1
|
Lebo KJ, Zappulla DC. Inverse-Folding Design of Yeast Telomerase RNA Increases Activity In Vitro. Noncoding RNA 2023; 9:51. [PMID: 37736897 PMCID: PMC10514824 DOI: 10.3390/ncrna9050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Saccharomyces cerevisiae telomerase RNA, TLC1, is an 1157 nt non-coding RNA that functions as both a template for DNA synthesis and a flexible scaffold for telomerase RNP holoenzyme protein subunits. The tractable budding yeast system has provided landmark discoveries about telomere biology in vivo, but yeast telomerase research has been hampered by the fact that the large TLC1 RNA subunit does not support robust telomerase activity in vitro. In contrast, 155-500 nt miniaturized TLC1 alleles comprising the catalytic core domain and lacking the RNA's long arms do reconstitute robust activity. We hypothesized that full-length TLC1 is prone to misfolding in vitro. To create a full-length yeast telomerase RNA, predicted to fold into its biologically relevant structure, we took an inverse RNA-folding approach, changing 59 nucleotides predicted to increase the energetic favorability of folding into the modeled native structure based on the p-num feature of Mfold software. The sequence changes lowered the predicted ∆G of this "determined-arm" allele, DA-TLC1, by 61 kcal/mol (-19%) compared to wild-type. We tested DA-TLC1 for reconstituted activity and found it to be ~5-fold more robust than wild-type TLC1, suggesting that the inverse-folding design indeed improved folding in vitro into a catalytically active conformation. We also tested if DA-TLC1 functions in vivo, discovering that it complements a tlc1∆ strain, allowing cells to avoid senescence and maintain telomeres of nearly wild-type length. However, all inverse-designed RNAs that we tested had reduced abundance in vivo. In particular, inverse-designing nearly all of the Ku arm caused a profound reduction in telomerase RNA abundance in the cell and very short telomeres. Overall, these results show that the inverse design of S. cerevisiae telomerase RNA increases activity in vitro, while reducing abundance in vivo. This study provides a biochemically and biologically tested approach to inverse-design RNAs using Mfold that could be useful for controlling RNA structure in basic research and biomedicine.
Collapse
Affiliation(s)
- Kevin J. Lebo
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David C. Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
2
|
Lebo KJ, Zappulla DC. Inverse-folding design of yeast telomerase RNA increases activity in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527468. [PMID: 36798419 PMCID: PMC9934677 DOI: 10.1101/2023.02.08.527468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Saccharomyces cerevisiae telomerase RNA, TLC1, is an 1157 nt non-coding RNA that functions as both a template for DNA synthesis and a flexible scaffold for telomerase RNP holoenzyme protein subunits. The tractable budding yeast system has provided landmark discoveries about telomere biology in vivo , but yeast telomerase research has been hampered by the fact that the large TLC1 RNA subunit does not support robust telomerase activity in vitro . In contrast, 155-500 nt miniaturized TLC1 alleles comprising the catalytic core domain and lacking the RNA's long arms do reconstitute robust activity. We hypothesized that full-length TLC1 is prone to misfolding in vitro . To create a full-length yeast telomerase RNA predicted to fold into its biological relevant structure, we took an inverse RNA folding approach, changing 59 nucleotides predicted to increase the energetic favorability of folding into the modeled native structure based on the p-num feature of Mfold software. The sequence changes lowered the predicted ∆G in this "determined-arm" allele, DA-TLC1, by 61 kcal/mol (-19%) compared to wild type. We tested DA-TLC1 for reconstituted activity and found it to be ∼5-fold more robust than wild-type TLC1, suggesting that the inverse-folding design indeed improved folding in vitro into a catalytically active conformation. We also tested if DA-TLC1 functions in vivo and found that it complements a tlc1 ∆ strain, allowing cells to avoid senescence and maintain telomeres of nearly wild-type length. However, all inverse-designed RNAs that we tested had reduced abundance in vivo . In particular, inverse-designing nearly all of the Ku arm caused a profound reduction in telomerase RNA abundance in the cell and very short telomeres. Overall, these results show that inverse design of S. cerevisiae telomerase RNA increases activity in vitro , while reducing abundance in vivo . This study provides a biochemically and biologically tested approach to inverse-design RNAs using Mfold that could be useful for controlling RNA structure in basic research and biomedicine.
Collapse
Affiliation(s)
- Kevin J. Lebo
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - David C. Zappulla
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
3
|
Functional Interactions of Kluyveromyces lactis Telomerase Reverse Transcriptase with the Three-Way Junction and the Template Domains of Telomerase RNA. Int J Mol Sci 2022; 23:ijms231810757. [PMID: 36142669 PMCID: PMC9504884 DOI: 10.3390/ijms231810757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The ribonucleoprotein telomerase contains two essential components: telomerase RNA (TER) and telomerase reverse transcriptase (TERT, Est2 in yeast). A small portion of TER, termed the template, is copied by TERT onto the chromosome ends, thus compensating for sequence loss due to incomplete DNA replication and nuclease action. Although telomerase RNA is highly divergent in sequence and length across fungi and mammals, structural motifs essential for telomerase function are conserved. Here, we show that Est2 from the budding yeast Kluyveromyces lactis (klEst2) binds specifically to an essential three-way junction (TWJ) structure in K. lactis TER, which shares a conserved structure and sequence features with the essential CR4-CR5 domain of vertebrate telomerase RNA. klEst2 also binds specifically to the template domain, independently and mutually exclusive of its interaction with TWJ. Furthermore, we present the high-resolution structure of the klEst2 telomerase RNA-binding domain (klTRBD). Mutations introduced in vivo in klTRBD based on the solved structure or in TWJ based on its predicted RNA structure caused severe telomere shortening. These results demonstrate the conservation and importance of these domains and the multiple protein–RNA interactions between Est2 and TER for telomerase function.
Collapse
|
4
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
5
|
Telomeric-Like Repeats Flanked by Sequences Retrotranscribed from the Telomerase RNA Inserted at DNA Double-Strand Break Sites during Vertebrate Genome Evolution. Int J Mol Sci 2021; 22:ijms222011048. [PMID: 34681704 PMCID: PMC8537989 DOI: 10.3390/ijms222011048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/28/2023] Open
Abstract
Interstitial telomeric sequences (ITSs) are stretches of telomeric-like repeats located at internal chromosomal sites. We previously demonstrated that ITSs have been inserted during the repair of DNA double-strand breaks in the course of evolution and that some rodent ITSs, called TERC-ITSs, are flanked by fragments retrotranscribed from the telomerase RNA component (TERC). In this work, we carried out an extensive search of TERC-ITSs in 30 vertebrate genomes and identified 41 such loci in 22 species, including in humans and other primates. The fragment retrotranscribed from the TERC RNA varies in different lineages and its sequence seems to be related to the organization of TERC. Through comparative analysis of TERC-ITSs with orthologous empty loci, we demonstrated that, at each locus, the TERC-like sequence and the ITS have been inserted in one step in the course of evolution. Our findings suggest that telomerase participated in a peculiar pathway of DNA double-strand break repair involving retrotranscription of its RNA component and that this mechanism may be active in all vertebrate species. These results add new evidence to the hypothesis that RNA-templated DNA repair mechanisms are active in vertebrate cells.
Collapse
|
6
|
Červenák F, Sepšiová R, Nosek J, Tomáška Ľ. Step-by-Step Evolution of Telomeres: Lessons from Yeasts. Genome Biol Evol 2020; 13:6127219. [PMID: 33537752 PMCID: PMC7857110 DOI: 10.1093/gbe/evaa268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/23/2022] Open
Abstract
In virtually every eukaryotic species, the ends of nuclear chromosomes are protected by telomeres, nucleoprotein structures counteracting the end-replication problem and suppressing recombination and undue DNA repair. Although in most cases, the primary structure of telomeric DNA is conserved, there are several exceptions to this rule. One is represented by the telomeric repeats of ascomycetous yeasts, which encompass a great variety of sequences, whose evolutionary origin has been puzzling for several decades. At present, the key questions concerning the driving force behind their rapid evolution and the means of co-evolution of telomeric repeats and telomere-binding proteins remain largely unanswered. Previously published studies addressed mostly the general concepts of the evolutionary origin of telomeres, key properties of telomeric proteins as well as the molecular mechanisms of telomere maintenance; however, the evolutionary process itself has not been analyzed thoroughly. Here, we aimed to inspect the evolution of telomeres in ascomycetous yeasts from the subphyla Saccharomycotina and Taphrinomycotina, with special focus on the evolutionary origin of species-specific telomeric repeats. We analyzed the sequences of telomeric repeats from 204 yeast species classified into 20 families and as a result, we propose a step-by-step model, which integrates the diversity of telomeric repeats, telomerase RNAs, telomere-binding protein complexes and explains a propensity of certain species to generate the repeat heterogeneity within a single telomeric array.
Collapse
Affiliation(s)
- Filip Červenák
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Regina Sepšiová
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| |
Collapse
|
7
|
A 4-Base-Pair Core-Enclosing Helix in Telomerase RNA Is Essential for Activity and for Binding to the Telomerase Reverse Transcriptase Catalytic Protein Subunit. Mol Cell Biol 2020; 40:MCB.00239-20. [PMID: 33046533 PMCID: PMC7685517 DOI: 10.1128/mcb.00239-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022] Open
Abstract
The telomerase ribonucleoprotein (RNP) counters the chromosome end replication problem, completing genome replication to prevent cellular senescence in yeast, humans, and most other eukaryotes. The telomerase RNP core enzyme is composed of a dedicated RNA subunit and a reverse transcriptase (telomerase reverse transcriptase [TERT]). Although the majority of the 1,157-nucleotide (nt) Saccharomyces cerevisiae telomerase RNA, TLC1, is rapidly evolving, the central catalytic core is largely conserved, containing the template, template-boundary helix, pseudoknot, and core-enclosing helix (CEH). Here, we show that 4 bp of core-enclosing helix is required for telomerase to be active in vitro and to maintain yeast telomeres in vivo, whereas the ΔCEH and 1- and 2-bp alleles do not support telomerase function. Using the CRISPR/nuclease-deactivated Cas9 (dCas9)-based CARRY (CRISPR-assisted RNA-RNA-binding protein [RBP] yeast) two-hybrid assay to assess binding of our CEH mutant RNAs to TERT, we find that the 4-bp CEH RNA binds to TERT but the shorter-CEH constructs do not, consistent with the telomerase activity and in vivo complementation results. Thus, the CEH is essential in yeast telomerase RNA because it is needed to bind TERT to form the core RNP enzyme. Although the 8 nt that form this 4-bp stem at the base of the CEH are nearly invariant among Saccharomyces species, our results with sequence-randomized and truncated-CEH helices suggest that this binding interaction with TERT is dictated more by secondary than by primary structure. In summary, we have mapped an essential binding site in telomerase RNA for TERT that is crucial to form the catalytic core of this biomedically important RNP enzyme.
Collapse
|
8
|
Zappulla DC. Yeast Telomerase RNA Flexibly Scaffolds Protein Subunits: Results and Repercussions. Molecules 2020; 25:E2750. [PMID: 32545864 PMCID: PMC7356895 DOI: 10.3390/molecules25122750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
It is said that "hindsight is 20-20", so, given the current year, it is an opportune time to review and learn from experiences studying long noncoding RNAs. Investigation of the Saccharomyces cerevisiae telomerase RNA, TLC1, has unveiled striking flexibility in terms of both structural and functional features. Results support the "flexible scaffold" hypothesis for this 1157-nt telomerase RNA. This model describes TLC1 acting as a tether for holoenzyme protein subunits, and it also may apply to a plethora of RNAs beyond telomerase, such as types of lncRNAs. In this short perspective review, I summarize findings from studying the large yeast telomerase ribonucleoprotein (RNP) complex in the hope that this hindsight will sharpen foresight as so many of us seek to mechanistically understand noncoding RNA molecules from vast transcriptomes.
Collapse
Affiliation(s)
- David C Zappulla
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
9
|
Tomáška Ľ, Nosek J. Co-evolution in the Jungle: From Leafcutter Ant Colonies to Chromosomal Ends. J Mol Evol 2020; 88:293-318. [PMID: 32157325 DOI: 10.1007/s00239-020-09935-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Biological entities are multicomponent systems where each part is directly or indirectly dependent on the others. In effect, a change in a single component might have a consequence on the functioning of its partners, thus affecting the fitness of the entire system. In this article, we provide a few examples of such complex biological systems, ranging from ant colonies to a population of amino acids within a single-polypeptide chain. Based on these examples, we discuss one of the central and still challenging questions in biology: how do such multicomponent consortia co-evolve? More specifically, we ask how telomeres, nucleo-protein complexes protecting the integrity of linear DNA chromosomes, originated from the ancestral organisms having circular genomes and thus not dealing with end-replication and end-protection problems. Using the examples of rapidly evolving topologies of mitochondrial genomes in eukaryotic microorganisms, we show what means of co-evolution were employed to accommodate various types of telomere-maintenance mechanisms in mitochondria. We also describe an unprecedented runaway evolution of telomeric repeats in nuclei of ascomycetous yeasts accompanied by co-evolution of telomere-associated proteins. We propose several scenarios derived from research on telomeres and supported by other studies from various fields of biology, while emphasizing that the relevant answers are still not in sight. It is this uncertainty and a lack of a detailed roadmap that makes the journey through the jungle of biological systems still exciting and worth undertaking.
Collapse
Affiliation(s)
- Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
10
|
Subramanian R, Smith SJ, Alberstein RG, Bailey JB, Zhang L, Cardone G, Suominen L, Chami M, Stahlberg H, Baker TS, Tezcan FA. Self-Assembly of a Designed Nucleoprotein Architecture through Multimodal Interactions. ACS CENTRAL SCIENCE 2018; 4:1578-1586. [PMID: 30555911 PMCID: PMC6276041 DOI: 10.1021/acscentsci.8b00745] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 06/09/2023]
Abstract
The co-self-assembly of proteins and nucleic acids (NAs) produces complex biomolecular machines (e.g., ribosomes and telomerases) that represent some of the most daunting targets for biomolecular design. Despite significant advances in protein and DNA or RNA nanotechnology, the construction of artificial nucleoprotein complexes has largely been limited to cases that rely on the NA-mediated spatial organization of protein units, rather than a cooperative interplay between protein- and NA-mediated interactions that typify natural nucleoprotein assemblies. We report here a structurally well-defined synthetic nucleoprotein assembly that forms through the synergy of three types of intermolecular interactions: Watson-Crick base pairing, NA-protein interactions, and protein-metal coordination. The fine thermodynamic balance between these interactions enables the formation of a crystalline architecture under highly specific conditions.
Collapse
Affiliation(s)
- Rohit
H. Subramanian
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Sarah J. Smith
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Robert G. Alberstein
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Jake B. Bailey
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Ling Zhang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Giovanni Cardone
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Lauri Suominen
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Mohamed Chami
- C−CINA,
Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Henning Stahlberg
- C−CINA,
Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Timothy S. Baker
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Division
of Biological Sciences, University of California,
San Diego, La Jolla, California 92093, United States
| | - F. Akif Tezcan
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Materials
Science and Engineering, University of California,
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
11
|
Rinelli M, Bellacchio E, Berardinelli F, Pascolini G, Grammatico P, Sgura A, Iori AP, Quattrocchi L, Novelli A, Majore S, Agolini E. Structural modeling of a novel TERC variant in a patient with aplastic anemia and short telomeres. Ann Hematol 2018; 98:805-807. [PMID: 29980875 DOI: 10.1007/s00277-018-3415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/23/2018] [Indexed: 11/28/2022]
Affiliation(s)
- M Rinelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy.
| | - E Bellacchio
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - F Berardinelli
- Department of Science, University "Roma Tre", Rome, Italy
| | - G Pascolini
- Medical Genetics, Molecular Medicine Department, Sapienza University of Rome San Camillo-Forlanini Hospital, Rome, Italy
| | - P Grammatico
- Medical Genetics, Molecular Medicine Department, Sapienza University of Rome San Camillo-Forlanini Hospital, Rome, Italy
| | - A Sgura
- Department of Science, University "Roma Tre", Rome, Italy
| | - A P Iori
- Department of Cell Biotechnology and Hematology, Sapienza-University of Rome, Rome, Italy
| | - L Quattrocchi
- Department of Cell Biotechnology and Hematology, Sapienza-University of Rome, Rome, Italy
| | - A Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| | - S Majore
- Medical Genetics, Molecular Medicine Department, Sapienza University of Rome San Camillo-Forlanini Hospital, Rome, Italy
| | - E Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
12
|
Armstrong CA, Tomita K. Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells. Open Biol 2018; 7:rsob.160338. [PMID: 28330934 PMCID: PMC5376709 DOI: 10.1098/rsob.160338] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of telomerase occurs in 85–90% of all cancers and underpins the ability of cancer cells to bypass their proliferative limit, rendering them immortal. The activity of telomerase is tightly controlled at multiple levels, from transcriptional regulation of the telomerase components to holoenzyme biogenesis and recruitment to the telomere, and finally activation and processivity. However, studies using cancer cell lines and other model systems have begun to reveal features of telomeres and telomerase that are unique to cancer. This review summarizes our current knowledge on the mechanisms of telomerase recruitment and activation using insights from studies in mammals and budding and fission yeasts. Finally, we discuss the differences in telomere homeostasis between normal cells and cancer cells, which may provide a foundation for telomere/telomerase targeted cancer treatments.
Collapse
Affiliation(s)
- Christine A Armstrong
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Kazunori Tomita
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
13
|
Musgrove C, Jansson LI, Stone MD. New perspectives on telomerase RNA structure and function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29124890 DOI: 10.1002/wrna.1456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Abstract
Telomerase is an ancient ribonucleoprotein (RNP) that protects the ends of linear chromosomes from the loss of critical coding sequences through repetitive addition of short DNA sequences. These repeats comprise the telomere, which together with many accessory proteins, protect chromosomal ends from degradation and unwanted DNA repair. Telomerase is a unique reverse transcriptase (RT) that carries its own RNA to use as a template for repeat addition. Over decades of research, it has become clear that there are many diverse, crucial functions played by telomerase RNA beyond simply acting as a template. In this review, we highlight recent findings in three model systems: ciliates, yeast and vertebrates, that have shifted the way the field views the structural and mechanistic role(s) of RNA within the functional telomerase RNP complex. Viewed in this light, we hope to demonstrate that while telomerase RNA is just one example of the myriad functional RNA in the cell, insights into its structure and mechanism have wide-ranging impacts. WIREs RNA 2018, 9:e1456. doi: 10.1002/wrna.1456 This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Cherie Musgrove
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Linnea I Jansson
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.,Center for Molecular Biology of RNA, University of California, Santa Cruz, CA, USA
| |
Collapse
|
14
|
Cash DD, Feigon J. Structure and folding of the Tetrahymena telomerase RNA pseudoknot. Nucleic Acids Res 2016; 45:482-495. [PMID: 27899638 PMCID: PMC5224487 DOI: 10.1093/nar/gkw1153] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022] Open
Abstract
Telomerase maintains telomere length at the ends of linear chromosomes using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). An essential part of TER is the template/pseudoknot domain (t/PK) which includes the template, for adding telomeric repeats, template boundary element (TBE), and pseudoknot, enclosed in a circle by stem 1. The Tetrahymena telomerase holoenzyme catalytic core (p65-TER-TERT) was recently modeled in our 9 Å resolution cryo-electron microscopy map by fitting protein and TER domains, including a solution NMR structure of the Tetrahymena pseudoknot. Here, we describe in detail the structure and folding of the isolated pseudoknot, which forms a compact structure with major groove U•A-U and novel C•G-A+ base triples. Base substitutions that disrupt the base triples reduce telomerase activity in vitro. NMR studies also reveal that the pseudoknot does not form in the context of full-length TER in the absence of TERT, due to formation of a competing structure that sequesters pseudoknot residues. The residues around the TBE remain unpaired, potentially providing access by TERT to this high affinity binding site during an early step in TERT-TER assembly. A model for the assembly pathway of the catalytic core is proposed.
Collapse
Affiliation(s)
- Darian D Cash
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
15
|
Podlevsky JD, Li Y, Chen JJL. The functional requirement of two structural domains within telomerase RNA emerged early in eukaryotes. Nucleic Acids Res 2016; 44:9891-9901. [PMID: 27378779 PMCID: PMC5175330 DOI: 10.1093/nar/gkw605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/30/2022] Open
Abstract
Telomerase emerged during evolution as a prominent solution to the eukaryotic linear chromosome end-replication problem. Telomerase minimally comprises the catalytic telomerase reverse transcriptase (TERT) and telomerase RNA (TR) that provides the template for telomeric DNA synthesis. While the TERT protein is well-conserved across taxa, TR is highly divergent amongst distinct groups of species. Herein, we have identified the essential functional domains of TR from the basal eukaryotic species Trypanosoma brucei, revealing the ancestry of TR comprising two distinct structural core domains that can assemble in trans with TERT and reconstitute active telomerase enzyme in vitro. The upstream essential domain of T. brucei TR, termed the template core, constitutes three short helices in addition to the 11-nt template. Interestingly, the trypanosome template core domain lacks the ubiquitous pseudoknot found in all known TRs, suggesting later evolution of this critical structural element. The template-distal domain is a short stem-loop, termed equivalent CR4/5 (eCR4/5). While functionally similar to vertebrate and fungal CR4/5, trypanosome eCR4/5 is structurally distinctive, lacking the essential P6.1 stem-loop. Our functional study of trypanosome TR core domains suggests that the functional requirement of two discrete structural domains is a common feature of TRs and emerged early in telomerase evolution.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Yang Li
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Julian J-L Chen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
16
|
Early Loss of Telomerase Action in Yeast Creates a Dependence on the DNA Damage Response Adaptor Proteins. Mol Cell Biol 2016; 36:1908-19. [PMID: 27161319 PMCID: PMC4936065 DOI: 10.1128/mcb.00943-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/07/2016] [Indexed: 02/06/2023] Open
Abstract
Telomeres cap the ends of chromosomes, protecting them from degradation and inappropriate DNA repair processes that can lead to genomic instability. A short telomere elicits increased telomerase action on itself that replenishes telomere length, thereby stabilizing the telomere. In the prolonged absence of telomerase activity in dividing cells, telomeres eventually become critically short, inducing a permanent cell cycle arrest (senescence). We recently showed that even early after telomerase inactivation (ETI), yeast cells have accelerated mother cell aging and mildly perturbed cell cycles. Here, we show that the complete disruption of DNA damage response (DDR) adaptor proteins in ETI cells causes severe growth defects. This synthetic-lethality phenotype was as pronounced as that caused by extensive DNA damage in wild-type cells but showed genetic dependencies distinct from such damage and was completely alleviated by SML1 deletion, which increases deoxynucleoside triphosphate (dNTP) pools. Our results indicated that these deleterious effects in ETI cells cannot be accounted for solely by the slow erosion of telomeres due to incomplete replication that leads to senescence. We propose that normally occurring telomeric DNA replication stress is resolved by telomerase activity and the DDR in two parallel pathways and that deletion of Sml1 prevents this stress.
Collapse
|
17
|
Abstract
The addition of telomeric DNA to chromosome ends is an essential cellular activity that compensates for the loss of genomic DNA that is due to the inability of the conventional DNA replication apparatus to duplicate the entire chromosome. The telomerase reverse transcriptase and its associated RNA bind to the very end of the telomere via a sequence in the RNA and specific protein-protein interactions. Telomerase RNA also provides the template for addition of new telomeric repeats by the reverse-transcriptase protein subunit. In addition to the template, there are 3 other conserved regions in telomerase RNA that are essential for normal telomerase activity. Here we briefly review the conserved core regions of telomerase RNA and then focus on a recent study in fission yeast that determined the function of another conserved region in telomerase RNA called the Stem Terminus Element (STE). (1) The STE is distant from the templating core of telomerase in both the linear and RNA secondary structure, but, nonetheless, affects the fidelity of telomere sequence addition and, in turn, the ability of telomere binding proteins to bind and protect chromosome ends. We will discuss possible mechanisms of STE action and the suitability of the STE as an anti-cancer target.
Collapse
Affiliation(s)
- Christopher J Webb
- a Department of Molecular Biology , Princeton University , Princeton , NJ , USA
| | - Virginia A Zakian
- a Department of Molecular Biology , Princeton University , Princeton , NJ , USA
| |
Collapse
|
18
|
Matsuguchi T, Blackburn E. The yeast telomerase RNA, TLC1, participates in two distinct modes of TLC1-TLC1 association processes in vivo. PeerJ 2016; 4:e1534. [PMID: 27004145 PMCID: PMC4800423 DOI: 10.7717/peerj.1534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 12/04/2015] [Indexed: 11/23/2022] Open
Abstract
Telomerase core enzyme minimally consists of the telomerase reverse transcriptase domain-containing protein (Est2 in budding yeast S. cerevisiae) and telomerase RNA, which contains the template specifying the telomeric repeat sequence synthesized. Here we report that in vivo, a fraction of S. cerevisiae telomerase RNA (TLC1) molecules form complexes containing at least two molecules of TLC1, via two separable modes: one requiring a sequence in the 3′ region of the immature TLC1 precursor and the other requiring Ku and Sir4. Such physical TLC1-TLC1 association peaked in G1 phase and did not require telomere silencing, telomere tethering to the nuclear periphery, telomerase holoenzyme assembly, or detectable Est2-Est2 protein association. These data indicate that TLC1-TLC1 associations reflect processes occurring during telomerase biogenesis; we propose that TLC1-TLC1 associations and subsequent reorganization may be regulatory steps in telomerase enzymatic activation.
Collapse
Affiliation(s)
- Tet Matsuguchi
- Department of Biochemistry and Biophysics, University of California , San Francisco, CA , United States
| | - Elizabeth Blackburn
- Department of Biochemistry and Biophysics, University of California , San Francisco, CA , United States
| |
Collapse
|
19
|
Physical Connectivity Mapping by Circular Permutation of Human Telomerase RNA Reveals New Regions Critical for Activity and Processivity. Mol Cell Biol 2015; 36:251-61. [PMID: 26503788 DOI: 10.1128/mcb.00794-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/22/2015] [Indexed: 01/04/2023] Open
Abstract
Telomerase is a specialized ribonucleoprotein complex that extends the 3' ends of chromosomes to counteract telomere shortening. However, increased telomerase activity is associated with ∼90% of human cancers. The telomerase enzyme minimally requires an RNA (hTR) and a specialized reverse transcriptase protein (TERT) for activity in vitro. Understanding the structure-function relationships within hTR has important implications for human disease. For the first time, we have tested the physical-connectivity requirements in the 451-nucleotide hTR RNA using circular permutations, which reposition the 5' and 3' ends. Our extensive in vitro analysis identified three classes of hTR circular permutants with altered function. First, circularly permuting 3' of the template causes specific defects in repeat-addition processivity, revealing that the template recognition element found in ciliates is conserved in human telomerase RNA. Second, seven circular permutations residing within the catalytically important core and CR4/5 domains completely abolish telomerase activity, unveiling mechanistically critical portions of these domains. Third, several circular permutations between the core and CR4/5 significantly increase telomerase activity. Our extensive circular permutation results provide insights into the architecture and coordination of human telomerase RNA and highlight where the RNA could be targeted for the development of antiaging and anticancer therapeutics.
Collapse
|
20
|
Hass EP, Zappulla DC. The Ku subunit of telomerase binds Sir4 to recruit telomerase to lengthen telomeres in S. cerevisiae. eLife 2015. [PMID: 26218225 PMCID: PMC4547093 DOI: 10.7554/elife.07750] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Saccharomyces cerevisiae and in humans, the telomerase RNA subunit is bound by Ku, a ring-shaped protein heterodimer best known for its function in DNA repair. Ku binding to yeast telomerase RNA promotes telomere lengthening and telomerase recruitment to telomeres, but how this is achieved remains unknown. Using telomere-length analysis and chromatin immunoprecipitation, we show that Sir4 – a previously identified Ku-binding protein that is a component of telomeric silent chromatin – is required for Ku-mediated telomere lengthening and telomerase recruitment. We also find that specifically tethering Sir4 directly to Ku-binding-defective telomerase RNA restores otherwise-shortened telomeres to wild-type length. These findings suggest that Sir4 is the telomere-bound target of Ku-mediated telomerase recruitment and provide one mechanism for how the Sir4-competing Rif1 and Rif2 proteins negatively regulate telomere length in yeast. DOI:http://dx.doi.org/10.7554/eLife.07750.001 Inside a cell's nucleus, DNA is packaged into structures called chromosomes. The ends of every chromosome are capped by repeating sequences of DNA known as telomeres, which protect the chromosomes from damage. Every time a cell divides, the telomeres shorten. If telomere length falls below a critical level, the cell can die or enter a state in which it can no longer divide. During cell division, an enzyme called telomerase normally restores telomeres to their original length. Telomerase is made up of several proteins and an RNA molecule. In yeast and humans, a protein called Ku is one part of the telomerase enzyme. Ku binds to the RNA subunit of telomerase and helps the enzyme find and interact with the telomeres. Previous research has shown that Ku is unable to work alone to recruit telomerase to the chromosome. A protein called Sir4 binds to telomeres and cells lacking it have short telomeres, but the reason behind this was not known. Hass and Zappulla confirmed previous reports that Ku binds to Sir4 using a biochemical approach. Additional experiments provided genetic evidence that this binding interaction is important for telomerase to lengthen telomeres appropriately. Cells in which the RNA subunit of telomerase is unable to bind effectively to Ku have short telomeres. Hass and Zappulla directly tethered Sir4 to this defective RNA and found this restored the shortened telomeres to a normal length, indicating that Sir4 normally binds Ku to recruit telomerase. Discovering this mode of recruitment also helps to explain how two other telomeric proteins (Rif1 and 2) limit telomere lengthening; they compete with Ku-Sir4 recruitment to form a length-regulating system. Taken together, Hass and Zappulla's results provide strong evidence that Sir4 cooperates with Ku to control the lengthening of chromosome ends. Future research will hopefully reveal the precise space and time requirements for this telomerase-controlling system in yeast. Additionally, because Ku has been reported to be a subunit of human telomerase, future studies could also explore whether human cells use a similar strategy. DOI:http://dx.doi.org/10.7554/eLife.07750.002
Collapse
Affiliation(s)
- Evan P Hass
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
21
|
Lebo KJ, Niederer RO, Zappulla DC. A second essential function of the Est1-binding arm of yeast telomerase RNA. RNA (NEW YORK, N.Y.) 2015; 21:862-876. [PMID: 25737580 PMCID: PMC4408794 DOI: 10.1261/rna.049379.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
The enzymatic ribonucleoprotein telomerase maintains telomeres in many eukaryotes, including humans, and plays a central role in aging and cancer. Saccharomyces cerevisiae telomerase RNA, TLC1, is a flexible scaffold that tethers telomerase holoenzyme protein subunits to the complex. Here we test the hypothesis that a lengthy conserved region of the Est1-binding TLC1 arm contributes more than simply Est1-binding function. We separated Est1 binding from potential other functions by tethering TLC1 to Est1 via a heterologous RNA-protein binding module. We find that Est1-tethering rescues in vivo function of telomerase RNA alleles missing nucleotides specifically required for Est1 binding, but not those missing the entire conserved region. Notably, however, telomerase function is restored for this condition by expressing the arm of TLC1 in trans. Mutational analysis shows that the Second Essential Est1-arm Domain (SEED) maps to an internal loop of the arm, which SHAPE chemical mapping and 3D modeling suggest could be regulated by conformational change. Finally, we find that the SEED has an essential, Est1-independent role in telomerase function after telomerase recruitment to the telomere. The SEED may be required for establishing telomere extendibility or promoting telomerase RNP holoenzyme activity.
Collapse
Affiliation(s)
- Kevin J Lebo
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| | - Rachel O Niederer
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| |
Collapse
|
22
|
Niederer RO, Zappulla DC. Refined secondary-structure models of the core of yeast and human telomerase RNAs directed by SHAPE. RNA (NEW YORK, N.Y.) 2015; 21:254-261. [PMID: 25512567 PMCID: PMC4338352 DOI: 10.1261/rna.048959.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
Telomerase catalyzes the addition of nucleotides to the ends of chromosomes to complete genomic DNA replication in eukaryotes and is implicated in multiple diseases, including most cancers. The core enzyme is composed of a reverse transcriptase and an RNA subunit, which provides the template for DNA synthesis. Despite extensive divergence at the sequence level, telomerase RNAs share several structural features within the catalytic core, suggesting a conserved enzyme mechanism. We have investigated the structure of the core of the human and yeast telomerase RNAs using SHAPE, which interrogates flexibility of each nucleotide. We present improved secondary-structure models, refined by addition of five base triples within the yeast pseudoknot and an alternate pairing within the human-specific element J2a.1 in the human pseudoknot, both of which have implications for thermodynamic stability. We also identified a potentially structured CCC region within the template that may facilitate substrate binding and enzyme mechanism. Overall, the SHAPE findings reveal multiple similarities between the Saccharomyces cerevisiae and Homo sapiens telomerase RNA cores.
Collapse
Affiliation(s)
- Rachel O Niederer
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
23
|
Malyavko AN, Parfenova YY, Zvereva MI, Dontsova OA. Telomere length regulation in budding yeasts. FEBS Lett 2014; 588:2530-6. [PMID: 24914478 DOI: 10.1016/j.febslet.2014.05.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 11/19/2022]
Abstract
Telomeres are the nucleoprotein caps of chromosomes. Their length must be tightly regulated in order to maintain the stability of the genome. This is achieved by the intricate network of interactions between different proteins and protein-RNA complexes. Different organisms use various mechanisms for telomere length homeostasis. However, details of these mechanisms are not yet completely understood. In this review we have summarized our latest achievements in the understanding of telomere length regulation in budding yeasts.
Collapse
Affiliation(s)
- Alexander N Malyavko
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia; Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Yuliya Y Parfenova
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia; Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Maria I Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia; Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Olga A Dontsova
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia; Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia.
| |
Collapse
|
24
|
Progress in structural studies of telomerase. Curr Opin Struct Biol 2014; 24:115-24. [PMID: 24508601 DOI: 10.1016/j.sbi.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/01/2014] [Accepted: 01/08/2014] [Indexed: 02/01/2023]
Abstract
Telomerase is the ribonucleoprotein (RNP) reverse transcriptase responsible for synthesizing the 3' ends of linear chromosomes. It plays critical roles in tumorigenesis, cellular aging, and stem cell renewal. The past two years have seen exciting progress in determining telomerase holoenzyme architecture and the structural basis of telomerase activity. Notably, the first electron microscopy structures of telomerase were reported, of the Tetrahymena thermophila telomerase holoenzyme and a human telomerase dimer. In addition to new structures of TERT and TER domains, the first structures of telomerase protein domains beyond TERT, and their complexes with TER or telomeric single-stranded DNA, were reported. Together these studies provide the first glimpse into the organization of the proteins and RNA in the telomerase RNP.
Collapse
|
25
|
Abstract
Telomeres are the physical ends of eukaryotic linear chromosomes. Telomeres form special structures that cap chromosome ends to prevent degradation by nucleolytic attack and to distinguish chromosome termini from DNA double-strand breaks. With few exceptions, telomeres are composed primarily of repetitive DNA associated with proteins that interact specifically with double- or single-stranded telomeric DNA or with each other, forming highly ordered and dynamic complexes involved in telomere maintenance and length regulation. In proliferative cells and unicellular organisms, telomeric DNA is replicated by the actions of telomerase, a specialized reverse transcriptase. In the absence of telomerase, some cells employ a recombination-based DNA replication pathway known as alternative lengthening of telomeres. However, mammalian somatic cells that naturally lack telomerase activity show telomere shortening with increasing age leading to cell cycle arrest and senescence. In another way, mutations or deletions of telomerase components can lead to inherited genetic disorders, and the depletion of telomeric proteins can elicit the action of distinct kinases-dependent DNA damage response, culminating in chromosomal abnormalities that are incompatible with life. In addition to the intricate network formed by the interrelationships among telomeric proteins, long noncoding RNAs that arise from subtelomeric regions, named telomeric repeat-containing RNA, are also implicated in telomerase regulation and telomere maintenance. The goal for the next years is to increase our knowledge about the mechanisms that regulate telomere homeostasis and the means by which their absence or defect can elicit telomere dysfunction, which generally results in gross genomic instability and genetic diseases.
Collapse
|
26
|
Mefford MA, Rafiq Q, Zappulla DC. RNA connectivity requirements between conserved elements in the core of the yeast telomerase RNP. EMBO J 2013; 32:2980-93. [PMID: 24129512 DOI: 10.1038/emboj.2013.227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/23/2013] [Indexed: 12/25/2022] Open
Abstract
Telomerase is a specialized chromosome end-replicating enzyme required for genome duplication in many eukaryotes. An RNA and reverse transcriptase protein subunit comprise its enzymatic core. Telomerase is evolving rapidly, particularly its RNA component. Nevertheless, nearly all telomerase RNAs, including those of H. sapiens and S. cerevisiae, share four conserved structural elements: a core-enclosing helix (CEH), template-boundary element, template, and pseudoknot, in this order along the RNA. It is not clear how these elements coordinate telomerase activity. We find that although rearranging the order of the four conserved elements in the yeast telomerase RNA subunit, TLC1, disrupts activity, the RNA ends can be moved between the template and pseudoknot in vitro and in vivo. However, the ends disrupt activity when inserted between the other structured elements, defining an Area of Required Connectivity (ARC). Within the ARC, we find that only the junction nucleotides between the pseudoknot and CEH are essential. Integrating all of our findings provides a basic map of functional connections in the core of the yeast telomerase RNP and a framework to understand conserved element coordination in telomerase mechanism.
Collapse
Affiliation(s)
- Melissa A Mefford
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
27
|
Dionne I, Larose S, Dandjinou AT, Abou Elela S, Wellinger RJ. Cell cycle-dependent transcription factors control the expression of yeast telomerase RNA. RNA (NEW YORK, N.Y.) 2013; 19:992-1002. [PMID: 23690630 PMCID: PMC3683933 DOI: 10.1261/rna.037663.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
Telomerase is a specialized ribonucleoprotein that adds repeated DNA sequences to the ends of eukaryotic chromosomes to preserve genome integrity. Some secondary structure features of the telomerase RNA are very well conserved, and it serves as a central scaffold for the binding of associated proteins. The Saccharomyces cerevisiae telomerase RNA, TLC1, is found in very low copy number in the cell and is the limiting component of the known telomerase holoenzyme constituents. The reasons for this low abundance are unclear, but given that the RNA is very stable, transcriptional control mechanisms must be extremely important. Here we define the sequences forming the TLC1 promoter and identify the elements required for its low expression level, including enhancer and repressor elements. Within an enhancer element, we found consensus sites for Mbp1/Swi4 association, and chromatin immunoprecipitation (ChIP) assays confirmed the binding of Mbp1 and Swi4 to these sites of the TLC1 promoter. Furthermore, the enhancer element conferred cell cycle-dependent regulation to a reporter gene, and mutations in the Mbp1/Swi4 binding sites affected the levels of telomerase RNA and telomere length. Finally, ChIP experiments using a TLC1 RNA-binding protein as target showed cell cycle-dependent transcription of the TLC1 gene. These results indicate that the budding yeast TLC1 RNA is transcribed in a cell cycle-dependent fashion late in G1 and may be part of the S phase-regulated group of genes involved in DNA replication.
Collapse
|
28
|
Pyrimidine motif triple helix in the Kluyveromyces lactis telomerase RNA pseudoknot is essential for function in vivo. Proc Natl Acad Sci U S A 2013; 110:10970-5. [PMID: 23776224 DOI: 10.1073/pnas.1309590110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Telomerase is a ribonucleoprotein complex that extends the 3' ends of linear chromosomes. The specialized telomerase reverse transcriptase requires a multidomain RNA (telomerase RNA, TER), which includes an integral RNA template and functionally important template-adjacent pseudoknot. The structure of the human TER pseudoknot revealed that the loops interact with the stems to form a triple helix shown to be important for activity in vitro. A similar triple helix has been predicted to form in diverse fungi TER pseudoknots. The solution NMR structure of the Kluyveromyces lactis pseudoknot, presented here, reveals that it contains a long pyrimidine motif triple helix with unexpected features that include three individual bulge nucleotides and a C(+)•G-C triple adjacent to a stem 2-loop 2 junction. Despite significant differences in sequence and base triples, the 3D shape of the human and K. lactis TER pseudoknots are remarkably similar. Analysis of the effects of nucleotide substitutions on cell growth and telomere lengths provides evidence that this conserved structure forms in endogenously assembled telomerase and is essential for telomerase function in vivo.
Collapse
|
29
|
Akiyama BM, Gomez A, Stone MD. A conserved motif in Tetrahymena thermophila telomerase reverse transcriptase is proximal to the RNA template and is essential for boundary definition. J Biol Chem 2013; 288:22141-9. [PMID: 23760279 DOI: 10.1074/jbc.m113.452425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The ends of linear chromosomes are extended by telomerase, a ribonucleoprotein complex minimally consisting of a protein subunit called telomerase reverse transcriptase (TERT) and the telomerase RNA (TER). TERT functions by reverse transcribing a short template region of TER into telomeric DNA. Proper assembly of TERT and TER is essential for telomerase activity; however, a detailed understanding of how TERT interacts with TER is lacking. Previous studies have identified an RNA binding domain (RBD) within TERT, which includes three evolutionarily conserved sequence motifs: CP2, CP, and T. Here, we used site-directed hydroxyl radical probing to directly identify sites of interaction between the TERT RBD and TER, revealing that the CP2 motif is in close proximity to a conserved region of TER known as the template boundary element (TBE). Gel shift assays on CP2 mutants confirmed that the CP2 motif is an RNA binding determinant. Our results explain previous work that established that mutations to the CP2 motif of TERT and to the TBE of TER both permit misincorporation of nucleotides into the growing DNA strand beyond the canonical template. Taken together, these results suggest a model in which the CP2 motif binds the TBE to strictly define which TER nucleotides can be reverse transcribed.
Collapse
Affiliation(s)
- Benjamin M Akiyama
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
30
|
Dalby AB, Goodrich KJ, Pfingsten JS, Cech TR. RNA recognition by the DNA end-binding Ku heterodimer. RNA (NEW YORK, N.Y.) 2013; 19:841-51. [PMID: 23610127 PMCID: PMC3683917 DOI: 10.1261/rna.038703.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most nucleic acid-binding proteins selectively bind either DNA or RNA, but not both nucleic acids. The Saccharomyces cerevisiae Ku heterodimer is unusual in that it has two very different biologically relevant binding modes: (1) Ku is a sequence-nonspecific double-stranded DNA end-binding protein with prominent roles in nonhomologous end-joining and telomeric capping, and (2) Ku associates with a specific stem-loop of TLC1, the RNA subunit of budding yeast telomerase, and is necessary for proper nuclear localization of this ribonucleoprotein enzyme. TLC1 RNA-binding and dsDNA-binding are mutually exclusive, so they may be mediated by the same site on Ku. Although dsDNA binding by Ku is well studied, much less is known about what features of an RNA hairpin enable specific recognition by Ku. To address this question, we localized the Ku-binding site of the TLC1 hairpin with single-nucleotide resolution using phosphorothioate footprinting, used chemical modification to identify an unpredicted motif within the hairpin secondary structure, and carried out mutagenesis of the stem-loop to ascertain the critical elements within the RNA that permit Ku binding. Finally, we provide evidence that the Ku-binding site is present in additional budding yeast telomerase RNAs and discuss the possibility that RNA binding is a conserved function of the Ku heterodimer.
Collapse
|
31
|
Kuprys PV, Davis SM, Hauer TM, Meltser M, Tzfati Y, Kirk KE. Identification of telomerase RNAs from filamentous fungi reveals conservation with vertebrates and yeasts. PLoS One 2013; 8:e58661. [PMID: 23555591 PMCID: PMC3603654 DOI: 10.1371/journal.pone.0058661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/05/2013] [Indexed: 01/03/2023] Open
Abstract
Telomeres are the nucleoprotein complexes at eukaryotic chromosomal ends. Telomeric DNA is synthesized by the ribonucleoprotein telomerase, which comprises a telomerase reverse transcriptase (TERT) and a telomerase RNA (TER). TER contains a template for telomeric DNA synthesis. Filamentous fungi possess extremely short and tightly regulated telomeres. Although TERT is well conserved between most organisms, TER is highly divergent and thus difficult to identify. In order to identify the TER sequence, we used the unusually long telomeric repeat sequence of Aspergillus oryzae together with reverse-transcription-PCR and identified a transcribed sequence that contains the potential template within a region predicted to be single stranded. We report the discovery of TERs from twelve other related filamentous fungi using comparative genomic analysis. These TERs exhibited strong conservation with the vertebrate template sequence, and two of these potentially use the identical template as humans. We demonstrate the existence of important processing elements required for the maturation of yeast TERs such as an Sm site, a 5' splice site and a branch point, within the newly identified TER sequences. RNA folding programs applied to the TER sequences show the presence of secondary structures necessary for telomerase activity, such as a yeast-like template boundary, pseudoknot, and a vertebrate-like three-way junction. These telomerase RNAs identified from filamentous fungi display conserved structural elements from both yeast and vertebrate TERs. These findings not only provide insights into the structure and evolution of a complex RNA but also provide molecular tools to further study telomere dynamics in filamentous fungi.
Collapse
Affiliation(s)
- Paulius V. Kuprys
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| | - Shaun M. Davis
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| | - Tyler M. Hauer
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| | - Max Meltser
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| | - Yehuda Tzfati
- Department of Genetics, The Silberman
Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram,
Jerusalem, Israel
| | - Karen E. Kirk
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| |
Collapse
|
32
|
Abstract
The mechanisms that maintain the stability of chromosome ends have broad impact on genome integrity in all eukaryotes. Budding yeast is a premier organism for telomere studies. Many fundamental concepts of telomere and telomerase function were first established in yeast and then extended to other organisms. We present a comprehensive review of yeast telomere biology that covers capping, replication, recombination, and transcription. We think of it as yeast telomeres—soup to nuts.
Collapse
|
33
|
Liu F, Theimer CA. Telomerase Activity Is Sensitive to Subtle Perturbations of the TLC1 Pseudoknot 3′ Stem and Tertiary Structure. J Mol Biol 2012; 423:719-35. [DOI: 10.1016/j.jmb.2012.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/16/2012] [Accepted: 08/28/2012] [Indexed: 01/15/2023]
|
34
|
Qi X, Li Y, Honda S, Hoffmann S, Marz M, Mosig A, Podlevsky JD, Stadler PF, Selker EU, Chen JJL. The common ancestral core of vertebrate and fungal telomerase RNAs. Nucleic Acids Res 2012; 41:450-62. [PMID: 23093598 PMCID: PMC3592445 DOI: 10.1093/nar/gks980] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Telomerase is a ribonucleoprotein with an intrinsic telomerase RNA (TER) component. Within yeasts, TER is remarkably large and presents little similarity in secondary structure to vertebrate or ciliate TERs. To better understand the evolution of fungal telomerase, we identified 74 TERs from Pezizomycotina and Taphrinomycotina subphyla, sister clades to budding yeasts. We initially identified TER from Neurospora crassa using a novel deep-sequencing-based approach, and homologous TER sequences from available fungal genome databases by computational searches. Remarkably, TERs from these non-yeast fungi have many attributes in common with vertebrate TERs. Comparative phylogenetic analysis of highly conserved regions within Pezizomycotina TERs revealed two core domains nearly identical in secondary structure to the pseudoknot and CR4/5 within vertebrate TERs. We then analyzed N. crassa and Schizosaccharomyces pombe telomerase reconstituted in vitro, and showed that the two RNA core domains in both systems can reconstitute activity in trans as two separate RNA fragments. Furthermore, the primer-extension pulse-chase analysis affirmed that the reconstituted N. crassa telomerase synthesizes TTAGGG repeats with high processivity, a common attribute of vertebrate telomerase. Overall, this study reveals the common ancestral cores of vertebrate and fungal TERs, and provides insights into the molecular evolution of fungal TER structure and function.
Collapse
Affiliation(s)
- Xiaodong Qi
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang D, Xue X, Malmberg RL, Cai L. TRFolder-W: a web server for telomerase RNA structure prediction in yeast genomes. Bioinformatics 2012; 28:2696-7. [DOI: 10.1093/bioinformatics/bts506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C. Evolutionary patterns of non-coding RNAs. Theory Biosci 2012; 123:301-69. [PMID: 18202870 DOI: 10.1016/j.thbio.2005.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/24/2005] [Indexed: 01/04/2023]
Abstract
A plethora of new functions of non-coding RNAs (ncRNAs) have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this "Modern RNA World" and its components. In this contribution, we attempt to provide at least a cursory overview of the diversity of ncRNAs and functional RNA motifs in non-translated regions of regular messenger RNAs (mRNAs) with an emphasis on evolutionary questions. This survey is complemented by an in-depth analysis of examples from different classes of RNAs focusing mostly on their evolution in the vertebrate lineage. We present a survey of Y RNA genes in vertebrates and study the molecular evolution of the U7 snRNA, the snoRNAs E1/U17, E2, and E3, the Y RNA family, the let-7 microRNA (miRNA) family, and the mRNA-like evf-1 gene. We furthermore discuss the statistical distribution of miRNAs in metazoans, which suggests an explosive increase in the miRNA repertoire in vertebrates. The analysis of the transcription of ncRNAs suggests that small RNAs in general are genetically mobile in the sense that their association with a hostgene (e.g. when transcribed from introns of a mRNA) can change on evolutionary time scales. The let-7 family demonstrates, that even the mode of transcription (as intron or as exon) can change among paralogous ncRNA.
Collapse
|
37
|
Beilstein MA, Brinegar AE, Shippen DE. Evolution of the Arabidopsis telomerase RNA. Front Genet 2012; 3:188. [PMID: 23015808 PMCID: PMC3449308 DOI: 10.3389/fgene.2012.00188] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 09/06/2012] [Indexed: 11/13/2022] Open
Abstract
The telomerase reverse transcriptase promotes genome integrity by continually synthesizing a short telomere repeat sequence on chromosome ends. Telomerase is a ribonucleoprotein complex whose integral RNA subunit TER contains a template domain with a sequence complementary to the telomere repeat that is reiteratively copied by the catalytic subunit. Although TER harbors well-conserved secondary structure elements, its nucleotide sequence is highly divergent, even among closely related organisms. Thus, it has been extremely challenging to identify TER orthologs by bioinformatics strategies. Recently, TER was reported in the flowering plant, Arabidopsis thaliana. In contrast to other model organisms, A. thaliana encodes two TER subunits, only one of which is required to maintain telomere tracts in vivo. Here we investigate the evolution of the loci that encode TER in Arabidopsis by comparison to the same locus in its close relatives. We employ a combination of PCR and bioinformatics approaches to identify putative TER loci based on syntenic regions flanking the TER1 and TER2 loci of A. thaliana. Unexpectedly, we discovered that the genomic regions encoding the two A. thaliana TERs occur as a single locus in other Brassicaceae. Moreover, we find striking sequence divergence within the telomere template domain of putative TERs from Brassicaceae, including some orthologous loci that completely lack a template domain. Finally, evolution of the locus is characterized by lineage-specific events rather than changes shared among closely related species. We conclude that the Arabidopsis TER duplication occurred very recently, and further that changes at this locus in other Brassicaceae indicate the process of TER evolution may be different in plants compared with vertebrates and yeast.
Collapse
Affiliation(s)
| | - Amy E. Brinegar
- Department of Biochemistry and Biophysics, Texas A&M University, College StationTX, USA
| | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College StationTX, USA
| |
Collapse
|
38
|
Lebo KJ, Zappulla DC. Stiffened yeast telomerase RNA supports RNP function in vitro and in vivo. RNA (NEW YORK, N.Y.) 2012; 18:1666-78. [PMID: 22850424 PMCID: PMC3425781 DOI: 10.1261/rna.033555.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 06/05/2012] [Indexed: 06/01/2023]
Abstract
The 1157-nt Saccharomyces cerevisiae telomerase RNA, TLC1, in addition to providing a 16-nt template region for reverse transcription, has been proposed to act as a scaffold for protein subunits. Although accessory subunits of the telomerase ribonucleoprotein (RNP) complex function even when their binding sites are relocated on the yeast telomerase RNA, the physical nature of the RNA scaffold has not been directly analyzed. Here we explore the structure-function organization of the yeast telomerase RNP by extensively stiffening the three long arms of TLC1, which connect essential and important accessory protein subunits Ku, Est1, and Sm(7), to its central catalytic hub. This 956-nt triple-stiff-arm TLC1 (TSA-T) reconstitutes active telomerase with TERT (Est2) in vitro. Furthermore, TSA-T functions in vivo, even maintaining longer telomeres than TLC1 on a per RNA basis. We also tested functional contributions of each stiffened arm within TSA-T and found that the stiffened Est1 and Ku arms contribute to telomere lengthening, while stiffening the terminal arm reduces telomere length and telomerase RNA abundance. The fact that yeast telomerase tolerates significant stiffening of its RNA subunit in vivo advances our understanding of the architectural and functional organization of this RNP and, more broadly, our conception of the world of lncRNPs.
Collapse
Affiliation(s)
- Kevin J. Lebo
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - David C. Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
39
|
Liu F, Kim Y, Cruickshank C, Theimer CA. Thermodynamic characterization of the Saccharomyces cerevisiae telomerase RNA pseudoknot domain in vitro. RNA (NEW YORK, N.Y.) 2012; 18:973-991. [PMID: 22450759 PMCID: PMC3334705 DOI: 10.1261/rna.030924.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/28/2012] [Indexed: 05/31/2023]
Abstract
Recent structural and functional characterization of the pseudoknot in the Saccharomyces cerevisiae telomerase RNA (TLC1) has demonstrated that tertiary structure is present, similar to that previously described for the human and Kluyveromyces lactis telomerase RNAs. In order to biophysically characterize the identified pseudoknot secondary and tertiary structures, UV-monitored thermal denaturation experiments, nuclear magnetic resonance spectroscopy, and native gel electrophoresis were used to investigate various potential conformations in the pseudoknot domain in vitro, in the absence of the telomerase protein. Here, we demonstrate that alternative secondary structures are not mutually exclusive in the S. cerevisiae telomerase RNA, tertiary structure contributes 1.5 kcal mol(-1) to the stability of the pseudoknot (≈ half the stability observed for the human telomerase pseudoknot), and identify additional base pairs in the 3' pseudoknot stem near the helical junction. In addition, sequence conservation in an adjacent overlapping hairpin appears to prevent dimerization and alternative conformations in the context of the entire pseudoknot-containing region. Thus, this work provides a detailed in vitro characterization of the thermodynamic features of the S. cerevisiae TLC1 pseudoknot region for comparison with other telomerase RNA pseudoknots.
Collapse
Affiliation(s)
- Fei Liu
- Department of Chemistry, State University of New York at Albany, Albany, New York 12222, USA
| | - Yoora Kim
- Department of Chemistry, State University of New York at Albany, Albany, New York 12222, USA
| | - Charmion Cruickshank
- Department of Chemistry, State University of New York at Albany, Albany, New York 12222, USA
| | - Carla A. Theimer
- Department of Chemistry, State University of New York at Albany, Albany, New York 12222, USA
| |
Collapse
|
40
|
Akiyama BM, Loper J, Najarro K, Stone MD. The C-terminal domain of Tetrahymena thermophila telomerase holoenzyme protein p65 induces multiple structural changes in telomerase RNA. RNA (NEW YORK, N.Y.) 2012; 18:653-60. [PMID: 22315458 PMCID: PMC3312553 DOI: 10.1261/rna.031377.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The unique cellular activity of the telomerase reverse transcriptase ribonucleoprotein (RNP) requires proper assembly of protein and RNA components into a functional complex. In the ciliate model organism Tetrahymena thermophila, the La-domain protein p65 is required for in vivo assembly of telomerase. Single-molecule and biochemical studies have shown that p65 promotes efficient RNA assembly with the telomerase reverse transcriptase (TERT) protein, in part by inducing a bend in the conserved stem IV region of telomerase RNA (TER). The domain architecture of p65 consists of an N-terminal domain, a La-RRM motif, and a C-terminal domain (CTD). Using single-molecule Förster resonance energy transfer (smFRET), we demonstrate the p65(CTD) is necessary for the RNA remodeling activity of the protein and is sufficient to induce a substantial conformational change in stem IV of TER. Moreover, nuclease protection assays directly map the site of p65(CTD) interaction to stem IV and reveal that, in addition to bending stem IV, p65 binding reorganizes nucleotides that comprise the low-affinity TERT binding site within stem-loop IV.
Collapse
Affiliation(s)
| | - John Loper
- Department of Chemistry and Biochemistry
| | | | - Michael D. Stone
- Department of Chemistry and Biochemistry
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
- Corresponding author.E-mail .
| |
Collapse
|
41
|
Gude L, Berkovitch SS, Santos WL, Kutchukian PS, Pawloski AR, Kuimelis R, McGall G, Verdine GL. Mapping targetable sites on human telomerase RNA pseudoknot/template domain using 2'-OMe RNA-interacting polynucleotide (RIPtide) microarrays. J Biol Chem 2012; 287:18843-53. [PMID: 22451672 DOI: 10.1074/jbc.m111.316596] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Most cellular RNAs engage in intrastrand base-pairing that gives rise to complex three-dimensional folds. This self-pairing presents an impediment toward binding of the RNA by nucleic acid-based ligands. An important step in the discovery of RNA-targeting ligands is therefore to identify those regions in a folded RNA that are accessible toward the nucleic acid-based ligand. Because the folding of RNA targets can involve interactions between nonadjacent regions and employ both Watson-Crick and non-Watson-Crick base-pairing, screening of candidate binder ensembles is typically necessary. Microarray-based screening approaches have shown great promise in this regard and have suggested that achieving complete sequence coverage would be a valuable attribute of a next generation system. Here, we report a custom microarray displaying a library of RNA-interacting polynucleotides comprising all possible 2'-OMe RNA sequences from 4- to 8-nucleotides in length. We demonstrate the utility of this array in identifying RNA-interacting polynucleotides that bind tightly and specifically to the highly conserved, functionally essential template/pseudoknot domain of human telomerase RNA and that inhibit telomerase function in vitro.
Collapse
Affiliation(s)
- Lourdes Gude
- Departmens of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Podlevsky JD, Chen JJL. It all comes together at the ends: telomerase structure, function, and biogenesis. Mutat Res 2011; 730:3-11. [PMID: 22093366 DOI: 10.1016/j.mrfmmm.2011.11.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/30/2011] [Accepted: 11/01/2011] [Indexed: 12/18/2022]
Abstract
Telomerase is a reverse transcriptase specialized in the addition of telomeric DNA repeats onto the ends of chromosomes. Telomere extension offsets the loss of telomeric repeats from the failure of DNA polymerases to fully replicate linear chromosome ends. Telomerase functions as a ribonucleoprotein, requiring an integral telomerase RNA (TR) component, in addition to the catalytic telomerase reverse transcriptase (TERT). Extensive studies have identified numerous structural and functional features within the TR and TERT essential for activity. A number of accessory proteins have also been identified with various functions in enzyme biogenesis, localization, and regulation. Understanding the molecular mechanism of telomerase function has significance for the development of therapies for telomere-mediated disorders and cancer. Here we review telomerase structural and functional features, and the techniques for assessing telomerase dysfunction.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | | |
Collapse
|
43
|
Hengesbach M, Akiyama BM, Stone MD. Single-molecule analysis of telomerase structure and function. Curr Opin Chem Biol 2011; 15:845-52. [PMID: 22057212 DOI: 10.1016/j.cbpa.2011.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/05/2011] [Accepted: 10/17/2011] [Indexed: 02/06/2023]
Abstract
The telomerase ribonucleoprotein is a specialized reverse transcriptase required to maintain protective chromosome end-capping structures called telomeres. In most cells, telomerase is not active and the natural shortening of telomeres with each round of DNA replication ultimately triggers cell growth arrest. In contrast, the presence of telomerase confers a high level of renewal capacity upon rapidly dividing cells. Telomerase is aberrantly activated in 90% of human cancers and thus represents an important target for anticancer therapeutics. However, the naturally low abundance of telomerase has hampered efforts to obtain high-resolution models for telomerase structure and function. To circumvent these challenges, single-molecule techniques have recently been employed to investigate telomerase assembly, structure, and catalysis.
Collapse
Affiliation(s)
- Martin Hengesbach
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
44
|
Abstract
Telomeres are the nucleoprotein structures at the ends of linear chromosomes and maintain the genomic integrity through multiple cell divisions. Telomeres protect the chromosome ends from degradation, end-to-end fusion and abnormal recombination and they also promote the end replication. The budding yeast Saccharomyces cerevisiae is the most well-studied model system with regard to telomere and telomerase regulation. Recently, the opportunistic fungal pathogen Candida albicans has emerged as an attractive model system for investigating telomere biology. Candida underwent rapid evolutionary divergence with respect to telomere sequences. Concomitant with the evolutionary divergence of telomere sequences, telomere repeat binding factors and telomerase components have also evolved, leading to differences in their functions and domain structures. Thus, the comparative analysis of the telomeres and telomerase-related factors in the budding yeast has provided a better understanding on both conserved and variable aspects of telomere regulation. In this review, I will discuss telomeres and telomerase-related factors and their functions in telomere and telomerase regulation in C. albicans.
Collapse
Affiliation(s)
- Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, NY 10065, USA.
| |
Collapse
|
45
|
Zvereva MI, Shcherbakova DM, Dontsova OA. Telomerase: structure, functions, and activity regulation. BIOCHEMISTRY (MOSCOW) 2011; 75:1563-83. [PMID: 21417995 DOI: 10.1134/s0006297910130055] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomerase is the enzyme responsible for maintenance of the length of telomeres by addition of guanine-rich repetitive sequences. Telomerase activity is exhibited in gametes and stem and tumor cells. In human somatic cells proliferation potential is strictly limited and senescence follows approximately 50-70 cell divisions. In most tumor cells, on the contrary, replication potential is unlimited. The key role in this process of the system of the telomere length maintenance with involvement of telomerase is still poorly studied. No doubt, DNA polymerase is not capable to completely copy DNA at the very ends of chromosomes; therefore, approximately 50 nucleotides are lost during each cell cycle, which results in gradual telomere length shortening. Critically short telomeres cause senescence, following crisis, and cell death. However, in tumor cells the system of telomere length maintenance is activated. Besides catalytic telomere elongation, independent telomerase functions can be also involved in cell cycle regulation. Inhibition of the telomerase catalytic function and resulting cessation of telomere length maintenance will help in restriction of tumor cell replication potential. On the other hand, formation of temporarily active enzyme via its intracellular activation or due to stimulation of expression of telomerase components will result in telomerase activation and telomere elongation that can be used for correction of degenerative changes. Data on telomerase structure and function are summarized in this review, and they are compared for evolutionarily remote organisms. Problems of telomerase activity measurement and modulation by enzyme inhibitors or activators are considered as well.
Collapse
Affiliation(s)
- M I Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, Russia.
| | | | | |
Collapse
|
46
|
Zappulla DC, Goodrich KJ, Arthur JR, Gurski LA, Denham EM, Stellwagen AE, Cech TR. Ku can contribute to telomere lengthening in yeast at multiple positions in the telomerase RNP. RNA (NEW YORK, N.Y.) 2011; 17:298-311. [PMID: 21177376 PMCID: PMC3022279 DOI: 10.1261/rna.2483611] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/15/2010] [Indexed: 05/21/2023]
Abstract
Unlike ribonucleoprotein complexes that have a highly ordered overall architecture, such as the ribosome, yeast telomerase appears to be much more loosely constrained. Here, we investigate the importance of positioning of the Ku subunit within the 1157-nt yeast telomerase RNA (TLC1). Deletion of the 48-nt Ku-binding hairpin in TLC1 RNA (tlc1Δ48) reduces telomere length, survival of cells with gross chromosomal rearrangements, and de novo telomere addition at a broken chromosome end. To test the function of Ku at novel positions in the telomerase RNP, we reintroduced its binding site into tlc1Δ48 RNA at position 446 or 1029. We found that Ku bound to these repositioned sites in vivo and telomere length increased slightly, but statistically significantly. The ability of telomerase to promote survival of cells with gross chromosomal rearrangements by healing damaged chromosome arms was also partially restored, whereas the kinetics of DNA addition to a specific chromosome break was delayed. Having two Ku sites in TLC1 caused progressive hyperelongation of a variable subset of telomeres, consistent with Ku's role in telomerase recruitment to chromosome ends. The number of Ku-binding sites in TLC1 contributed to telomerase RNA abundance in vivo but was only partially responsible for telomere length phenotypes. Thus, telomerase RNA levels and telomere length regulation can be modulated by the number of Ku sites in telomerase RNA. Furthermore, there is substantial flexibility in the relative positioning of Ku in the telomerase RNP for native telomere length maintenance, although not as much flexibility as for the essential Est1p subunit.
Collapse
Affiliation(s)
- David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Ribonucleoproteins (RNPs) play key roles in many cellular processes and often function as RNP enzymes. Similar to proteins, some of these RNPs exist and function as multimers, either homomeric or heteromeric. While in some cases the mechanistic function of multimerization is well understood, the functional consequences of multimerization of other RNPs remain enigmatic. In this review we will discuss the function and organization of small RNPs that exist as stable multimers, including RNPs catalyzing RNA chemical modifications, telomerase RNP, and RNPs involved in pre-mRNA splicing.
Collapse
|
48
|
Structurally conserved five nucleotide bulge determines the overall topology of the core domain of human telomerase RNA. Proc Natl Acad Sci U S A 2010; 107:18761-8. [PMID: 20966348 DOI: 10.1073/pnas.1013269107] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Telomerase is a unique ribonucleoprotein complex that catalyzes the addition of telomeric DNA repeats onto the 3' ends of linear chromosomes. All vertebrate telomerase RNAs contain a catalytically essential core domain that includes the template and a pseudoknot with extended helical subdomains. Within these helical regions is an asymmetric 5-nt internal bulge loop (J2a/b) flanked by helices (P2a and P2b) that is highly conserved in its location but not sequence. NMR structure determination reveals that J2a/b forms a defined S-shape and creates an ∼90 ° bend with a surprisingly low twist (∼10 °) between the flanking helices. A search of RNA structures revealed only one other example of a 5-nt bulge, from hepatitis C virus internal ribosome entry site, with a different sequence but the same structure. J2a/b is intrinsically flexible but the interhelical motions across the loop are remarkably restricted. Nucleotide substitutions in J2a/b that affect the bend angle, direction, and interhelical dynamics are correlated with telomerase activity. Based on the structures of P2ab (J2a/b and flanking helices), the conserved region of the pseudoknot (P2b/P3, previously determined) and the remaining helical segment (P2a.1-J2a.1 refined using residual dipolar couplings and the modeling program MC-Sym) we have calculated an NMR-based model of the full-length pseudoknot. The model and dynamics analysis show that J2a/b serves as a dominant structural and dynamical element in defining the overall topology of the core domain, and suggest that interhelical motions in P2ab facilitate nucleotide addition along the template and template translocation.
Collapse
|
49
|
Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat Struct Mol Biol 2010; 17:513-8. [PMID: 20357774 DOI: 10.1038/nsmb.1777] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 01/20/2010] [Indexed: 12/17/2022]
Abstract
Telomerase is a specialized DNA polymerase that extends the 3' ends of eukaryotic linear chromosomes, a process required for genomic stability and cell viability. Here we present the crystal structure of the active Tribolium castaneum telomerase catalytic subunit, TERT, bound to an RNA-DNA hairpin designed to resemble the putative RNA-templating region and telomeric DNA. The RNA-DNA hybrid adopts a helical structure, docked in the interior cavity of the TERT ring. Contacts between the RNA template and motifs 2 and B' position the solvent-accessible RNA bases close to the enzyme active site for nucleotide binding and selectivity. Nucleic acid binding induces rigid TERT conformational changes to form a tight catalytic complex. Overall, TERT-RNA template and TERT-telomeric DNA associations are remarkably similar to those observed for retroviral reverse transcriptases, suggesting common mechanistic aspects of DNA replication between the two families of enzymes.
Collapse
|
50
|
Yeoman JA, Orte A, Ashbridge B, Klenerman D, Balasubramanian S. RNA conformation in catalytically active human telomerase. J Am Chem Soc 2010; 132:2852-3. [PMID: 20148555 PMCID: PMC3119468 DOI: 10.1021/ja909383n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have used single-molecule fluorescence microscopy to study the folded state of human telomerase RNA (hTR). Here we show that hTR adopts a new conformation on binding to human telomerase reverse transcriptase (hTERT) and reconstitution of an active ribonucleoprotein complex. Our data are consistent with the formation of an RNA pseudoknot in active human telomerase.
Collapse
Affiliation(s)
- Justin A. Yeoman
- The University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Angel Orte
- The University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Beth Ashbridge
- The University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - David Klenerman
- The University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Shankar Balasubramanian
- The University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, U.K
| |
Collapse
|