1
|
Khan T, Das N, Bhowmik S, Negi KS, Sen P. Critical Role of Water beyond the Media to Maintain Protein Stability and Activity in Hydrated Deep Eutectic Solvent. J Phys Chem B 2025; 129:162-175. [PMID: 39688336 DOI: 10.1021/acs.jpcb.4c07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Hydrated deep eutectic solvents (DESs) are recognized for their potential in biocatalysis due to their tunability, biocompatibility, greenness, and ability to keep protein stable and active. However, the mechanisms governing enzyme stability and activity in DES remain poorly understood. Herein, using bromelain as the model enzyme and acetamide (0.5)/urea(0.3)/sorbitol(0.2) as the model DES, we provide experimental evidence that modulation of associated water plays a key role in dictating protein stability and activity in hydrated DES. Specifically, rigid associated water at higher DES concentrations (beyond 40% v/v) stabilizes bromelain through entropy but destabilizes it through enthalpy. On the other hand, flexible associated water dynamics at lower DES concentrations result in an opposite thermodynamic outcome. Importantly, the bulk water dynamics cannot explain the stability trend, which emphasizes the critical role of water near the protein surface. Strikingly, associated water dynamics also correlates strongly with bromelain's proteolytic activity. An increasing flexibility of the associated water dynamics leads to the enhancement of the activity. This is the first study to experimentally link associated water dynamics to enzyme behavior in hydrated DES, offering insights that could guide future developments in solvent engineering for enzyme catalysis.
Collapse
Affiliation(s)
- Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Suman Bhowmik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Kuldeep Singh Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| |
Collapse
|
2
|
Bachler ZT, Brown MF. Hidden water's influence on rhodopsin activation. Biophys J 2024; 123:4167-4179. [PMID: 39550612 PMCID: PMC11700366 DOI: 10.1016/j.bpj.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
Structural biology relies on several powerful techniques, but these tend to be limited in their ability to characterize protein fluctuations and mobility. Overreliance on structural approaches can lead to omission of critical information regarding biological function. Currently there is a need for complementary biophysical methods to visualize these mobile aspects of protein function. Here, we review hydrostatic and osmotic pressure-based techniques to address this shortcoming for the paradigm of rhodopsin. Hydrostatic and osmotic pressure data contribute important examples, which are interpreted in terms of an energy landscape for hydration-mediated protein dynamics. We find that perturbations of rhodopsin conformational equilibria by force-based methods are not unrelated phenomena; rather they probe various hydration states involving functional proton reactions. Hydrostatic pressure acts on small numbers of strongly interacting structural or solvent-shell water molecules with relatively high energies, while osmotic pressure acts on large numbers of weakly interacting bulk-like water molecules with low energies. Local solvent fluctuations due to the hydration shell and collective water interactions affect hydrogen-bonded networks and domain motions that are explained by a hierarchical energy landscape model for protein dynamics.
Collapse
Affiliation(s)
- Zachary T Bachler
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
3
|
Osti NC, Jalarvo N, Mamontov E. Backscattering silicon spectrometer (BASIS): sixteen years in advanced materials characterization. MATERIALS HORIZONS 2024; 11:4535-4572. [PMID: 39162617 DOI: 10.1039/d4mh00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Quasielastic neutron scattering (QENS) is an experimental technique that can measure parameters of mobility, such as diffusion jump rate and jump length, as well as localized relaxations of chemical species (molecules, ions, and segments) at atomic and nanometer length scales. Due to the high penetrative power of neutrons and their sensitivity to neutron scattering cross-section of chemical species, QENS can effectively probe mobility inside most bulk materials. This review focuses on QENS experiments performed using a neutron backscattering silicon spectrometer (BASIS) to explore the dynamics in various materials and understand their structure-property relationship. BASIS is a time-of-flight near-backscattering inverted geometry spectrometer with very high energy resolution (approximately 0.0035 meV of full width at half maximum), allowing measurements of dynamics on nano to picosecond timescales. The science areas studied with BASIS are diverse, with a focus on soft matter topics, including traditional biological and polymer science experiments, as well as measurements of fluids ranging from simple hydrocarbons and aqueous solutions to relatively complex room-temperature ionic liquids and deep-eutectic solvents, either in the bulk state or confined. Additionally, hydrogen confined in various materials is routinely measured on BASIS. Other topics successfully investigated at BASIS include quantum fluids, spin glasses, and magnetism. BASIS has been in the user program since 2007 at the Spallation Neutron Source of the Oak Ridge National Laboratory, an Office of Science User Facility supported by the U.S. Department of Energy. Over the past sixteen years, BASIS has contributed to various scientific disciplines, exploring the structure and dynamics of many chemical species and their fabrication for practical applications. A comprehensive review of BASIS contributions and capabilities would be an asset to the materials science community, providing insights into employing the neutron backscattering technique for advanced materials characterization.
Collapse
Affiliation(s)
- Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Niina Jalarvo
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
4
|
Gomes I, Martins GF, Galamba N. Essential dynamics of ubiquitin in water and in a natural deep eutectic solvent. Phys Chem Chem Phys 2024; 26:18244-18255. [PMID: 38904333 DOI: 10.1039/d4cp01773k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Natural deep eutectic solvents (NADESs) comprised of osmolytes are of interest as potential biomolecular (cryo)protectants. However, the way these solvents influence the structure and dynamics of biomolecules as well as the role of water remains poorly understood. We carried out principal component analysis of various secondary structure elements of ubiquitin in water and a betaine : glycerol : water (1 : 2 : ζ; ζ = 0, 1, 2, 5, 10, 20, 45) NADES, from molecular dynamics trajectories, to gain insight into the protein dynamics as it undergoes a transition from a highly viscous anhydrous to an aqueous environment. A crossover of the protein's essential dynamics at ζ ∼ 5, induced by solvent-shell coupled fluctuations, is observed, indicating that ubiquitin might (re)fold in the NADES upon water addition at ζ > ∼5. Further, in contrast to water, the anhydrous NADES preserves ubiquitin's essential modes at high temperatures explaining the protein's seemingly enhanced thermal stability.
Collapse
Affiliation(s)
- Inês Gomes
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal.
| | - Gabriel F Martins
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal.
| | - Nuno Galamba
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal.
| |
Collapse
|
5
|
Iorio A, Perin L, Gallo P. Structure and slow dynamics of protein hydration water with cryopreserving DMSO and trehalose upon cooling. J Chem Phys 2024; 160:244502. [PMID: 38912631 DOI: 10.1063/5.0205569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024] Open
Abstract
We study, through molecular dynamics simulations, three aqueous solutions with one lysozyme protein and three different concentrations of trehalose and dimethyl sulfoxide (DMSO). We analyze the structural and dynamical properties of the protein hydration water upon cooling. We find that trehalose plays a major role in modifying the structure of the network of HBs between water molecules in the hydration layer of the protein. The dynamics of hydration water presents, in addition to the α-relaxation, typical of glass formers, a slower long-time relaxation process, which greatly slows down the dynamics of water, particularly in the systems with trehalose, where it becomes dominant at low temperatures. In all the solutions, we observe, from the behavior of the α-relaxation times, a shift of the Mode Coupling Theory crossover temperature and the fragile-to-strong crossover temperature toward higher values with respect to bulk water. We also observe a strong-to-strong crossover from the temperature behavior of the long-relaxation times. In the aqueous solution with only DMSO, the transition shifts to a lower temperature than in the case with only lysozyme reported in the literature. We observe that the addition of trehalose to the mixture has the opposite effect of restoring the original location of the strong-to-strong crossover. In all the solutions analyzed in this work, the observed temperature of the protein dynamical transition is slightly shifted at lower temperatures than that of the strong-to-strong crossover, but their relative order is the same, showing a correlation between the motion of the protein and that of the hydration water.
Collapse
Affiliation(s)
- Antonio Iorio
- Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| | - Leonardo Perin
- Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| | - Paola Gallo
- Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| |
Collapse
|
6
|
Tavagnacco L, Zanatta M, Buratti E, Bertoldo M, Chiessi E, Appel M, Natali F, Orecchini A, Zaccarelli E. Water slowing down drives the occurrence of the low temperature dynamical transition in microgels. Chem Sci 2024; 15:9249-9257. [PMID: 38903230 PMCID: PMC11186305 DOI: 10.1039/d4sc02650k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 06/22/2024] Open
Abstract
The protein dynamical transition marks an increase in atomic mobility and the onset of anharmonic motions at a critical temperature (T d), which is considered relevant for protein functionality. This phenomenon is ubiquitous, regardless of protein composition, structure and biological function and typically occurs at large protein content, to avoid water crystallization. Recently, a dynamical transition has also been reported in non-biological macromolecules, such as poly(N-isopropyl acrylamide) (PNIPAM) microgels, bearing many similarities to proteins. While the generality of this phenomenon is well-established, the role of water in the transition remains a subject of debate. In this study, we use atomistic molecular dynamics (MD) simulations and elastic incoherent neutron scattering (EINS) experiments with selective deuteration to investigate the microscopic origin of the dynamical transition and distinguish water and PNIPAM roles. While a standard analysis of EINS experiments would suggest that the dynamical transition occurs in PNIPAM and water at a similar temperature, simulations reveal a different perspective, also qualitatively supported by experiments. From room temperature down to about 180 K, PNIPAM exhibits only modest changes of dynamics, while water, being mainly hydration water under the probed extreme confinement, significantly slows down and undergoes a mode-coupling transition from diffusive to activated. Our findings therefore challenge the traditional view of the dynamical transition, demonstrating that it occurs in proximity of the water mode-coupling transition, shedding light on the intricate interplay between polymer and water dynamics.
Collapse
Affiliation(s)
- Letizia Tavagnacco
- CNR Institute of Complex Systems, Uos Sapienza Piazzale Aldo Moro 2 00185 Rome Italy
- Department of Physics, Sapienza University of Rome Piazzale Aldo Moro 2 00185 Rome Italy
| | - Marco Zanatta
- Department of Physics, University of Trento Via Sommarive 14 38123 Trento Italy
| | - Elena Buratti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Monica Bertoldo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Ester Chiessi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata Via della Ricerca Scientifica I 00133 Rome Italy
| | - Markus Appel
- Institut Laue-Langevin 71 avenue des Martyrs, CS 20156 38042 Grenoble Cedex 9 France
| | - Francesca Natali
- CNR-IOM, Operative Group Grenoble (OGG), Institut Laue Langevin F-38042 Grenoble France
| | - Andrea Orecchini
- Dipartimento di Fisica e Geologia, Università di Perugia Via Alessandro Pascoli 06123 Perugia Italy
- CNR-IOM c/o Dipartimento di Fisica e Geologia, Università di Perugia Via Alessandro Pascoli 06123 Perugia Italy
| | - Emanuela Zaccarelli
- CNR Institute of Complex Systems, Uos Sapienza Piazzale Aldo Moro 2 00185 Rome Italy
- Department of Physics, Sapienza University of Rome Piazzale Aldo Moro 2 00185 Rome Italy
| |
Collapse
|
7
|
Sonaglioni D, Libera V, Tombari E, Peters J, Natali F, Petrillo C, Comez L, Capaccioli S, Paciaroni A. Dynamic Personality of Proteins and Effect of the Molecular Environment. J Phys Chem Lett 2024; 15:5543-5548. [PMID: 38752860 DOI: 10.1021/acs.jpclett.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Protein dynamics display distinct traits that are linked to their specific biological function. However, the interplay between intrinsic dynamics and the molecular environment on protein stability remains poorly understood. In this study, we investigate, by incoherent neutron scattering, the subnanosecond time scale dynamics of three model proteins: the mesophilic lysozyme, the thermophilic thermolysin, and the intrinsically disordered β-casein. Moreover, we address the influence of water, glycerol, and glucose, which create progressively more viscous matrices around the protein surface. By comparing the protein thermal fluctuations, we find that the internal dynamics of thermolysin are less affected by the environment compared to lysozyme and β-casein. We ascribe this behavior to the protein dynamic personality, i.e., to the stiffer dynamics of the thermophilic protein that contrasts the influence of the environment. Remarkably, lysozyme and thermolysin in all molecular environments reach a critical common flexibility when approaching the calorimetric melting temperature.
Collapse
Affiliation(s)
- Daniele Sonaglioni
- Physics Department, University of Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy
| | - Valeria Libera
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Elpidio Tombari
- Istituto per i Processi Chimico-Fisici del CNR, via G. Moruzzi 1, 56124 Pisa, Italy
| | - Judith Peters
- Université Grenoble Alpes, CNRS, LiPhy, 38400 St Martin d'Heres, France
- Institut Laue Langevin, 38000 Grenoble, France
- Institut Universitaire de France, 75005 Paris, France
| | - Francesca Natali
- Institut Laue Langevin, 38000 Grenoble, France
- CNR-IOM and INSIDE@ILL c/o OGG, 71 avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
| | - Caterina Petrillo
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Lucia Comez
- CNR-IOM, Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Simone Capaccioli
- Physics Department, University of Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy
- Istituto per i Processi Chimico-Fisici del CNR, via G. Moruzzi 1, 56124 Pisa, Italy
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa 56126, Italy
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| |
Collapse
|
8
|
Whittington C, Sharma A, Hill SG, Iavarone AT, Hoffman BM, Offenbacher AR. Impact of N-Glycosylation on Protein Structure and Dynamics Linked to Enzymatic C-H Activation in the M. oryzae Lipoxygenase. Biochemistry 2024; 63:1335-1346. [PMID: 38690768 PMCID: PMC11587536 DOI: 10.1021/acs.biochem.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Lipoxygenases (LOXs) from pathogenic fungi are potential therapeutic targets for defense against plant and select human diseases. In contrast to the canonical LOXs in plants and animals, fungal LOXs are unique in having appended N-linked glycans. Such important post-translational modifications (PTMs) endow proteins with altered structure, stability, and/or function. In this study, we present the structural and functional outcomes of removing or altering these surface carbohydrates on the LOX from the devastating rice blast fungus, M. oryzae, MoLOX. Alteration of the PTMs did notinfluence the active site enzyme-substrate ground state structures as visualized by electron-nuclear double resonance (ENDOR) spectroscopy. However, removal of the eight N-linked glycans by asparagine-to-glutamine mutagenesis nonetheless led to a change in substrate selectivity and an elevated activation energy for the reaction with substrate linoleic acid, as determined by kinetic measurements. Comparative hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis of wild-type and Asn-to-Gln MoLOX variants revealed a regionally defined impact on the dynamics of the arched helix that covers the active site. Guided by these HDX results, a single glycan sequon knockout was generated at position 72, and its comparative substrate selectivity from kinetics nearly matched that of the Asn-to-Gln variant. The cumulative data from model glyco-enzyme MoLOX showcase how the presence, alteration, or removal of even a single N-linked glycan can influence the structural integrity and dynamics of the protein that are linked to an enzyme's catalytic proficiency, while indicating that extensive glycosylation protects the enzyme during pathogenesis by protecting it from protease degradation.
Collapse
Affiliation(s)
- Chris Whittington
- Department of Chemistry, East Carolina University, Greenville NC, 27858, United States
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - S. Gage Hill
- Department of Chemistry, East Carolina University, Greenville NC, 27858, United States
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville NC, 27858, United States
| |
Collapse
|
9
|
Bassotti E, Gabrielli S, Paradossi G, Chiessi E, Telling M. An experimentally representative in-silico protocol for dynamical studies of lyophilised and weakly hydrated amorphous proteins. Commun Chem 2024; 7:83. [PMID: 38609466 PMCID: PMC11014950 DOI: 10.1038/s42004-024-01167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Characterization of biopolymers in both dry and weakly hydrated amorphous states has implications for the pharmaceutical industry since it provides understanding of the effect of lyophilisation on stability and biological activity. Atomistic Molecular Dynamics (MD) simulations probe structural and dynamical features related to system functionality. However, while simulations in homogenous aqueous environments are routine, dehydrated model assemblies are a challenge with systems investigated in-silico needing careful consideration; simulated systems potentially differing markedly despite seemingly negligible changes in procedure. Here we propose an in-silico protocol to model proteins in lyophilised and weakly hydrated amorphous states that is both more experimentally representative and routinely applicable. Since the outputs from MD align directly with those accessed by neutron scattering, the efficacy of the simulation protocol proposed is shown by validating against experimental neutron data for apoferritin and insulin. This work also highlights that without cooperative experimental and simulative data, development of simulative procedures using MD alone would prove most challenging.
Collapse
Affiliation(s)
- Elisa Bassotti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133, Rome, Italy
| | - Sara Gabrielli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133, Rome, Italy
| | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133, Rome, Italy
| | - Ester Chiessi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133, Rome, Italy.
| | - Mark Telling
- STFC, ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11OQX, UK.
- Department of Materials, University of Oxford, Parks Road, Oxford, UK.
| |
Collapse
|
10
|
Tenenbaum A. Energy condensation and dipole alignment in protein dynamics. Phys Rev E 2024; 109:044401. [PMID: 38755822 DOI: 10.1103/physreve.109.044401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/26/2024] [Indexed: 05/18/2024]
Abstract
The possibility that distant biomolecules in a cell interact via electromagnetic (e.m.) radiation was proposed many years ago to explain the high rate of encounters of partners in some enzymatic reactions. The results of two recent experiments designed to test the propensity of protein bovine serum albumin (BSA) to interact via e.m. radiation with other proteins were interpreted in a theoretical framework based on three main assumptions: (i) in order to experience this kind of interaction the protein must be in an out-of-equilibrium state; (ii) in this state there is a condensation of energy in low-frequency vibrational modes; and (iii) the hydration layers of water around the protein sustain the energy condensation. In the present paper we present the results of molecular dynamics simulations of BSA in four states: at equilibrium and out-of-equilibrium in water, and at room and high temperature in vacuum. By comparing physical properties of the system in the four states, our simulations provide a qualitative and quantitative assessment of the three assumptions on which the theoretical framework is based. Our results confirm the assumptions of the theoretical model showing energy condensation at low frequency and electretlike alignment between the protein's and the water's dipoles; they also allow a quantitative estimate of the contribution of the out-of-equilibrium state and of the water to the observed behavior of the protein. In particular, it has been found that in the out-of-equilibrium state the amplitude of the oscillation of the protein's dipole moment greatly increases, thereby enhancing a possible absorption or emission of e.m. radiation. The analysis of BSA's dynamics outlined in the present paper provides a procedure for checking the propensity of a biomolecule to interact via e.m. radiation with its biochemical partners.
Collapse
Affiliation(s)
- Alexander Tenenbaum
- Physics Department, Sapienza University, Piazzale Aldo Moro 5, 00185 Roma, Italy
| |
Collapse
|
11
|
Depenveiller C, Baud S, Belloy N, Bochicchio B, Dandurand J, Dauchez M, Pepe A, Pomès R, Samouillan V, Debelle L. Structural and physical basis for the elasticity of elastin. Q Rev Biophys 2024; 57:e3. [PMID: 38501287 DOI: 10.1017/s0033583524000040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Elastin function is to endow vertebrate tissues with elasticity so that they can adapt to local mechanical constraints. The hydrophobicity and insolubility of the mature elastin polymer have hampered studies of its molecular organisation and structure-elasticity relationships. Nevertheless, a growing number of studies from a broad range of disciplines have provided invaluable insights, and several structural models of elastin have been proposed. However, many questions remain regarding how the primary sequence of elastin (and the soluble precursor tropoelastin) governs the molecular structure, its organisation into a polymeric network, and the mechanical properties of the resulting material. The elasticity of elastin is known to be largely entropic in origin, a property that is understood to arise from both its disordered molecular structure and its hydrophobic character. Despite a high degree of hydrophobicity, elastin does not form compact, water-excluding domains and remains highly disordered. However, elastin contains both stable and labile secondary structure elements. Current models of elastin structure and function are drawn from data collected on tropoelastin and on elastin-like peptides (ELPs) but at the tissue level, elasticity is only achieved after polymerisation of the mature elastin. In tissues, the reticulation of tropoelastin chains in water defines the polymer elastin that bears elasticity. Similarly, ELPs require polymerisation to become elastic. There is considerable interest in elastin especially in the biomaterials and cosmetic fields where ELPs are widely used. This review aims to provide an up-to-date survey of/perspective on current knowledge about the interplay between elastin structure, solvation, and entropic elasticity.
Collapse
Affiliation(s)
- Camille Depenveiller
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Stéphanie Baud
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Nicolas Belloy
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Brigida Bochicchio
- Laboratory of Bioinspired Materials, Department of Science, University of Basilicata, Potenza, Italy
| | - Jany Dandurand
- CIRIMAT UMR 5085, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Manuel Dauchez
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Antonietta Pepe
- Laboratory of Bioinspired Materials, Department of Science, University of Basilicata, Potenza, Italy
| | - Régis Pomès
- Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Valérie Samouillan
- CIRIMAT UMR 5085, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Laurent Debelle
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
12
|
Trevitt CR, Yashwanth Kumar DR, Fowler NJ, Williamson MP. Interactions between the protein barnase and co-solutes studied by NMR. Commun Chem 2024; 7:44. [PMID: 38418894 PMCID: PMC10902301 DOI: 10.1038/s42004-024-01127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Protein solubility and stability depend on the co-solutes present. There is little theoretical basis for selection of suitable co-solutes. Some guidance is provided by the Hofmeister series, an empirical ordering of anions according to their effect on solubility and stability; and by osmolytes, which are small organic molecules produced by cells to allow them to function in stressful environments. Here, NMR titrations of the protein barnase with Hofmeister anions and osmolytes are used to measure and locate binding, and thus to separate binding and bulk solvent effects. We describe a rationalisation of Hofmeister (and inverse Hofmeister) effects, which is similar to the traditional chaotrope/kosmotrope idea but based on solvent fluctuation rather than water withdrawal, and characterise how co-solutes affect protein stability and solubility, based on solvent fluctuations. This provides a coherent explanation for solute effects, and points towards a more rational basis for choice of excipients.
Collapse
Affiliation(s)
- Clare R Trevitt
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Certara UK Ltd, Level 2-Acero, 1 Concourse Way, Sheffield, S1 3BJ, UK
| | | | - Nicholas J Fowler
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mike P Williamson
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
13
|
Das S, Basu T, Majumdar S. Electrostatic-Dominated Conformational Fluctuations and Transition States of Phase Separation in Charge-Balanced Protein Polymer. ACS Macro Lett 2024; 13:34-39. [PMID: 38109356 DOI: 10.1021/acsmacrolett.3c00625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Hydration of the protein/polymer is the most important aspect of stability. It is well-known that salts alter the charged polymer's electrostatic forces, ultimately impacting its conformations in solution. The solvent effects lead to certain conformational fluctuations. Previous studies have shown the screening of electrostatic repulsion within the charge-imbalanced protein following charge inversion owing to counterion condensation and phase separation. This article studies conformation stability and phase separation of charge-balanced gelatin (a protein polymer at the isoelectric point) with the addition of different salts. A phenomenon has been reported where the electrostatic effect of salts results in conformational fluctuations in gelatin due to its insufficient hydrations (termed as starvation), which scales with salt concentration. This article also presents different transition states for charge-balanced proteins prior to phase separation. It is concluded that phase separation of a charge-balanced protein passes through a stable state followed by an unstable transition state, where certain unique interactions with salts occur.
Collapse
Affiliation(s)
- Sougat Das
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285, India
| | - Tithi Basu
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285, India
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285, India
| |
Collapse
|
14
|
Struts AV, Barmasov AV, Fried SDE, Hewage KSK, Perera SMDC, Brown MF. Osmotic stress studies of G-protein-coupled receptor rhodopsin activation. Biophys Chem 2024; 304:107112. [PMID: 37952496 DOI: 10.1016/j.bpc.2023.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 11/14/2023]
Abstract
We summarize and critically review osmotic stress studies of the G-protein-coupled receptor rhodopsin. Although small amounts of structural water are present in these receptors, the effect of bulk water on their function remains uncertain. Studies of the influences of osmotic stress on the GPCR archetype rhodopsin have given insights into the functional role of water in receptor activation. Experimental work has discovered that osmolytes shift the metarhodopsin equilibrium after photoactivation, either to the active or inactive conformations according to their molar mass. At least 80 water molecules are found to enter rhodopsin in the transition to the photoreceptor active state. We infer that this movement of water is both necessary and sufficient for receptor activation. If the water influx is prevented, e.g., by large polymer osmolytes or by dehydration, then the receptor functional transition is back shifted. These findings imply a new paradigm in which rhodopsin becomes solvent swollen in the activation mechanism. Water thus acts as an allosteric modulator of function for rhodopsin-like receptors in lipid membranes.
Collapse
Affiliation(s)
- Andrey V Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; Laboratory of Biomolecular NMR, St.-Petersburg State University, 199034 St.-Petersburg, Russia
| | - Alexander V Barmasov
- Department of Biophysics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia; Department of Physics, St.-Petersburg State University, 199034 St.-Petersburg, Russia
| | - Steven D E Fried
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Kushani S K Hewage
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
15
|
Gomes I, Galamba N. Protein stability in a natural deep eutectic solvent: Preferential hydration or solvent slaving? J Chem Phys 2023; 159:235101. [PMID: 38099555 DOI: 10.1063/5.0177095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Deep eutectic solvents (DESs) emerged as potential alternative solvent media in multiple areas, including biomolecular (cryo)preservation. Herein, we studied the stability of a small protein (ubiquitin) in water and a betaine-glycerol-water (B:G:W) (1:2:ζ; ζ = 0, 1, 2, 5, 10) DES, through molecular dynamics. An AMBER-based model that accurately describes the density and shear viscosity of the DES is proposed. We find that water molecules are largely trapped in the solvent, precluding the formation of a full hydration layer, seemingly opposite to osmolytes' preferential exclusion/preferential hydration mechanism. Although the protein is stable in the DES, structural fluctuations are largely suppressed and only recovered upon sufficient hydration. This is explained by a solvent-slaving mechanism where β-fluctuations are key, with the non-monotonic hydration of some amino acids with the water content providing an explanation to the non-monotonic folding of some proteins in aqueous DESs. A major thermal stability enhancement in the DES is also observed, caused by a similar slowdown of the backbone torsional dynamics. Our results support a kinetic stabilization of the protein in the DES, whereas a possible thermodynamic stabilization does not follow a preferential hydration or water entrapment mechanism.
Collapse
Affiliation(s)
- Inês Gomes
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal
| | - Nuno Galamba
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
16
|
Stecher K, Krieger F, Schleeger M, Kiefhaber T. Local and Large-Scale Conformational Dynamics in Unfolded Proteins and IDPs. I. Effect of Solvent Viscosity and Macromolecular Crowding. J Phys Chem B 2023; 127:8095-8105. [PMID: 37722681 PMCID: PMC10544011 DOI: 10.1021/acs.jpcb.3c04070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Protein/solvent interactions largely influence protein dynamics, particularly motions in unfolded and intrinsically disordered proteins (IDPs). Here, we apply triplet-triplet energy transfer (TTET) to investigate the coupling of internal protein motions to solvent motions by determining the effect of solvent viscosity (η) and macromolecular crowding on the rate constants of loop formation (kc) in several unfolded polypeptide chains including IDPs. The results show that the viscosity dependence of loop formation depends on amino acid sequence, loop length, and co-solute size. Below a critical size (rc), co-solutes exert a maximum effect, indicating that under these conditions microviscosity experienced by chain motions matches macroviscosity of the solvent. rc depends on chain stiffness and reflects the length scale of the chain motions, i.e., it is related to the persistence length. Above rc, the effect of solvent viscosity decreases with increasing co-solute size. For co-solutes typically used to mimic cellular environments, a scaling of kc ∝ η-0.1 is observed, suggesting that dynamics in unfolded proteins are only marginally modulated in cells. The effect of solvent viscosity on kc in the small co-solute limit (below rc) increases with increasing chain length and chain flexibility. Formation of long and very flexible loops exhibits a kc ∝ η-1 viscosity dependence, indicating full solvent coupling. Shorter and less flexible loops show weaker solvent coupling with values as low as kc ∝ η-0.75 ± 0.02. Coupling of formation of short loops to solvent motions is very little affected by amino acid sequence, but solvent coupling of long-range loop formation is decreased by side chain sterics.
Collapse
Affiliation(s)
- Karin Stecher
- Chemistry
Department, Technische Universität
München, Lichtenbergstrasse 4, Garching D-85747, Germany
| | - Florian Krieger
- Biozentrum
der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Michael Schleeger
- Abteilung
Proteinbiochemie, Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06120, Germany
| | - Thomas Kiefhaber
- Abteilung
Proteinbiochemie, Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06120, Germany
| |
Collapse
|
17
|
Clark JA, Prabhu VM, Douglas JF. Molecular Dynamics Simulation of the Influence of Temperature and Salt on the Dynamic Hydration Layer in a Model Polyzwitterionic Polymer PAEDAPS. J Phys Chem B 2023; 127:8185-8198. [PMID: 37668318 PMCID: PMC10578162 DOI: 10.1021/acs.jpcb.3c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
We investigate the hydration of poly(3-[2-(acrylamido) ethyldimethylammonio] propanesulfonate) over a range of temperatures in pure water and with the inclusion of 0.1 mol/L NaCl using atomistic molecular dynamics simulation. Drawing on concepts drawn from the field of glass-forming liquids, we use the Debye-Waller parameter () for describing the water mobility gradient around the polybetaine backbone extending to an overall distance ≈18 Å. The water mobility in this layer is defined through the mean-square water molecule displacement at a time on the order of water's β-relaxation time. The brushlike topology of polybetaines leads to two regions in the dynamic hydration layer. The inner region of ≈10.5 Å is explored by pendant group conformational motions, and the outer region of ≈7.5 Å represents an extended layer of reduced water mobility relative to bulk water. The dynamic hydration layer extends far beyond the static hydration layer, adjacent to the polymer.
Collapse
Affiliation(s)
- Jennifer A. Clark
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
18
|
Filianina M, Bin M, Berkowicz S, Reiser M, Li H, Timmermann S, Blankenburg M, Amann-Winkel K, Gutt C, Perakis F. Nanocrystallites Modulate Intermolecular Interactions in Cryoprotected Protein Solutions. J Phys Chem B 2023. [PMID: 37399586 DOI: 10.1021/acs.jpcb.3c02413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Studying protein interactions at low temperatures has important implications for optimizing cryostorage processes of biological tissue, food, and protein-based drugs. One of the major issues is related to the formation of ice nanocrystals, which can occur even in the presence of cryoprotectants and can lead to protein denaturation. The presence of ice nanocrystals in protein solutions poses several challenges since, contrary to microscopic ice crystals, they can be difficult to resolve and can complicate the interpretation of experimental data. Here, using a combination of small- and wide-angle X-ray scattering (SAXS and WAXS), we investigate the structural evolution of concentrated lysozyme solutions in a cryoprotected glycerol-water mixture from room temperature (T = 300 K) down to cryogenic temperatures (T = 195 K). Upon cooling, we observe a transition near the melting temperature of the solution (T ≈ 245 K), which manifests both in the temperature dependence of the scattering intensity peak position reflecting protein-protein length scales (SAXS) and the interatomic distances within the solvent (WAXS). Upon thermal cycling, a hysteresis is observed in the scattering intensity, which is attributed to the formation of nanocrystallites in the order of 10 nm. The experimental data are well described by the two-Yukawa model, which indicates temperature-dependent changes in the short-range attraction of the protein-protein interaction potential. Our results demonstrate that the nanocrystal growth yields effectively stronger protein-protein attraction and influences the protein pair distribution function beyond the first coordination shell.
Collapse
Affiliation(s)
- Mariia Filianina
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Maddalena Bin
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Sharon Berkowicz
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Mario Reiser
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Hailong Li
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
- Max Plank Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sonja Timmermann
- Department of Physics, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Malte Blankenburg
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
- Max Plank Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Physics, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Christian Gutt
- Department of Physics, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
19
|
Hu K, Shirakashi R. Molecular dynamics study of water rotational relaxation in saccharide solution for the development of bioprotective agent. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
20
|
Bertini L, Libera V, Ripanti F, Natali F, Paolantoni M, Orecchini A, Nucara A, Petrillo C, Comez L, Paciaroni A. Polymorphism and Ligand Binding Modulate Fast Dynamics of Human Telomeric G-Quadruplexes. Int J Mol Sci 2023; 24:ijms24054280. [PMID: 36901712 PMCID: PMC10001961 DOI: 10.3390/ijms24054280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Telomeric G-quadruplexes (G4s) are promising targets in the design and development of anticancer drugs. Their actual topology depends on several factors, resulting in structural polymorphism. In this study, we investigate how the fast dynamics of the telomeric sequence AG3(TTAG3)3 (Tel22) depends on the conformation. By using Fourier transform Infrared spectroscopy, we show that, in the hydrated powder state, Tel22 adopts parallel and mixed antiparallel/parallel topologies in the presence of K+ and Na+ ions, respectively. These conformational differences are reflected in the reduced mobility of Tel22 in Na+ environment in the sub-nanosecond timescale, as probed by elastic incoherent neutron scattering. These findings are consistent with the G4 antiparallel conformation being more stable than the parallel one, possibly due to the presence of ordered hydration water networks. In addition, we study the effect of Tel22 complexation with BRACO19 ligand. Despite the quite similar conformation in the complexed and uncomplexed state, the fast dynamics of Tel22-BRACO19 is enhanced compared to that of Tel22 alone, independently of the ions. We ascribe this effect to the preferential binding of water molecules to Tel22 against the ligand. The present results suggest that the effect of polymorphism and complexation on the G4 fast dynamics is mediated by hydration water.
Collapse
Affiliation(s)
- Luca Bertini
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Valeria Libera
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- CNR-IOM c/o Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Francesca Ripanti
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- Correspondence: (F.R.); (L.C.)
| | - Francesca Natali
- CNR-IOM and INSIDE@ILL c/o OGG, 71 avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
| | - Marco Paolantoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 6, 06123 Perugia, Italy
| | - Andrea Orecchini
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- CNR-IOM c/o Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Alessandro Nucara
- Department of Physics, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Caterina Petrillo
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Lucia Comez
- CNR-IOM c/o Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- Correspondence: (F.R.); (L.C.)
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| |
Collapse
|
21
|
Thorne RE. Determining biomolecular structures near room temperature using X-ray crystallography: concepts, methods and future optimization. Acta Crystallogr D Struct Biol 2023; 79:78-94. [PMID: 36601809 PMCID: PMC9815097 DOI: 10.1107/s2059798322011652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/04/2022] [Indexed: 01/05/2023] Open
Abstract
For roughly two decades, cryocrystallography has been the overwhelmingly dominant method for determining high-resolution biomolecular structures. Competition from single-particle cryo-electron microscopy and micro-electron diffraction, increased interest in functionally relevant information that may be missing or corrupted in structures determined at cryogenic temperature, and interest in time-resolved studies of the biomolecular response to chemical and optical stimuli have driven renewed interest in data collection at room temperature and, more generally, at temperatures from the protein-solvent glass transition near 200 K to ∼350 K. Fischer has recently reviewed practical methods for room-temperature data collection and analysis [Fischer (2021), Q. Rev. Biophys. 54, e1]. Here, the key advantages and physical principles of, and methods for, crystallographic data collection at noncryogenic temperatures and some factors relevant to interpreting the resulting data are discussed. For room-temperature data collection to realize its potential within the structural biology toolkit, streamlined and standardized methods for delivering crystals prepared in the home laboratory to the synchrotron and for automated handling and data collection, similar to those for cryocrystallography, should be implemented.
Collapse
Affiliation(s)
- Robert E. Thorne
- Physics Department, Cornell University, Ithaca, NY 14853, USA
- MiTeGen LLC, PO Box 3867, Ithaca, NY 14850, USA
| |
Collapse
|
22
|
Bertini L, Libera V, Ripanti F, Seydel T, Paolantoni M, Orecchini A, Petrillo C, Comez L, Paciaroni A. Role of fast dynamics in the complexation of G-quadruplexes with small molecules. Phys Chem Chem Phys 2022; 24:29232-29240. [PMID: 36445842 DOI: 10.1039/d2cp03602a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G-quadruplexes (G4s) formed by the human telomeric sequence AG3 (TTAG3)3 (Tel22) play a key role in cancer and aging. We combined elastic incoherent neutron scattering (EINS) and quasielastic incoherent neutron scattering (QENS) to characterize the internal dynamics of Tel22 G4s and to assess how it is affected by complexation with two standard ligands, Berberine and BRACO19. We show that the interaction with the two ligands induces an increase of the overall mobility of Tel22 as quantified by the mean squared displacements (MSD) of hydrogen atoms. At the same time, the complexes display a lower stiffness than G4 alone. Two different types of motion characterize the G4 nanosecond timescale dynamics. Upon complexation, an increasing fraction of G4 atomic groups participate in this fast dynamics, along with an increase in the relevant characteristic length scales. We suggest that the entropic contribution to the conformational free energy of these motions might be crucial for the complexation mechanisms.
Collapse
Affiliation(s)
- Luca Bertini
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Valeria Libera
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy. .,Istituto Officina dei Materiali-IOM, National Research Council-CNR, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Francesca Ripanti
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Tilo Seydel
- Institut Max von Laue - Paul Langevin (ILL) 71 avenue des Martyrs, 38042 Grenoble, France
| | - Marco Paolantoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 6, 06123 Perugia, Italy
| | - Andrea Orecchini
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Caterina Petrillo
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Lucia Comez
- Istituto Officina dei Materiali-IOM, National Research Council-CNR, Via Alessandro Pascoli, 06123 Perugia, Italy.
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy.
| |
Collapse
|
23
|
Schay G, Fidy J, Herenyi L. Slow dynamics measured by phosphorescence lifetime reveals global conformational changes in human adult hemoglobin induced by allosteric effectors. PLoS One 2022; 17:e0278417. [PMID: 36454779 PMCID: PMC9714750 DOI: 10.1371/journal.pone.0278417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
The mechanism underlying allostery in hemoglobin (Hb) is still not completely understood. Various models describing the action of allosteric effectors on Hb function have been published in the literature. It has also been reported that some allosteric effectors-such as chloride ions, inositol hexaphosphate, 2,3-diphospho-glycerate and bezafibrate-considerably lower the oxygen affinity of Hb. In this context, an important question is the extent to which these changes influence the conformational dynamics of the protein. Earlier, we elaborated a challenging method based on phosphorescence quenching, which makes characterizing protein-internal dynamics possible in the ms time range. The experimental technique involves phosphorescence lifetime measurements in thermal equilibrium at varied temperatures from 10 K up to 273 K, based on the signal of Zn-protoporphyrin substituted for the heme in the β-subunits of Hb. The thermal activation of protein dynamics was observed by the enhancement of phosphorescence quenching attributed to O2 diffusion. It was shown that the thermal activation of protein matrix dynamics was clearly distinguishable from the dynamic activation of the aqueous solvent, and was therefore highly specific for the protein. In the present work, the same method was used to study the changes in the parameters of the dynamic activation of human HbA induced by binding allosteric effectors. We interpreted the phenomenon as phase transition between two states. The fitting of this model to lifetime data yielded the change of energy and entropy in the activation process and the quenching rate in the dynamically activated state. The fitted parameters were particularly sensitive to the presence of allosteric effectors and could be interpreted in line with results from earlier experimental studies. The results suggest that allosteric effectors are tightly coupled to the dynamics of the whole protein, and thus underline the importance of global dynamics in the regulation of Hb function.
Collapse
Affiliation(s)
- Gusztáv Schay
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Judit Fidy
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Levente Herenyi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
24
|
Garg M, Sharma D, Kumar R. Analysis of the effect of 1-Allyl-3-Methylimidazolium chloride on thermodynamic stability, folding kinetics, and motional dynamics of horse cytochrome c. Biophys Chem 2022; 290:106892. [PMID: 36115294 DOI: 10.1016/j.bpc.2022.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/02/2022]
Abstract
1-allyl-3-methylimidazolium chloride (AMIMCl) acts as a potential green solvent for proteins. The present work provides a possible pathway by which the structural, kinetic, thermodynamic, and folding properties of horse cytochrome c (cyt c) are affected in green aqueous-AMIMCl systems. Analysis of the effect of AMIMCl on thermodynamic stability, refolding/unfolding kinetics, and motional dynamics of cyt c provided important information, (i) AMIMCl decreases the thermodynamic stability of reduced cyt c and also strengthens the guanidinium chloride (GdmCl)-mediated decrease in thermodynamic stability of protein, (ii) AMIMCl reduces the thermal-fluctuation of Met80-containing omega-loop of natively-folded compact state of carbonmonoxycytochrome c (MCO-state) due to polyfunctional interactions between the AMIM+ and different groups of protein, (iii) AMIMCl shifts the kinetic chevron plot, ln kobs[GdmCl] to the lower concentration of GdmCl, (iv) AMIMCl shifts the refolding and unfolding limps to vertically downwards and upwards, respectively, and (v) AMIMCl reducing the unfolding free energy estimated by both thermodynamic and kinetic analysis.
Collapse
Affiliation(s)
- Mansi Garg
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research- Institute of Microbial Technology, Sector 39A, Chandigarh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rajesh Kumar
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India.
| |
Collapse
|
25
|
Matsuo T, Peters J. Sub-Nanosecond Dynamics of Pathologically Relevant Bio-Macromolecules Observed by Incoherent Neutron Scattering. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081259. [PMID: 36013438 PMCID: PMC9410404 DOI: 10.3390/life12081259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023]
Abstract
Incoherent neutron scattering (iNS) is one of the most powerful techniques to study the dynamical behavior of bio-macromolecules such as proteins and lipid molecules or whole cells. This technique has widely been used to elucidate the fundamental aspects of molecular motions that manifest in the bio-macromolecules in relation to their intrinsic molecular properties and biological functions. Furthermore, in the last decade, iNS studies focusing on a possible relationship between molecular dynamics and biological malfunctions, i.e., human diseases and disorders, have gained importance. In this review, we summarize recent iNS studies on pathologically relevant proteins and lipids and discuss how the findings are of importance to elucidate the molecular mechanisms of human diseases and disorders that each study targets. Since some diseases such as amyloidosis have become more relevant in the aging society, research in this field will continue to develop further and be more important in the current increasing trend for longevity worldwide.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai 319-1106, Ibaraki, Japan
- Dept. of Physics, Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
- Correspondence: (T.M.); (J.P.)
| | - Judith Peters
- Dept. of Physics, Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
- Institut Universitaire de France, 75231 Paris, France
- Correspondence: (T.M.); (J.P.)
| |
Collapse
|
26
|
Reuhl M, Vogel M. Temperature-Dependent Dynamics at Protein-Solvent Interfaces. J Chem Phys 2022; 157:074705. [DOI: 10.1063/5.0105062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We perform differential scanning calorimetry, broadband dielectric spectroscopy (BDS), and nuclear magnetic resonance (NMR) studies to ascertain the molecular dynamics in mixtures of ethylene glycol with elastin or lysozyme over broad temperature ranges. To focus on the protein-solvent interface, we use mixtures with about equal numbers of amino acids and solvent molecules. The elastin and lysozyme mixtures show similar glass transition steps, which extend over a broad temperature range of 157-185K. The BDS and NMR studies yield fully consistent results for the fastest process P1, which is caused by the structural relaxation of ethylene glycol between the protein molecules and follows an Arrhenius law with an activation energy of Ea=0.63eV. It involves quasi-isotropic reorientation and is very similar in the elastin and lysozyme matrices but different from the alpha and beta relaxations of bulk ethylene glycol. Two slower BDS processes P2 and P3 have protein-dependent time scales, but exhibit a similar Arrhenius-like temperature dependence with an activation energy of Ea~0.81eV. However, P2 and P3 do not have a clear NMR signature. In particular, the NMR results for the lysozyme mixture reveal that the protein backbone does not show isotropic alpha-like motion on the P2 and P3 time scales but only restricted beta-like reorientation. The different activation energies of the P1 and P2/P3 processes do not support an intimate coupling of protein and ethylene glycol dynamics. The present results are compared with previous findings for mixtures of proteins with water or glycerol, implying qualitatively different dynamical couplings at various protein-solvent interfaces.
Collapse
Affiliation(s)
| | - Michael Vogel
- Institute of Condensed Matter Physics, TU Darmstadt, Germany
| |
Collapse
|
27
|
Bartucci R, Aloi E. Librational Dynamics of Spin-Labeled Membranes at Cryogenic Temperatures From Echo-Detected ED-EPR Spectra. Front Mol Biosci 2022; 9:923794. [PMID: 35847982 PMCID: PMC9277068 DOI: 10.3389/fmolb.2022.923794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Methods of electron spin echo of pulse electron paramagnetic resonance (EPR) spectroscopy are increasingly employed to investigate biophysical properties of nitroxide-labeled biosystems at cryogenic temperatures. Two-pulse echo-detected ED-spectra have proven to be valuable tools to describe the librational dynamics in the low-temperature phases of both lipids and proteins in membranes. The motional parameter, α2τC, given by the product of the mean-square angular amplitude, α2, and the rotational correlation time, τC, of the motion, is readily determined from the nitroxide ED-spectra as well as from the W-relaxation rate curves. An independent evaluation of α2 is obtained from the motionally averaged 14N-hyperfine splitting separation in the continuous wave cw-EPR spectra. Finally, the rotational correlation time τC can be estimated by combining ED- and cw-EPR data. In this mini-review, results on the librational dynamics in model and natural membranes are illustrated.
Collapse
Affiliation(s)
- Rosa Bartucci
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende (CS), Italy
- *Correspondence: Rosa Bartucci,
| | - Erika Aloi
- Molecular Biophysics Laboratory, Department of Physics, University of Calabria, Rende (CS), Italy
| |
Collapse
|
28
|
Doan LC, Dahanayake JN, Mitchell-Koch KR, Singh AK, Vinh NQ. Probing Adaptation of Hydration and Protein Dynamics to Temperature. ACS OMEGA 2022; 7:22020-22031. [PMID: 35785325 PMCID: PMC9245114 DOI: 10.1021/acsomega.2c02843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Protein dynamics is strongly influenced by the surrounding environment and physiological conditions. Here we employ broadband megahertz-to-terahertz spectroscopy to explore the dynamics of water and myoglobin protein on an extended time scale from femto- to nanosecond. The dielectric spectra reveal several relaxations corresponding to the orientational polarization mechanism, including the dynamics of loosely bound, tightly bound, and bulk water, as well as collective vibrational modes of protein in an aqueous environment. The dynamics of loosely bound and bulk water follow non-Arrhenius behavior; however, the dynamics of water molecules in the tightly bound layer obeys the Arrhenius-type relation. Combining molecular simulations and effective-medium approximation, we have determined the number of water molecules in the tightly bound hydration layer and studied the dynamics of protein as a function of temperature. The results provide the important impact of water on the biochemical functions of proteins.
Collapse
Affiliation(s)
- Luan C. Doan
- Department
of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jayangika N. Dahanayake
- Department
of Chemistry, Faculty of Science, University
of Kelaniya, Kelaniya 11600, Sri Lanka
| | | | - Abhishek K. Singh
- Department
of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nguyen Q. Vinh
- Department
of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
29
|
Hu K, Matsuura H, Shirakashi R. Stochastic Analysis of Molecular Dynamics Reveals the Rotation Dynamics Distribution of Water around Lysozyme. J Phys Chem B 2022; 126:4520-4530. [PMID: 35675630 DOI: 10.1021/acs.jpcb.2c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water dynamics is essential to biochemical processes by mediating all such reactions, including biomolecular degeneration in solutions. To disentangle the molecular-scale distribution of water dynamics around a solute biomolecule, we investigated here the rotational dynamics of water around lysozyme by combining molecular dynamics (MD) simulations and broadband dielectric spectroscopy (BDS). A statistical analysis using the relaxation times and trajectories of every single water molecule was proposed, and the two-dimensional probability distribution of water at a distance from the lysozyme surface with a rotational relaxation time was given. For the observed lysozyme solutions of 34-284 mg/mL, we discovered that the dielectric relaxation time obtained from this distribution agrees well with the measured γ relaxation time, which suggests that rotational self-correlation of water molecules underlies the gigahertz domain of the dielectric spectra. Regardless of protein concentration, water rotational relaxation time versus the distance from the lysozyme surface revealed that the water rotation is severely retarded within 3 Å from the lysozyme surface and is nearly comparable to pure water when farther than 10 Å. The dimension of the first hydration layer was subsequently identified in terms of the relationship between the acceleration of water rotation and the distance from the protein surface.
Collapse
Affiliation(s)
- Kang Hu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan.,Department of Mechanical Engineering, The University of Tokyo, 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Matsuura
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan
| |
Collapse
|
30
|
Rosi BP, D’Angelo A, Buratti E, Zanatta M, Tavagnacco L, Natali F, Zamponi M, Noferini D, Corezzi S, Zaccarelli E, Comez L, Sacchetti F, Paciaroni A, Petrillo C, Orecchini A. Impact of the Environment on the PNIPAM Dynamical Transition Probed by Elastic Neutron Scattering. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benedetta P. Rosi
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Arianna D’Angelo
- Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, 510 Rue André Rivière, 91405 Orsay, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Elena Buratti
- Dipartimento di Fisica, CNR-ISC c/o Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Marco Zanatta
- Dipartimento di Fisica, Università di Trento, via Sommarive 14, 38123 Trento, Italy
| | - Letizia Tavagnacco
- Dipartimento di Fisica, CNR-ISC c/o Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Francesca Natali
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
- CNR-IOM, OGG, 71 Avenue des Martyrs, 38043 Grenoble, Cedex 9, France
| | - Michaela Zamponi
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Daria Noferini
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
- European Spallation Source ERIC, Box 176, 221 00 Lund, Sweden
| | - Silvia Corezzi
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Emanuela Zaccarelli
- Dipartimento di Fisica, CNR-ISC c/o Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Lucia Comez
- Dipartimento di Fisica e Geologia, CNR-IOM c/o Università di Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Francesco Sacchetti
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Alessandro Paciaroni
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Caterina Petrillo
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Andrea Orecchini
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- Dipartimento di Fisica e Geologia, CNR-IOM c/o Università di Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| |
Collapse
|
31
|
Horstmann R, Hecht L, Kloth S, Vogel M. Structural and Dynamical Properties of Liquids in Confinements: A Review of Molecular Dynamics Simulation Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6506-6522. [PMID: 35580166 DOI: 10.1021/acs.langmuir.2c00521] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular dynamics (MD) simulations are a powerful tool for detailed studies of altered properties of liquids in confinement, in particular, of changed structures and dynamics. They allow, on one hand, for perfect control and systematic variation of the geometries and interactions inherent in confinement situations and, on the other hand, for type-selective and position-resolved analyses of a huge variety of structural and dynamical parameters. Here, we review MD simulation studies on various types of liquids and confinements. The main focus is confined aqueous systems, but also ionic liquids and polymer and silica melts are discussed. Results for confinements featuring different interactions, sizes, shapes, and rigidity will be presented. Special attention will be given to situations in which the confined liquid and the confining matrix consist of the same type of particles and, hence, disparate liquid-matrix interactions are absent. Findings for the magnitude and the range of wall effects on molecular positions and orientations and on molecular dynamics, including vibrational motion and structural relaxation, are reviewed. Moreover, their dependence on the parameters of the confinement and their relevance to theoretical approaches to the glass transition are addressed.
Collapse
Affiliation(s)
- Robin Horstmann
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Lukas Hecht
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Sebastian Kloth
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Michael Vogel
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| |
Collapse
|
32
|
Campo MG, Corral GM. Structural, dynamic, and hydration properties of quercetin and its aggregates in solution. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:294001. [PMID: 35472688 DOI: 10.1088/1361-648x/ac6a99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Quercetin is a flavonoid present in the human diet with multiple health benefits. Quercetin solutions are inhomogeneous even at very low concentrations due to quercetin's tendency to aggregate. We simulate, using molecular dynamics, three systems of quercetin solutions: infinite dilution, 0.22 M, and 0.46 M. The systems at the two highest concentrations represent regions of the quercetin aggregates, in which the concentration of this molecule is unusually high. We study the behavior of this molecule, its aggregates, and the modifications in the surrounding water. In the first three successive layers of quercetin hydration, the density of water and the hydrogen bonds formations between water molecules are smaller than that of bulk. Quercetin has a hydrophilic surface region that preferentially establishes donor hydrogen bonds with water molecules with relative frequencies from 0.12 to 0.46 at infinite dilution. Also, it has two hydrophobic regions above and below the planes of its rings, whose first hydration layers are further out from quercetin (≈0.3 Å) and their water molecules do not establish hydrogen bonds with it. Water density around the hydrophobic regions is smaller than that of the hydrophilic. Quercetin molecules aggregate inπ-stacking configurations, with a distance of ≈0.37 nm between the planes of their rings, and form bonds between their hydroxyl groups. The formation of quercetin aggregates decreases the hydrogen bonds between quercetin and the surrounding water and produces a subdiffusive behavior in water molecules. Quercetin has a subdiffusive behavior even at infinite dilution, which increases with the number of molecules within the aggregates and the time they remain within them.
Collapse
Affiliation(s)
- M G Campo
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Uruguay 151, (6300) Santa Rosa, Argentina
| | - G M Corral
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Uruguay 151, (6300) Santa Rosa, Argentina
| |
Collapse
|
33
|
Li W, Nforneh B, Whitcomb KL, Warncke K. Resolution and characterization of confinement- and temperature-dependent dynamics in solvent phases that surround proteins in frozen aqueous solution by using spin-probe EPR spectroscopy. Methods Enzymol 2022; 666:25-57. [PMID: 35465922 DOI: 10.1016/bs.mie.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spin probe electron paramagnetic resonance spectroscopy is applied to characterize the dynamics of concentric hydration and mesophase solvent domains that surround proteins within the ice boundary in frozen aqueous solutions. The solvent dynamics are tuned by variation of temperature (190-265K) and by the degree of ice boundary confinement, which is modulated by the volume of added cryosolvent (0-~50Å separation distance from protein surface). Goals are to: (1) characterize the protein-coupled solvent dynamics on correlation time scales of ~10-10<τ<10-7s, and spatial scales from protein surface to periphery of the surrounding solution, from the perspective of a free, small-molecule (~7Å diameter) probe, and (2) reveal properties of the solvent-protein coupling that can be correlated with protein functions, that are measureable under the same conditions. Rotational mobility of the nitroxide spin probe, TEMPOL, resolves and tracks two solvent components, the protein-associated domain (PAD; akin to hydration layer) and surrounding mesodomain, through their distinct temperature- and confinement-dependent values of τ and normalized weight. Detailed protocols are described for simulation of two-component nitroxide EPR spectra, which are categorized by line shape regime and guided by a library of template spectra and simulation parameters derived from two model soluble globular proteins. The order-disorder transition in the PAD, which is a universal feature of protein-coupled solvent dynamics, provides a well-defined, tunable property for elucidating mechanism in solvent-protein-function dynamical coupling. The low-temperature mesodomain system and EPR spin probe method are generally applicable to reveal solvent contributions to a broad range of macromolecule-mediated biological processes.
Collapse
Affiliation(s)
- Wei Li
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Benjamen Nforneh
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Katie L Whitcomb
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, GA, United States.
| |
Collapse
|
34
|
Rastogi H, Chowdhury PK. Correlating the Local and Global Dynamics of an Enzyme in the Crowded Milieu. J Phys Chem B 2022; 126:3208-3223. [PMID: 35442681 DOI: 10.1021/acs.jpcb.1c09759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzymes are dynamic biological macromolecules, with their catalytic function(s) being largely influenced by the changes in local fluctuations of amino acid side chains as well as global structural modulations that the enzyme undergoes. Such local and global motions can be highly affected inside the crowded physiological interior of the cell. Here, we have addressed the role of dynamic structural flexibility in affecting the activation energy barrier of a flexible multidomain enzyme adenylate kinase (AK3L1, UniProtKB: Q9UIJ7). Activation energy profiles of both local (at three different sites along the polypeptide backbone) and global dynamics of the enzyme have been monitored using solvation studies on the subnanosecond time scale and tryptophan quenching studies over the temperature range of 278-323 K, respectively, under crowded conditions (Ficoll 70, Dextran 40, Dextran 70, and PEG 8). This study not only provides the site-specific mapping of dynamics but reveals that the activation energies associated with these local motions undergo a significant decrease in the presence of macromolecular crowders, providing new insights into how crowding affects internal protein dynamics. The crowded scenario also aids in enhancing the coupling between the local and global motions of the enzyme. Moreover, select portions/regions of the enzyme when taken together can well mirror the overall dynamics of the biomolecule, showing possible energy hotspots along the polypeptide backbone.
Collapse
Affiliation(s)
- Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India 110016
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India 110016
| |
Collapse
|
35
|
Low-temperature librations and dynamical transition in proteins at differing hydration levels. Biomol Concepts 2022; 13:81-88. [DOI: 10.1515/bmc-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Hydration of water affects the dynamics and in turn the activity of biomacromolecules. We investigated the dependence of the librational oscillations and the dynamical transition on the hydrating conditions of two globular proteins with different structure and size, namely β-lactoglobulin (βLG) and human serum albumin (HSA), by spin-label electron paramagnetic resonance (EPR) in the temperature range of 120–270 K. The proteins were spin-labeled with 5-maleimide spin-label on free cysteins and prepared in the lyophilized state, at low (h = 0.12) and full (h = 2) hydration levels in buffer. The angular amplitudes of librations are small and almost temperature independent for both lyophilized proteins. Therefore, in these samples, the librational dynamics is restricted and the dynamical transition is absent. In the small and compact beta-structured βLG, the angular librational amplitudes increase with temperature and hydrating conditions, whereas hydration-independent librational oscillations whose amplitudes rise with temperature are recorded in the large and flexible alpha-structured HSA. Both βLG and HSA at low and fully hydration levels undergo the dynamical transition at about 230 K. The overall results indicate that protein librational dynamics is activated at the low hydration level h = 0.12 and highlight biophysical properties that are common to other biosamples at cryogenic temperatures.
Collapse
|
36
|
Aloi E, Bartucci R. Influence of hydration on segmental chain librations and dynamical transition in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183805. [PMID: 34662568 DOI: 10.1016/j.bbamem.2021.183805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022]
Abstract
Continuous wave electron paramagnetic resonance spectroscopy of chain-labeled phospholipids is used to investigate the effects of hydration on the librational oscillations and the dynamical transition of phospholipid membranes in the low-temperature range 120-270 K. Bilayers of dipalmitoylphostatidiycholine (DPPC) spin-labeled at the first acyl chain segments and at the methyl ends and prepared at full, low, and very low hydration are considered. The segmental mean-square angular amplitudes of librations, 〈α2〉, are larger in the bilayer interior than at the polar/apolar interface and larger in the fully and low hydrated than in the very low hydrated membranes. For chain segments at the beginning of the hydrocarbon region, 〈α2〉-values are markedly restricted and temperature independent in DPPC with the lowest water content, whereas they increase with temperature in the low and fully hydrated bilayers, particularly at the highest temperatures. For chain segments at the chain termini, the librational amplitudes increase progressively, first slowly and then more rapidly with temperature in bilayers at any level of hydration. From the temperature dependence of the mean-square librational amplitude, the dynamical transition is detected around 240 K at the polar/apolar interface in fully and low hydrated DPPC and at around 225 K at the inner hydrocarbon region for bilayers at any hydration condition. At the dynamical transition the bilayers cross low energy barriers of activation energy in the range 10-20 kJ/mol. The results highlight biophysical properties of DPPC bilayers at low-temperature and provide evidence of the effects of the hydration on the dynamical transition in bilayers.
Collapse
Affiliation(s)
- Erika Aloi
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, (CS), Italy
| | - Rosa Bartucci
- Department of Chemistry and Chemical Technologies, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, (CS), Italy.
| |
Collapse
|
37
|
Kohne M, Li W, Ionescu A, Zhu C, Warncke K. Resolution and characterization of contributions of select protein and coupled solvent configurational fluctuations to radical rearrangement catalysis in coenzyme B 12-dependent ethanolamine ammonia-lyase. Methods Enzymol 2022; 669:229-259. [PMID: 35644173 PMCID: PMC9270175 DOI: 10.1016/bs.mie.2021.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Coenzyme B12 (adenosylcobalamin) -dependent ethanolamine ammonia-lyase (EAL) is the signature enzyme in ethanolamine utilization metabolism associated with microbiome homeostasis and disease conditions in the human gut. The enzyme conducts a complex choreography of bond-making/bond-breaking steps that rearrange substrate to products through a radical mechanism, with themes common to other coenzyme B12-dependent and radical enzymes. The methods presented are targeted to test the hypothesis that particular, select protein and coupled solvent configurational fluctuations contribute to enzyme function. The general approach is to correlate enzyme function with an introduced perturbation that alters the properties (for example, degree of concertedness, or collectiveness) of protein and coupled solvent dynamics. Methods for sample preparation and low-temperature kinetic measurements by using temperature-step reaction initiation and time-resolved, full-spectrum electron paramagnetic resonance spectroscopy are detailed. A framework for interpretation of results obtained in ensemble systems under conditions of statistical equilibrium within the reacting, globally unstable state is presented. The temperature-dependence of the first-order rate constants for decay of the cryotrapped paramagnetic substrate radical state in EAL, through the chemical step of radical rearrangement, displays a piecewise-continuous Arrhenius dependence from 203 to 295K, punctuated by a kinetic bifurcation over 219-220K. The results reveal the obligatory contribution of a class of select collective protein and coupled solvent fluctuations to the interconversion of two resolved, sequential configurational substates, on the decay time scale. The select class of collective fluctuations also contributes to the chemical step. The methods and analysis are generally applicable to other coenzyme B12-dependent and related radical enzymes.
Collapse
Affiliation(s)
- Meghan Kohne
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Wei Li
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Alina Ionescu
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Chen Zhu
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, GA, United States.
| |
Collapse
|
38
|
Volkmer HW, Xie D. Analytical solution of a linear nonlocal Poisson-Boltzmann equation with multiple charges in a spherical solute region surrounded by a water spherical shell. Phys Rev E 2022; 105:015305. [PMID: 35193245 DOI: 10.1103/physreve.105.015305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
In this paper, an analytical solution of a linear nonlocal Poisson-Boltzmann equation (NPBE) test model with multiple charges in a spherical solute region surrounded by a water spherical shell is derived as a single series of Legendre polynomials and modified spherical Bessel functions. The classic Kirkwood ball model is then shown to be a special case of the NPBE test model so that its analytical solution is regained from a double series of associated Legendre polynomials (derived by Kirkwood in 1934) to a new single series of Legendre polynomials, sharply reducing its computational cost. As an application of these series solutions, a comparison study is done to demonstrate the differences between the Kirkwood and NPBE test models.
Collapse
Affiliation(s)
- Hans W Volkmer
- Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201-0413, USA
| | - Dexuan Xie
- Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201-0413, USA
| |
Collapse
|
39
|
Penkov N. Antibodies Processed Using High Dilution Technology Distantly Change Structural Properties of IFNγ Aqueous Solution. Pharmaceutics 2021; 13:1864. [PMID: 34834279 PMCID: PMC8618336 DOI: 10.3390/pharmaceutics13111864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Terahertz spectroscopy allows for the analysis of vibrations corresponding to the large-scale structural movements and collective dynamics of hydrogen-bonded water molecules. Previously, differences had been detected in the emission spectra of interferon-gamma (IFNγ) solutions surrounded by extremely diluted solutions of either IFNγ or antibodies to IFNγ without direct contact compared to a control. Here we aimed to analyse the structural properties of water in a sample of an aqueous solution of IFNγ via terahertz time-domain spectroscopy (THz-TDS). Tubes with the IFNγ solution were immersed in fluidised lactose saturated with test samples (dilutions of antibodies to IFNγ or control) and incubated at 37 °C for 1, 1.5-2, 2.5-3, or 3.5-4 h. Fluidised lactose was chosen since it is an excipient in the manufacture of drugs based on diluted antibodies to IFNγ. After incubation, spectra were recorded within a wavenumber range of 10 to 110 cm-1 with a resolution of 4 cm-1. Lactose saturated with dilutions of antibodies to IFNγ (incubated for more than 2.5 h) changed the structural properties of an IFNγ aqueous solution without direct contact compared to the control. Terahertz spectra revealed stronger intermolecular hydrogen bonds and an increase in the relaxation time of free and weakly bound water molecules. The methodology developed on the basis of THz-TDS could potentially be applied to quality control of pharmaceuticals based on extremely diluted antibodies.
Collapse
Affiliation(s)
- Nikita Penkov
- Laboratory of Optical and Spectral Analysis Methods, Institute of Cell Biophysics RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| |
Collapse
|
40
|
Correspondence insights into the role of genes in cell functionality. Comments on "The gene: An appraisal" by K. Baverstock. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:152-160. [PMID: 34624359 DOI: 10.1016/j.pbiomolbio.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022]
Abstract
One of the most important goals of the post-genomic era is to understand the different sources of molecular information that regulate the functional and structural architecture of cells. In this regard, Prof. K. Baverstock underscores in his recent article "The gene: An appraisal" (Baverstock, 2021) that genes are not the leading elements in cellular functionality, inheritance and evolution. As a consequence, the theory of evolution based on the Neo-Darwinian synthesis, is inadequate for today's scientific evidence. Conversely, the author contends that life processes viewed on the basis of thermodynamics, complex system dynamics and self-organization provide a new framework for the foundations of Biology. I consider it necessary to comment on some essential aspects of this relevant work, and here I present a short overview of the main non-genetic sources of biomolecular order and complexity that underline the molecular dynamics and functionality of cells. These sources generate different processes of complexity, which encompasses from the most elementary levels of molecular activity to the emergence of systemic behaviors, and the information necessary to sustain them is not contained in the genome.
Collapse
|
41
|
Latypova L, Puzenko A, Poluektov Y, Anashkina A, Petrushanko I, Bogdanova A, Feldman Y. Hydration of methemoglobin studied by in silico modeling and dielectric spectroscopy. J Chem Phys 2021; 155:015101. [PMID: 34241395 DOI: 10.1063/5.0054697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The hemoglobin concentration of 35 g/dl of human red blood cells is close to the solubility threshold. Using microwave dielectric spectroscopy, we have assessed the amount of water associated with hydration shells of methemoglobin as a function of its concentration in the presence or absence of ions. We estimated water-hemoglobin interactions to interpret the obtained data. Within the concentration range of 5-10 g/dl of methemoglobin, ions play an important role in defining the free-to-bound water ratio competing with hemoglobin to recruit water molecules for the hydration shell. At higher concentrations, hemoglobin is a major contributor to the recruitment of water to its hydration shell. Furthermore, the amount of bound water does not change as the hemoglobin concentration is increased from 15 to 30 g/dl, remaining at the level of ∼20% of the total intracellular water pool. The theoretical evaluation of the ratio of free and bound water for the hemoglobin concentration in the absence of ions corresponds with the experimental results and shows that the methemoglobin molecule binds about 1400 water molecules. These observations suggest that within the concentration range close to the physiological one, hemoglobin molecules are so close to each other that their hydration shells interact. In this case, the orientation of the hemoglobin molecules is most likely not stochastic, but rather supports partial neutralization of positive and negative charges at the protein surface. Furthermore, deformation of the red blood cell shape results in the rearrangement of these structures.
Collapse
Affiliation(s)
- Larisa Latypova
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram 91904, Israel
| | - Alexander Puzenko
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram 91904, Israel
| | - Yuri Poluektov
- Engelhart Institute of Molecular Biology, Russian Academy of Science, Vavilov St. 32, 119991 Moscow, Russia
| | - Anastasia Anashkina
- Engelhart Institute of Molecular Biology, Russian Academy of Science, Vavilov St. 32, 119991 Moscow, Russia
| | - Irina Petrushanko
- Engelhart Institute of Molecular Biology, Russian Academy of Science, Vavilov St. 32, 119991 Moscow, Russia
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | - Yuri Feldman
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram 91904, Israel
| |
Collapse
|
42
|
Abstract
We examine changes in the picosecond structural dynamics with irreversible photobleaching of red fluorescent proteins (RFP) mCherry, mOrange2 and TagRFP-T. Measurements of the protein dynamical transition using terahertz time-domain spectroscopy show in all cases an increase in the turn-on temperature in the bleached state. The result is surprising given that there is little change in the protein surface, and thus, the solvent dynamics held responsible for the transition should not change. A spectral analysis of the measurements guided by quasiharmonic calculations of the protein absorbance reveals that indeed the solvent dynamical turn-on temperature is independent of the thermal stability/photostate however the protein dynamical turn-on temperature shifts to higher temperatures. This is the first demonstration of switching the protein dynamical turn-on temperature with protein functional state. The observed shift in protein dynamical turn-on temperature relative to the solvent indicates an increase in the required mobile waters necessary for the protein picosecond motions, that is, these motions are more collective. Melting-point measurements reveal that the photobleached state is more thermally stable, and structural analysis of related RFP’s shows that there is an increase in internal water channels as well as a more uniform atomic root mean squared displacement. These observations are consistent with previous suggestions that water channels form with extended light excitation providing O2 access to the chromophore and subsequent fluorescence loss. We report that these same channels increase internal coupling enhancing thermal stability and collectivity of the picosecond protein motions. The terahertz spectroscopic characterization of the protein and solvent dynamical onsets can be applied generally to measure changes in collectivity of protein motions.
Collapse
|
43
|
Melillo JH, Gabriel JP, Pabst F, Blochowicz T, Cerveny S. Dynamics of aqueous peptide solutions in folded and disordered states examined by dynamic light scattering and dielectric spectroscopy. Phys Chem Chem Phys 2021; 23:15020-15029. [PMID: 34190269 DOI: 10.1039/d1cp01893k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Characterizing the segmental dynamics of proteins, and intrinsically disordered proteins in particular, is a challenge in biophysics. In this study, by combining data from broadband dielectric spectroscopy (BDS) and both depolarized (DDLS) and polarized (PDLS) dynamic light scattering, we were able to determine the dynamics of a small peptide [ε-poly(lysine)] in water solutions in two different conformations (pure β-sheet at pH = 10 and a more disordered conformation at pH = 7). We found that the segmental (α-) relaxation, as probed by DDLS, is faster in the disordered state than in the folded conformation. The water dynamics, as detected by BDS, is also faster in the disordered state. In addition, the combination of BDS and DDLS results allows us to confirm the molecular origin of water-related processes observed by BDS. Finally, we discuss the origin of two slow processes (A and B processes) detected by DDLS and PDLS in both conformations and usually observed in other types of water solutions. For fully homogeneous ε-PLL solutions at pH = 10, the A-DLS process is assigned to the diffusion of individual β-sheets. The combination of both techniques opens a route for understanding the dynamics of peptides and other biological solutions.
Collapse
Affiliation(s)
- Jorge H Melillo
- Centro de Física de Materiales (CSIC-UPV/EHU)-Material Physics Centre (MPC), Paseo Manuel de Lardizabal 5 (20018), San Sebastián, Spain.
| | - Jan Philipp Gabriel
- School for Molecular Sciences, Arizona State University, Tempe, 85287, USA and Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Florian Pabst
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Thomas Blochowicz
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Silvina Cerveny
- Centro de Física de Materiales (CSIC-UPV/EHU)-Material Physics Centre (MPC), Paseo Manuel de Lardizabal 5 (20018), San Sebastián, Spain. and Donostia International Physics Center, Paseo Manuel de Lardizabal 4 (20018), San Sebastián, Spain
| |
Collapse
|
44
|
De la Fuente IM, Martínez L, Carrasco-Pujante J, Fedetz M, López JI, Malaina I. Self-Organization and Information Processing: From Basic Enzymatic Activities to Complex Adaptive Cellular Behavior. Front Genet 2021; 12:644615. [PMID: 34093645 PMCID: PMC8176287 DOI: 10.3389/fgene.2021.644615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
One of the main aims of current biology is to understand the origin of the molecular organization that underlies the complex dynamic architecture of cellular life. Here, we present an overview of the main sources of biomolecular order and complexity spanning from the most elementary levels of molecular activity to the emergence of cellular systemic behaviors. First, we have addressed the dissipative self-organization, the principal source of molecular order in the cell. Intensive studies over the last four decades have demonstrated that self-organization is central to understand enzyme activity under cellular conditions, functional coordination between enzymatic reactions, the emergence of dissipative metabolic networks (DMN), and molecular rhythms. The second fundamental source of order is molecular information processing. Studies on effective connectivity based on transfer entropy (TE) have made possible the quantification in bits of biomolecular information flows in DMN. This information processing enables efficient self-regulatory control of metabolism. As a consequence of both main sources of order, systemic functional structures emerge in the cell; in fact, quantitative analyses with DMN have revealed that the basic units of life display a global enzymatic structure that seems to be an essential characteristic of the systemic functional metabolism. This global metabolic structure has been verified experimentally in both prokaryotic and eukaryotic cells. Here, we also discuss how the study of systemic DMN, using Artificial Intelligence and advanced tools of Statistic Mechanics, has shown the emergence of Hopfield-like dynamics characterized by exhibiting associative memory. We have recently confirmed this thesis by testing associative conditioning behavior in individual amoeba cells. In these Pavlovian-like experiments, several hundreds of cells could learn new systemic migratory behaviors and remember them over long periods relative to their cell cycle, forgetting them later. Such associative process seems to correspond to an epigenetic memory. The cellular capacity of learning new adaptive systemic behaviors represents a fundamental evolutionary mechanism for cell adaptation.
Collapse
Affiliation(s)
- Ildefonso M. De la Fuente
- Department of Nutrition, CEBAS-CSIC Institute, Murcia, Spain
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Basque Center of Applied Mathematics (BCAM), Bilbao, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC, Granada, Spain
| | - José I. López
- Department of Pathology, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
45
|
Shinobu A, Kobayashi C, Matsunaga Y, Sugita Y. Coarse-Grained Modeling of Multiple Pathways in Conformational Transitions of Multi-Domain Proteins. J Chem Inf Model 2021; 61:2427-2443. [PMID: 33956432 DOI: 10.1021/acs.jcim.1c00286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Large-scale conformational transitions in multi-domain proteins are often essential for their functions. To investigate the transitions, it is necessary to explore multiple potential pathways, which involve different intermediate structures. Here, we present a multi-basin (MB) coarse-grained (CG) structure-based Go̅ model for describing transitions in proteins with more than two moving domains. This model is an extension of our dual-basin Go̅ model in which system-dependent parameters are determined systematically using the multistate Bennett acceptance ratio method. In the MB Go̅ model for multi-domain proteins, we assume that intermediate structures may have partial inter-domain native contacts. This approach allows us to search multiple transition pathways that involve distinct intermediate structures using the CG molecular dynamics (MD) simulations. We apply this scheme to an enzyme, adenylate kinase (AdK), which has three major domains and can move along two different pathways. Using the optimized mixing parameters for each pathway, AdK shows frequent transitions between the Open, Closed, and the intermediate basins and samples a wide variety of conformations within each basin. The explored multiple transition pathways could be compared with experimental data and examined in more detail by atomistic MD simulations.
Collapse
Affiliation(s)
- Ai Shinobu
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Chigusa Kobayashi
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Matsunaga
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yuji Sugita
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan.,Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
46
|
Steinrücken E, Wissel T, Brodrecht M, Breitzke H, Regentin J, Buntkowsky G, Vogel M. 2H NMR study on temperature-dependent water dynamics in amino-acid functionalized silica nanopores. J Chem Phys 2021; 154:114702. [PMID: 33752372 DOI: 10.1063/5.0044141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We prepare various amino-acid functionalized silica pores with diameters of ∼6 nm and study the temperature-dependent reorientation dynamics of water in these confinements. Specifically, we link basic Lys, neutral Ala, and acidic Glu to the inner surfaces and combine 2H nuclear magnetic resonance spin-lattice relaxation and line shape analyses to disentangle the rotational motions of the surfaces groups and the crystalline and liquid water fractions coexisting below partial freezing. Unlike the crystalline phase, the liquid phase shows reorientation dynamics, which strongly depends on the chemistry of the inner surfaces. The water reorientation is slowest for the Lys functionalization, followed by Ala and Glu and, finally, the native silica pores. In total, the rotational correlation times of water at the different surfaces vary by about two orders of magnitude, where this span is largely independent of the temperature in the range ∼200-250 K.
Collapse
Affiliation(s)
- Elisa Steinrücken
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Till Wissel
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Martin Brodrecht
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Hergen Breitzke
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Julia Regentin
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Michael Vogel
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| |
Collapse
|
47
|
Päslack C, Schäfer LV, Heyden M. Protein flexibility reduces solvent-mediated friction barriers of ligand binding to a hydrophobic surface patch. Phys Chem Chem Phys 2021; 23:5665-5672. [PMID: 33656505 DOI: 10.1039/d1cp00181g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Solvent fluctuations have been explored in detail for idealized and rigid hydrophobic model systems, but so far it has remained unclear how internal protein motions and their coupling to the surrounding solvent affect the dynamics of ligand binding to biomolecular surfaces. Here, molecular dynamics simulations were used to elucidate the solvent-mediated binding of a model ligand to the hydrophobic surface patch of ubiquitin. The ligand's friction profiles reveal pronounced long-time correlations and enhanced friction in the vicinity of the protein, similar to idealized hydrophobic surfaces. Interestingly, these effects are shaped by internal protein motions. Protein flexibility modulates water density fluctuations near the hydrophobic surface patch and smooths out the friction profile of ligand binding.
Collapse
Affiliation(s)
- Christopher Päslack
- Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, D-44780 Bochum, Germany.
| | - Lars V Schäfer
- Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, D-44780 Bochum, Germany.
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
48
|
Olsson C, Zangana R, Swenson J. Stabilization of proteins embedded in sugars and water as studied by dielectric spectroscopy. Phys Chem Chem Phys 2021; 22:21197-21207. [PMID: 32930314 DOI: 10.1039/d0cp03281f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In many products proteins have become an important component, and the long-term properties of these products are directly dependent on the stability of their proteins. To enhance this stability it has become common to add disaccharides in general, and trehalose in particular. However, the mechanisms by which disaccharides stabilize proteins and other biological materials are still not fully understood, and therefore we have here used broadband dielectric spectroscopy to investigate the stabilizing effect of the disaccharides trehalose and sucrose on myoglobin, with the aim to enhance this understanding in general and to obtain specific insights into why trehalose exhibits extraordinary stabilizing properties. The results show the existence of three or four clearly observed relaxation processes, where the three common relaxations are the local (β) water relaxation below the glass transition temperature (Tg), the structural α-relaxation of the solvent, observed above Tg, and an even slower protein relaxation due to large-scale conformational protein motions. For the trehalose containing samples with less than 50 wt% myoglobin a fourth relaxation process was observed due to a β-relaxation of trehalose below Tg. This latter process, which was assigned to intramolecular rotations of the monosaccharide rings in trehalose, could not be detected for high protein concentrations or for the sucrose containing samples. Since sucrose has previously been found to form more intramolecular hydrogen bonds at the present hydration levels, it is likely that this rotation becomes too slow to be observed in the case of sucrose. However, this sugar relaxation has probably less influence on the protein stability below Tg, where the better stabilizing effect of trehalose on proteins can be explained by our observation that trehalose slows down the water relaxation more than sucrose does. Finally, we show that the α-relaxation of the solvent and the large-scale protein motions exhibit similar temperature dependences, which suggests that these protein motions are slaved by the α-relaxation. Furthermore, the α-relaxation of the trehalose solution is slower than for the corresponding sucrose solution, and thereby also the protein motions become slower in the trehalose solution, which explains the more efficient stabilizing effect of trehalose on proteins above Tg.
Collapse
Affiliation(s)
- Christoffer Olsson
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| | - Rano Zangana
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| |
Collapse
|
49
|
Li Y, Zhang R, Xu Y. Structure-based mechanisms: On the way to apply alcohol dehydrogenases/reductases to organic-aqueous systems. Int J Biol Macromol 2020; 168:412-427. [PMID: 33316337 DOI: 10.1016/j.ijbiomac.2020.12.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022]
Abstract
Alcohol dehydrogenases/reductases catalyze enantioselective syntheses of versatile chiral compounds relying on direct hydride transfer from cofactor to substrates, or to an intermediate and then to substrates. Since most of the substrates catalyzed by alcohol dehydrogenases/reductases are insoluble in aqueous solutions, increasing interest has been turning to organic-aqueous systems. However, alcohol dehydrogenases/reductases are normally instable in organic solvents, leading to the unsatisfied enantioselective synthesis efficiency. The behaviors of these enzymes in organic solvents at an atomic level are unclear, thus it is of great importance to understand its structure-based mechanisms in organic-aqueous systems to improve their relative stability. Here, we summarized the accessible structures of alcohol dehydrogenases/reductases in Protein Data Bank crystallized in organic-aqueous systems, and compared the structures of alcohol dehydrogenases/reductases which have different tolerance towards organic solvents. By understanding the catalytic behaviors and mechanisms of these enzymes in organic-aqueous systems, the efficient enantioselective syntheses mediated by alcohol dehydrogenases/reductases and further challenges are also discussed through solvent engineering and enzyme-immobilization in the last decade.
Collapse
Affiliation(s)
- Yaohui Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Department of Biological Science, Columbia University, New York, NY 10025, United States
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
50
|
Agarwal PK, Bernard DN, Bafna K, Doucet N. Enzyme dynamics: Looking beyond a single structure. ChemCatChem 2020; 12:4704-4720. [PMID: 33897908 PMCID: PMC8064270 DOI: 10.1002/cctc.202000665] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 12/23/2022]
Abstract
Conventional understanding of how enzymes function strongly emphasizes the role of structure. However, increasing evidence clearly indicates that enzymes do not remain fixed or operate exclusively in or close to their native structure. Different parts of the enzyme (from individual residues to full domains) undergo concerted motions on a wide range of time-scales, including that of the catalyzed reaction. Information obtained on these internal motions and conformational fluctuations has so far uncovered and explained many aspects of enzyme mechanisms, which could not have been understood from a single structure alone. Although there is wide interest in understanding enzyme dynamics and its role in catalysis, several challenges remain. In addition to technical difficulties, the vast majority of investigations are performed in dilute aqueous solutions, where conditions are significantly different than the cellular milieu where a large number of enzymes operate. In this review, we discuss recent developments, several challenges as well as opportunities related to this topic. The benefits of considering dynamics as an integral part of the enzyme function can also enable new means of biocatalysis, engineering enzymes for industrial and medicinal applications.
Collapse
Affiliation(s)
- Pratul K. Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, Oklahoma 74078
- Arium BioLabs, 2519 Caspian Drive, Knoxville, Tennessee 37932
| | - David N. Bernard
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, Quebec, H7V 1B7, Canada
| | - Khushboo Bafna
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, Quebec, H7V 1B7, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Structure, and Engineering, 1045 Avenue de la Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|