) connectivity is present in native vitronectin; 2) only the native disulfide connectivity is functional; and 3) the native disulfide pairings can be readily formed during spontaneous (oxidative) folding of the SMB domain in vitro. Our results unequivocally define the native disulfide topology in the SMB domain of human vitronectin, providing biochemical as well as functional support to the structural findings on a recombinant SMB domain by Read and colleagues (Zhou, A., Huntington, J. A., Pannu, N. S., Carrell, R. W., and Read, R. J. (2003) Nat. Struct. Biol. 10, 541-544).
Collapse
Affiliation(s)
- Xiangqun Li
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
38
|
Bang D, Pentelute BL, Kent SBH. Kinetically Controlled Ligation for the Convergent Chemical Synthesis of Proteins. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600702] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Sierra S, Kupfer B, Kaiser R. Basics of the virology of HIV-1 and its replication. J Clin Virol 2005; 34:233-44. [PMID: 16198625 DOI: 10.1016/j.jcv.2005.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 09/02/2005] [Indexed: 11/17/2022]
Abstract
Human immunodeficiency virus is undoubtedly the causative agent of AIDS. The understanding of HIV-1 pathogenesis is essential to develop and maintain antiretroviral treatment and vaccination. Since the first isolation of HIV-1 in cell culture, thousands of publications dealing with HIV and/or AIDS per year were released. In this review we give a basic overview of the virology of HIV-1 including the functions of the different HIV-1 proteins required for effective viral replication. Moreover, we summarize the interactive processes between HIV-1 and its target cells. Finally, the HIV-1 specific immune response and the current status of antiretroviral therapy are briefly described in this review.
Collapse
Affiliation(s)
- Saleta Sierra
- Institute of Virology, University of Cologne, Fürst-Pückler Str. 56, D-50935 Cologne, Germany
| | | | | |
Collapse
|
40
|
Guo X, Roldan A, Hu J, Wainberg MA, Liang C. Mutation of the SP1 sequence impairs both multimerization and membrane-binding activities of human immunodeficiency virus type 1 Gag. J Virol 2005; 79:1803-12. [PMID: 15650204 PMCID: PMC544129 DOI: 10.1128/jvi.79.3.1803-1812.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Gag protein of human immunodeficiency virus type 1 contains a 14-amino-acid region, termed SP1, between the capsid and downstream nucleocapsid sequences. Although SP1 is known to be indispensable for virus production, the mechanisms involved are mostly unclear. In this study, we demonstrate that an M368A mutation within SP1 severely diminished the ability of Gag to associate with cellular membranes. Although wild-type levels of membrane binding were restored to the M368A Gag by a second-site L20K mutation within matrix, the resultant Gag mutant L20K-M368A remained defective in virus production. This latter deficit was partially consequent to the binding of L20K-M368A Gag to nonraft membranes as opposed to raft association seen for wild-type Gag. Further analysis revealed that the majority of membrane-bound M368A Gag proteins were small oligomers, indicating a multimerization defect. In support of this observation, purified recombinant Gag derivatives containing the M368A mutation formed much lower amounts of high-molecular-weight complexes that were pelletable at 21,000 x g than did wild-type Gag. Based on the myristyl switch model, we propose that the M368A mutation inhibits Gag multimerization and, as a result, restricts the binding of Gag to cellular membranes.
Collapse
Affiliation(s)
- Xiaofeng Guo
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, 3755 Cote Ste-Catherine Rd., Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | |
Collapse
|
41
|
Rayne F, Kajava AV, Lalanne J, Mamoun RZ. In vivo homodimerisation of HTLV-1 Gag and MA gives clues to the retroviral capsid and TM envelope protein arrangement. J Mol Biol 2004; 343:903-16. [PMID: 15476809 DOI: 10.1016/j.jmb.2004.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 09/08/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
During retroviral particle formation, the capsid precursors (Gag) associate with the cell membrane via their matrix (MA) domain to form viral assembling particles. After budding, Gag and its proteolytically matured MA, form a shell in the released immature and mature particles, respectively. Although the arrangement of Gag domains in vitro and their radial organisation in retroviral particles have been extensively studied, little is known concerning Gag inter-subunit interactions in authentic retroviruses. We report that human T-cell leukemia virus type 1 Gag homodimerises in the cell via a disulphide bonding at cysteine 61 in the MA domain. Most Gags are homodimeric after budding and MAs are also dimeric in mature authentic virions. Molecular modelling of the MA domain indicates that non-covalent interactions at the MA dimer interface may also be important for Gag (and MA) dimerisation. In addition, all amino acids previously reported to be involved in MA-transmembrane (TM) interactions are located on the MA face opposite to the dimer interface. The model reveals that homodimerisation is compatible with a hexameric network of Gag and MA dimers that look like the hexameric networks observed for other retroviruses. These data, together with previous studies, lead us to propose a supra-molecular arrangement model in which the transmembrane glycoproteins of the virion envelope are anchored in a hexameric cage hole formed by the MA.
Collapse
Affiliation(s)
- Fabienne Rayne
- INSERM U443, Equipe Rétrovirus et Transfert génique, 146, rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
42
|
Abstract
Novel chemical variants of proteins have been found in nature, including potent 'microprotein' natural products and folded protein molecules that contain a cyclic polypeptide chain. Researchers have used chemical synthesis and genetic methods to make these proteins and more: protein catenanes, neoglycoproteins, and artificial protein molecules with novel architectures or made from novel building blocks. De novo design has taken a big step forward with the accurate design and construction of proteins with complex molecular structure. A variety of non-coded amino acids and other building blocks has been used to make increasingly sophisticated protein molecular devices for use as biosensors and for the study of signal transduction inside living cells.
Collapse
Affiliation(s)
- Stephen Kent
- Cummings Life Sciences Center #325, The University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA.
| |
Collapse
|