1
|
Cao J, Li W, Li J, Mazid MA, Li C, Jiang Y, Jia W, Wu L, Liao Z, Sun S, Song W, Fu J, Wang Y, Lu Y, Xu Y, Nie Y, Bian X, Gao C, Zhang X, Zhang L, Shang S, Li Y, Fu L, Liu H, Lai J, Wang Y, Yuan Y, Jin X, Li Y, Liu C, Lai Y, Shi X, Maxwell PH, Xu X, Liu L, Poo M, Wang X, Sun Q, Esteban MA, Liu Z. Live birth of chimeric monkey with high contribution from embryonic stem cells. Cell 2023; 186:4996-5014.e24. [PMID: 37949056 DOI: 10.1016/j.cell.2023.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/18/2023] [Accepted: 10/03/2023] [Indexed: 11/12/2023]
Abstract
A formal demonstration that mammalian pluripotent stem cells possess preimplantation embryonic cell-like (naive) pluripotency is the generation of chimeric animals through early embryo complementation with homologous cells. Whereas such naive pluripotency has been well demonstrated in rodents, poor chimerism has been achieved in other species including non-human primates due to the inability of the donor cells to match the developmental state of the host embryos. Here, we have systematically tested various culture conditions for establishing monkey naive embryonic stem cells and optimized the procedures for chimeric embryo culture. This approach generated an aborted fetus and a live chimeric monkey with high donor cell contribution. A stringent characterization pipeline demonstrated that donor cells efficiently (up to 90%) incorporated into various tissues (including the gonads and placenta) of the chimeric monkeys. Our results have major implications for the study of primate naive pluripotency and genetic engineering of non-human primates.
Collapse
Affiliation(s)
- Jing Cao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wenjuan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jie Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chunyang Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenqi Jia
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhaodi Liao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyu Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixiang Song
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiqiang Fu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Lu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuting Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanhong Nie
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyan Bian
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changshan Gao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaotong Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liansheng Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shenshen Shang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yunpan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lixin Fu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hao Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Junjian Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yang Wang
- BGI-Research, Hangzhou 310030, China
| | - Yue Yuan
- BGI-Research, Hangzhou 310030, China
| | - Xin Jin
- BGI-Research, Shenzhen 518083, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan Li
- BGI-Research, Shenzhen 518083, China
| | | | - Yiwei Lai
- BGI-Research, Hangzhou 310030, China
| | | | - Patrick H Maxwell
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0ST, United Kingdom
| | - Xun Xu
- BGI-Research, Hangzhou 310030, China; BGI-Research, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | | | - Muming Poo
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qiang Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Miguel A Esteban
- BGI-Research, Hangzhou 310030, China; Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Shimada K, Ikawa M. CCDC183 is essential for cytoplasmic invagination around the flagellum during spermiogenesis and male fertility. Development 2023; 150:dev201724. [PMID: 37882665 PMCID: PMC10629680 DOI: 10.1242/dev.201724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
Sperm flagellum plays a crucial role in male fertility. Here, we generated Ccdc183 knockout mice using the CRISPR/Cas9 system to reveal the protein function of the testis-specific protein CCDC183 in spermiogenesis. We demonstrated that the absence of CCDC183 causes male infertility with morphological and motility defects in spermatozoa. Owing to the lack of CCDC183, centrioles after elongation of axonemal microtubules do not connect the cell surface and nucleus during spermiogenesis, which causes subsequent loss of cytoplasmic invagination around the flagellum. As a result, the flagellar compartment does not form properly and cytosol-exposed axonemal microtubules collapse during spermiogenesis. In addition, ectopic localization of accessory structures, such as the fibrous sheath and outer dense fibers, and abnormal head shape as a result of abnormal sculpting by the manchette are observed in Ccdc183 knockout spermatids. Our results indicate that CCDC183 plays an essential role in cytoplasmic invagination around the flagellum to form functional spermatozoa during spermiogenesis.
Collapse
Affiliation(s)
- Keisuke Shimada
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 5650871, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 5650871, Japan
- Regulation of Host Defense Team, Center for Infectious Disease Education and Research, Osaka University, Osaka 5650871, Japan
- Laboratory of Reproductive Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
3
|
Watanabe N, Hirose M, Hasegawa A, Mochida K, Ogura A, Inoue K. Derivation of embryonic stem cells from wild-derived mouse strains by nuclear transfer using peripheral blood cells. Sci Rep 2023; 13:11175. [PMID: 37430017 DOI: 10.1038/s41598-023-38341-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Wild-derived mouse strains have been extensively used in biomedical research because of the high level of inter-strain polymorphisms and phenotypic variations. However, they often show poor reproductive performance and are difficult to maintain by conventional in vitro fertilization and embryo transfer. In this study, we examined the technical feasibility of derivation of nuclear transfer embryonic stem cells (ntESCs) from wild-derived mouse strains for their safe genetic preservation. We used leukocytes collected from peripheral blood as nuclear donors without sacrificing them. We successfully established 24 ntESC lines from two wild-derived strains of CAST/Ei and CASP/1Nga (11 and 13 lines, respectively), both belonging to Mus musculus castaneus, a subspecies of laboratory mouse. Most (23/24) of these lines had normal karyotype, and all lines examined showed teratoma formation ability (4 lines) and pluripotent marker gene expression (8 lines). Two male lines examined (one from each strain) were proven to be competent to produce chimeric mice following injection into host embryos. By natural mating of these chimeric mice, the CAST/Ei male line was confirmed to have germline transmission ability. Our results demonstrate that inter-subspecific ntESCs derived from peripheral leukocytes could provide an alternative strategy for preserving invaluable genetic resources of wild-derived mouse strains.
Collapse
Affiliation(s)
- Naomi Watanabe
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michiko Hirose
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Ayumi Hasegawa
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Keiji Mochida
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Atsuo Ogura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Kimiko Inoue
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
4
|
Hirata W, Tomoda T, Yuri S, Isotani A. Generation of the Y-chromosome linked red fluorescent protein transgenic mouse model and sexing at the preimplantation stage. Exp Anim 2022; 71:82-89. [PMID: 34544911 PMCID: PMC8828399 DOI: 10.1538/expanim.21-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/30/2021] [Indexed: 12/04/2022] Open
Abstract
In mammals, sexual fate is determined by the chromosomes of the male and female gametes during fertilization. Males (XY) or females (XX) are produced when a sperm containing a Y or X-chromosome respectively fertilizes an X-chromosome-containing unfertilized egg. However, sexing of preimplantation stage embryos cannot be conducted visually. To address this, transgenic male mouse models with the ubiquitously expressed green fluorescent protein (GFP) transgene on X- (X-GFP) or Y-chromosomes (Y-GFP) have been established. However, when crossed with wild-type females, sexing of the preimplantation stage embryos by observing the GFP signal is problematic in some cases due to X-inactivation, loss of Y-chromosome (LOY), or loss of transgene fluorescence. In this study, a mouse model with the ubiquitously expressed red fluorescent protein (RFP) transgene on the Y-chromosome was generated since RFP is easily distinguishable from GFP signals. Unfortunately, the ubiquitously expressed tdTomato RFP transgene on the Y-chromosome (Y-RFP) mouse showed the lethal phenotype after birth. No lethal phenotypes were observed when the mitochondrial locating signal N-terminal of tdTomato (mtRFP) was included in the transgene construct. Almost half of the collected fertilized eggs from Y-mtRFP male mice crossed with wild-type females had an RFP signal at the preimplantation stage (E1.5). Therefore, XY eggs were recognized as RFP-positive embryos at the preimplantation stage. Furthermore, 100% sexing was observed at the preimplantation stage using the X-linked GFP/Y-linked RFP male mouse. The established Y-mtRFP mouse models may be used to study sex chromosome related research.
Collapse
Affiliation(s)
- Wataru Hirata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Taiki Tomoda
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Shunsuke Yuri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Ayako Isotani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
5
|
KCTD19 and its associated protein ZFP541 are independently essential for meiosis in male mice. PLoS Genet 2021; 17:e1009412. [PMID: 33961623 PMCID: PMC8104389 DOI: 10.1371/journal.pgen.1009412] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
Meiosis is a cell division process with complex chromosome events where various molecules must work in tandem. To find meiosis-related genes, we screened evolutionarily conserved and reproductive tract-enriched genes using the CRISPR/Cas9 system and identified potassium channel tetramerization domain containing 19 (Kctd19) as an essential factor for meiosis. In prophase I, Kctd19 deficiency did not affect synapsis or the DNA damage response, and chiasma structures were also observed in metaphase I spermatocytes of Kctd19 KO mice. However, spermatocytes underwent apoptotic elimination during the metaphase-anaphase transition. We were able to rescue the Kctd19 KO phenotype with an epitope-tagged Kctd19 transgene. By immunoprecipitation-mass spectrometry, we confirmed the association of KCTD19 with zinc finger protein 541 (ZFP541) and histone deacetylase 1 (HDAC1). Phenotyping of Zfp541 KO spermatocytes demonstrated XY chromosome asynapsis and recurrent DNA damage in the late pachytene stage, leading to apoptosis. In summary, our study reveals that KCTD19 associates with ZFP541 and HDAC1, and that both KCTD19 and ZFP541 are essential for meiosis in male mice. Meiosis is a fundamental process that consists of one round of genomic DNA replication and two rounds of chromosome segregation, producing four haploid cells. To properly distribute their genetic material, cells need to undergo complex chromosome events such as a physical linkage of homologous chromosomes (termed synapsis) and meiotic recombination. The molecules involved in these events have not been fully characterized yet, especially in mammals. Using a CRISPR/Cas9-screening system, we identified the potassium channel tetramerization domain containing 19 (Kctd19) as an essential factor for meiosis in male mice. Further, we confirmed the association of KCTD19 with zinc finger protein 541 (ZFP541) and histone deacetylase 1 (HDAC1). By observing meiosis of Zfp541 knockout germ cells, we found that Zfp541 was also essential for meiosis. These results show that the KCTD19/ZFP541 complex plays a critical role and is indispensable for male meiosis and fertility.
Collapse
|
6
|
Miyata H, Morohoshi A, Ikawa M. Analysis of the sperm flagellar axoneme using gene-modified mice. Exp Anim 2020; 69:374-381. [PMID: 32554934 PMCID: PMC7677079 DOI: 10.1538/expanim.20-0064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Infertility is a global health issue that affects 1 in 6 couples, with male factors contributing to 50% of cases. The flagellar axoneme is a motility apparatus of spermatozoa, and disruption of its structure or function could lead to male infertility. The axoneme consists of a "9+2" structure that contains a central pair of two singlet microtubules surrounded by nine doublet microtubules, in addition to several macromolecular complexes such as dynein arms, radial spokes, and nexin-dynein regulatory complexes. Molecular components of the flagellar axoneme are evolutionally conserved from unicellular flagellates to mammals, including mice. Although knockout (KO) mice have been generated to understand their function in the formation and motility regulation of sperm flagella, the majority of KO mice die before sexual maturation due to impaired ciliary motility, which makes it challenging to analyze mature spermatozoa. In this review, we introduce methods that have been used to overcome premature lethality, focusing on KO mouse lines of central pair components.
Collapse
Affiliation(s)
- Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akane Morohoshi
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
7
|
He W, Chen J, Gao S. Mammalian haploid stem cells: establishment, engineering and applications. Cell Mol Life Sci 2019; 76:2349-2367. [PMID: 30888429 PMCID: PMC11105600 DOI: 10.1007/s00018-019-03069-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/23/2019] [Accepted: 03/13/2019] [Indexed: 12/19/2022]
Abstract
Haploid embryonic stem cells (haESCs) contain only one set of genomes inherited from the sperm or egg and are termed AG- or PG-haESCs, respectively. Mammalian haESCs show genome-wide hypomethylation and dysregulated imprinting, whereas they can sustain genome integrity during derivation and long-term propagation. In addition, haESCs exhibit similar pluripotency to traditional diploid ESCs but are unique because they function as gametes and have been used to produce semi-cloned animals. More strikingly, unisexual reproduction has been achieved in mice by using haESCs. In combination with a gene editing or screening system, haESCs represent a powerful tool for studies of underlying gene functions and explorations of mechanisms of genetic and epigenetic regulation not only at the cellular level in vitro but also at the animal level in vivo. More importantly, genetically edited AG-haESC lines may further serve as an ideal candidate for the establishment of a sperm bank, which is a highly cost-effective approach, and a wide range of engineered semi-cloned mice have been produced. Here, we review the historical development, characteristics, advantages and disadvantages of haESCs. Additionally, we present an in-depth discussion of the recent advances in haESCs and their potential applications.
Collapse
Affiliation(s)
- Wenteng He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Jiayu Chen
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
8
|
Abstract
Transgenic technology in rats is increasingly important for the design and implementation of biological and physiological studies in the fields of neuroscience, pharmacology, and toxicology. Pluripotent embryonic stem cells (ESCs) are a useful tool for generation of gene-modified rats. During the last decade, not only foreign DNA introduction but also endogenous DNA modification has been successfully achieved with rat ESCs. Detailed protocols for establishment of bona fide rat ESCs and their use for production of gene-modified rats are described in this chapter.
Collapse
|
9
|
Konishi R, Nakano T, Yamaguchi S. Distinct requirements for the maintenance and establishment of mouse embryonic stem cells. Stem Cell Res 2018; 31:55-61. [PMID: 30015174 DOI: 10.1016/j.scr.2018.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/19/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) that maintain a sustainable pluripotent state are derived from the inner cell mass (ICM) of blastocysts, in which pluripotency is lost during differentiation in vivo. It is unclear when and how the ability to maintain pluripotency is acquired during the derivation of ESCs. We analyzed the required culture condition for the maintenance and establishment of ESCs in detail. Even at low concentration of the GSK3β inhibitor and LIF (LowGiL), the expression levels of pluripotency markers and the chimera-producing ability of the cells were comparable with those of ESCs cultured in the presence of both inhibitors and LIF (2iL). However, blastocysts underwent spontaneous differentiation, and ESCs were not established under LowGiL condition. Time-course analysis showed that 2iL condition for three days from the initiation of culture was sufficient for the acquisition of permanent pluripotency. Although X chromosome-linked pluripotent genes were significantly up-regulated during the culture of both male and female blastocysts in 2iL condition, no such up-regulation was observed in LowGiL condition. In conclusion, 2iL-dependent activation of these X-linked genes at the earliest phase of ESC derivation is one of the molecular bases for the acquisition of permanent pluripotency.
Collapse
Affiliation(s)
- Riyo Konishi
- Department of Stem Cell Pathology, Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 2-2 Suita, Osaka 565-0871, Japan
| | - Toru Nakano
- Department of Stem Cell Pathology, Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 2-2 Suita, Osaka 565-0871, Japan; Department of Pathology, Medical School, Osaka University, Yamada-oka 2-2 Suita, Osaka 565-0871, Japan; CREST, Japan Agency for Medical Research and Development (AMED), Japan
| | - Shinpei Yamaguchi
- Department of Pathology, Medical School, Osaka University, Yamada-oka 2-2 Suita, Osaka 565-0871, Japan; PRESTO, Japan Science and Technology Agency (JST), Japan.
| |
Collapse
|
10
|
Honda A. Applying iPSCs for Preserving Endangered Species and Elucidating the Evolution of Mammalian Sex Determination. Bioessays 2018; 40:e1700152. [DOI: 10.1002/bies.201700152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Arata Honda
- Institute of Laboratory AnimalsKyoto University Graduate School of MedicineYoshidakonoe‐cho, Sakyo‐ku, Kyoto 606‐8501Japan
- RIKEN BioResource CenterTsukuba, Ibaraki305‐0074Japan
| |
Collapse
|
11
|
Hirabayashi M, Hara H, Goto T, Takizawa A, Dwinell MR, Yamanaka T, Hochi S, Nakauchi H. Haploid embryonic stem cell lines derived from androgenetic and parthenogenetic rat blastocysts. J Reprod Dev 2017; 63:611-616. [PMID: 28824040 PMCID: PMC5735273 DOI: 10.1262/jrd.2017-074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study was conducted to establish haploid embryonic stem (ES) cell lines using fluorescent marker-carrying rats. In the first series, 7 ES cell lines were established from 26 androgenetic
haploid blastocysts. However, only 1 ES cell line (ahES-2) was found to contain haploid cells (1n = 20 + X) by fluorescence-activated cell sorting (FACS) and karyotypic analyses. No chimeras were detected among the 10
fetuses and 41 offspring derived from blastocyst injection with the FACS-purified haploid cells. In the second series, 2 ES cell lines containing haploid cells (13% in phES-1 and 1% in phES-2) were established from 2
parthenogenetic haploid blastocysts. Only the phES-2 cell population was purified by repeated FACS to obtain 33% haploid cells. Following blastocyst injection with the FACS-purified haploid cells, no chimera was observed
among the 11 fetuses; however, 1 chimeric male was found among the 47 offspring. Although haploid rat ES cell lines can be established from both blastocyst sources, FACS purification may be necessary for maintenance and
chimera production.
Collapse
Affiliation(s)
- Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan.,School of Life Science, The Graduate University for Advanced Studies, Aichi 444-8787, Japan.,Department of Physiology, Medical College of Wisconsin, WI 53226, USA
| | - Hiromasa Hara
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan.,Present: Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Teppei Goto
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Akiko Takizawa
- Department of Physiology, Medical College of Wisconsin, WI 53226, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, WI 53226, USA
| | - Takahiro Yamanaka
- Graduate School of Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Shinichi Hochi
- Graduate School of Science and Technology, Shinshu University, Nagano 386-8567, Japan.,Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Hiromitsu Nakauchi
- Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.,Stanford University School of Medicine, CA 94305, USA
| |
Collapse
|
12
|
Kobayashi S. Live imaging of X chromosome inactivation and reactivation dynamics. Dev Growth Differ 2017; 59:493-500. [PMID: 28635043 PMCID: PMC11520949 DOI: 10.1111/dgd.12365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022]
Abstract
The epigenetic phenomenon called X chromosome inactivation plays critical roles in female development in eutherian mammals, and has attracted attention in the fields of developmental biology and regenerative biology in efforts to understand the pluripotency of stem cells. X chromosome inactivation is routinely studied after cell fixation, but live imaging is increasingly being required to improve our understanding of the dynamics and kinetics of X chromosome inactivation and reactivation processes. Here, we describe our live imaging method to monitor the epigenetic status of X chromosomes using a gene knock-in mouse strain named "Momiji" and give an overview of the application of this strain as a resource for biological and stem cell research.
Collapse
Affiliation(s)
- Shin Kobayashi
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and Technology2‐4‐7 AomiKoutou‐kuTokyo135‐0064Japan
- Department of EpigeneticsMedical Research InstituteTokyo Medical & Dental University1‐5‐45 YushimaBunkyo‐kuTokyo113‐8510Japan
| |
Collapse
|
13
|
Honda A, Choijookhuu N, Izu H, Kawano Y, Inokuchi M, Honsho K, Lee AR, Nabekura H, Ohta H, Tsukiyama T, Ohinata Y, Kuroiwa A, Hishikawa Y, Saitou M, Jogahara T, Koshimoto C. Flexible adaptation of male germ cells from female iPSCs of endangered Tokudaia osimensis. SCIENCE ADVANCES 2017; 3:e1602179. [PMID: 28508054 PMCID: PMC5429033 DOI: 10.1126/sciadv.1602179] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/27/2017] [Indexed: 06/07/2023]
Abstract
In mammals, the Y chromosome strictly influences the maintenance of male germ cells. Almost all mammalian species require genetic contributors to generate testes. An endangered species, Tokudaia osimensis, has a unique sex chromosome composition XO/XO, and genetic differences between males and females have not been confirmed. Although a distinctive sex-determining mechanism may exist in T. osimensis, it has been difficult to examine thoroughly in this rare animal species. To elucidate the discriminative sex-determining mechanism in T. osimensis and to find a strategy to prevent its possible extinction, we have established induced pluripotent stem cells (iPSCs) and derived interspecific chimeras using mice as the hosts and recipients. Generated iPSCs are considered to be in the so-called "true naïve" state, and T. osimensis iPSCs may contribute as interspecific chimeras to several different tissues and cells in live animals. Surprisingly, female T. osimensis iPSCs not only contributed to the female germ line in the interspecific mouse ovary but also differentiated into spermatocytes and spermatids that survived in the adult interspecific mouse testes. Thus, T. osimensis cells have high sexual plasticity through which female somatic cells can be converted to male germline cells. These findings suggest flexibility in T. osimensis cells, which can adapt their germ cell sex to the gonadal niche. The probable reduction of the extinction risk of an endangered species through the use of iPSCs is indicated by this study.
Collapse
Affiliation(s)
- Arata Honda
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Narantsog Choijookhuu
- Department of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Haruna Izu
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yoshihiro Kawano
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Mizuho Inokuchi
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
- Division of Bio-Resources, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kimiko Honsho
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Ah-Reum Lee
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hiroki Nabekura
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hiroshi Ohta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoyuki Tsukiyama
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Yasuhide Ohinata
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Asato Kuroiwa
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Yoshitaka Hishikawa
- Department of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takamichi Jogahara
- Division of Bio-Resources, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Chihiro Koshimoto
- Division of Bio-Resources, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
14
|
Singh AK, Naskar S, Saikia B, Vashi Y, Gupta S, Banik S, Tamuli MK, Pande V, Sarma DK, Dhara SK. Effect of testicular tissue lysate on developmental competence of porcine oocytes matured and fertilized in vitro. Reprod Domest Anim 2016; 52:183-188. [PMID: 27862454 DOI: 10.1111/rda.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/21/2016] [Indexed: 11/29/2022]
Abstract
The objective of the present study was to investigate the effect of testicular tissue lysate (TTL) on developmental competence of germinal vesicle (GV) stage porcine oocytes. Two types of TTL were prepared through repeated freeze-thaw in liquid nitrogen, one from whole testicular tissue (wTTL) and other from either of four different sections of testes, namely just beneath the tunica albuginea (TA), from the transitional area between the seminiferous cord/tubules and the mediastinum testis (TR) and from the intermediate area (parenchymal tissue origin) and CE (cauda epididymis origin). The whole or section-wise TTL treatments were given for 44 hr during in vitro maturation (IVM). Oocyte maturation was done in either of the two media, namely defined (high-performance basic medium for porcine oocyte maturation, commercially available) and serum containing (TCM199). After maturation, oocytes were co-incubated with fresh spermatozoa for 6 hr and then transferred to embryo culture media. Treatment of GV stage oocytes with wTTL (1 mg/ml) increased the cleavage and morula percentage rate (69.23 ± 6.23 and 48.15 ± 6.77, respectively) than that of their control (58.33 ± 8.08 and 32.54 ± 5.53, respectively) in defined media, and in serum-containing media, cleavage and morula percentage rate were almost equal in both treatment (54.56 ± 7.79 and 34.70 ± 6.78, respectively) and control (59.52 ± 8.21 and 38.52 ± 6.54, respectively). However, effect of wTTL was not significant. In case of section-wise TTL supplements, TR section significantly (p < .01) improved cleavage and morula rate (58.43 ± 7.98 and 36.14 ± 6.89, respectively) followed by TA. In conclusion, present study indicates that IVM, in vitro fertilization and in vitro culture of embryo are improved in the presence of TTL, particularly its TR section. Further study is expected to reveal the principal components of TTL which may prove useful for IVM.
Collapse
Affiliation(s)
- A K Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - S Naskar
- ICAR-National Research Centre on Pig, Guwahati, Assam, India.,ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - B Saikia
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - Y Vashi
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - S Gupta
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - S Banik
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - M K Tamuli
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - V Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - D K Sarma
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - S K Dhara
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
15
|
Shah SM, Saini N, Singh MK, Manik R, Singla SK, Palta P, Chauhan MS. Testicular cell–conditioned medium supports embryonic stem cell differentiation toward germ lineage and to spermatocyte- and oocyte-like cells. Theriogenology 2016; 86:715-29. [DOI: 10.1016/j.theriogenology.2016.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/31/2016] [Accepted: 02/27/2016] [Indexed: 11/15/2022]
|
16
|
Okabe M. The Acrosome Reaction: A Historical Perspective. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2016; 220:1-13. [PMID: 27194347 DOI: 10.1007/978-3-319-30567-7_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acrosome reaction is often referred to as acrosomal exocytosis, but it differs significantly from normal exocytosis. While the vesicle membrane initially holding excreting molecules remains on the cell surface during exocytosis, the outer acrosomal membrane and plasma membrane are lost by forming vesicles during acrosome reaction. In this context, the latter process resembles a release of exosome. However, recent experimental data indicate that the most important roles of acrosome reaction lie not in the release of acrosomal contents (or "vesiculated" plasma and outer acrosomal membrane complexes) but rather in changes in sperm membrane. This review describes the mechanism of fertilization vis-a-vis sperm membrane change, with a brief historical overview of the half-century study of acrosome reaction.
Collapse
Affiliation(s)
- Masaru Okabe
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
17
|
Wang JQ, Cao WG. Key Signaling Events for Committing Mouse Pluripotent Stem Cells to the Germline Fate. Biol Reprod 2015; 94:24. [PMID: 26674564 DOI: 10.1095/biolreprod.115.135095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023] Open
Abstract
The process of germline development carries genetic information and preparatory totipotency across generations. The last decade has witnessed remarkable successes in the generation of germline cells from mouse pluripotent stem cells, especially induced germline cells with the capacity for producing viable offspring, suggesting clinical applications of induced germline cells in humans. However, to date, the culture systems for germline induction with accurate sex-specific meiosis and epigenetic reprogramming have not been well-established. In this study, we primarily focus on the mouse model to discuss key signaling events for germline induction. We review mechanisms of competent regulators on primordial germ cell induction and discuss current achievements and difficulties in inducing sex-specific germline development. Furthermore, we review the developmental identities of mouse embryonic stem cells and epiblast stem cells under certain defined culture conditions as it relates to the differentiation process of becoming germline cells.
Collapse
Affiliation(s)
- Jian-Qi Wang
- Transgenic and Stem Cell Core, Institute of Animal Sciences and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen-Guang Cao
- Transgenic and Stem Cell Core, Institute of Animal Sciences and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Muto M, Fujihara Y, Tobita T, Kiyozumi D, Ikawa M. Lentiviral Vector-Mediated Complementation Restored Fetal Viability but Not Placental Hyperplasia in Plac1-Deficient Mice. Biol Reprod 2015; 94:6. [PMID: 26586843 DOI: 10.1095/biolreprod.115.133454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/13/2015] [Indexed: 12/25/2022] Open
Abstract
The X-linked Plac1 gene is maternally expressed in trophoblast cells during placentation, and its disruption causes placental hyperplasia and intrauterine growth restriction. In contrast, Plac1 is also reported to be one of the upregulated genes in the hyperplastic placenta generated by nuclear transfer. However, the effect of overexpressed Plac1 on placental formation and function remained unaddressed. We complemented the Plac1 knockout placental dysfunction by lentiviral vector-mediated, placenta-specific Plac1 transgene expression. Whereas fetal development and the morphology of maternal blood sinuses in the labyrinth zone improved, placental hyperplasia remained, with an expanded the junctional zone that migrated and encroached into the labyrinth zone. Further experiments revealed that wild-type placenta with transgenically expressed Plac1 resulted in placental hyperplasia without the encroaching of the junctional zone. Our findings suggest that Plac1 is involved in trophoblast cell proliferation, differentiation, and migration. Its proper expression is required for normal placentation and fetal development.
Collapse
Affiliation(s)
- Masanaga Muto
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomohiro Tobita
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daiji Kiyozumi
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
19
|
Otsuka-Kanazawa S, Ichii O, Kon Y. Testicular oocytes in MRL/MpJ mice possess similar morphological, genetic, and functional characteristics to ovarian oocytes. Mech Dev 2015; 137:23-32. [PMID: 25892298 DOI: 10.1016/j.mod.2015.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 11/26/2022]
Abstract
In general, mammalian males produce only spermatozoa in their testes and females produce only oocytes in their ovaries. However, newborn MRL/MpJ male mice produce oocytes within their testes. In this study, we examined the initiation and progression of oogenesis in fetal and neonatal MRL/MpJ mouse testes and evaluated the characteristics of testicular oocytes. Germ cells with positive reactions to oogenesis markers such as NOBOX oogenesis homeobox and synaptonemal complex protein 3 were observed in the MRL/MpJ fetal testes on embryonic day 18.5. These fetal testicular oocytes possessed maternal-specific methylation patterns of histone and DNA. The level of DNA methylation was still low in postnatal testicular oocytes at day 14 after birth. Additionally, the postnatal testicular oocytes contained both X and Y chromosomes and had the ability to fuse with sperm. These results suggest that some XY germ cells in fetal testes of MRL/MpJ mice enter meiosis prematurely, undergo oogenesis, and differentiate into oocytes. In addition, MRL/MpJ testicular oocytes have the ability to carry on oogenesis before and shortly after birth until they obtain some of the morphological, epigenetic, and functional characteristics of oocytes.
Collapse
Affiliation(s)
- Saori Otsuka-Kanazawa
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Osamu Ichii
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Kobayashi S, Totoki Y, Soma M, Matsumoto K, Fujihara Y, Toyoda A, Sakaki Y, Okabe M, Ishino F. Identification of an imprinted gene cluster in the X-inactivation center. PLoS One 2013; 8:e71222. [PMID: 23940725 PMCID: PMC3735490 DOI: 10.1371/journal.pone.0071222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 06/27/2013] [Indexed: 11/18/2022] Open
Abstract
Mammalian development is strongly influenced by the epigenetic phenomenon called genomic imprinting, in which either the paternal or the maternal allele of imprinted genes is expressed. Paternally expressed Xist, an imprinted gene, has been considered as a single cis-acting factor to inactivate the paternally inherited X chromosome (Xp) in preimplantation mouse embryos. This means that X-chromosome inactivation also entails gene imprinting at a very early developmental stage. However, the precise mechanism of imprinted X-chromosome inactivation remains unknown and there is little information about imprinted genes on X chromosomes. In this study, we examined whether there are other imprinted genes than Xist expressed from the inactive paternal X chromosome and expressed in female embryos at the preimplantation stage. We focused on small RNAs and compared their expression patterns between sexes by tagging the female X chromosome with green fluorescent protein. As a result, we identified two micro (mi)RNAs–miR-374-5p and miR-421-3p–mapped adjacent to Xist that were predominantly expressed in female blastocysts. Allelic expression analysis revealed that these miRNAs were indeed imprinted and expressed from the Xp. Further analysis of the imprinting status of adjacent locus led to the discovery of a large cluster of imprinted genes expressed from the Xp: Jpx, Ftx and Zcchc13. To our knowledge, this is the first identified cluster of imprinted genes in the cis-acting regulatory region termed the X-inactivation center. This finding may help in understanding the molecular mechanisms regulating imprinted X-chromosome inactivation during early mammalian development.
Collapse
Affiliation(s)
- Shin Kobayashi
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Saitama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kanamori A, Toyama K. A transgenic medaka line with visible markers for genotypic and phenotypic sex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6640-6645. [PMID: 23638909 DOI: 10.1021/es400264q] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Accurate genotyping of sex is required for correct interpretation in any in vivo assays with endocrine disrupting chemicals (EDCs). Visible markers for genotypic sex, if reliable, simplify assays because time-consuming PCR-based genotyping can be skipped. Here, we describe a line of Japanese medaka with a brain-expressed green fluorescent protein (GFP) transgene inserted near the sex-determining locus. When used with a white pigment cell marker, genotypic sex can be determined reliably as early as 3 days after fertilization (well before gonadal sex differentiation). No recombinants were found in more than 2000 progenies. We also introduced a strong ovarian GFP marker into the line with these genetic sex markers, so that phenotypic sex can also be determined reliably at 8 days after hatching. Well-known sex reversal protocols using exogenous steroid treatments of embryos were monitored by this transgenic line, demonstrating the line to be a useful tool for in vivo studies utilizing gonadal sex differentiation of the medaka, especially for screenings of potential estrogenic and androgenic EDCs.
Collapse
Affiliation(s)
- Akira Kanamori
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | | |
Collapse
|
22
|
Aberrant gene expression and sexually incompatible genomic imprinting in oocytes derived from XY mouse embryonic stem cells in vitro. PLoS One 2013; 8:e58555. [PMID: 23472205 PMCID: PMC3589367 DOI: 10.1371/journal.pone.0058555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 02/07/2013] [Indexed: 11/19/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) have the potential to differentiate into germ cells (GCs) in vivo and in vitro. Interestingly, XY ESCs can give rise to both male and female GCs in culture, irrespective of the genetic sex. Recent studies showed that ESC-derived primordial GCs contributed to functional gametogenesis in vivo; however, in vitro differentiation techniques have never succeeded in generating mature oocytes from ESCs due to cryptogenic growth arrest during the preantral follicle stages of development. To address this issue, a mouse ESC line, capable of producing follicle-like structures (FLSs) efficiently, was established to investigate their properties using conventional molecular biological methods. The results revealed that the ESC-derived FLSs were morphologically similar to ovarian primary-to-secondary follicles but never formed an antrum; instead, the FLSs eventually underwent abnormal development or cell death in culture, or formed teratomas when transplanted under the kidney capsule in mice. Gene expression analyses demonstrated that the FLSs lacked transcripts for genes essential to late folliculogenesis, including gonadotropin receptors and steroidogenic enzymes, whereas some other genes were overexpressed in FLSs compared to the adult ovary. The E-Cadherin protein, which is involved in cell-to-cell interactions, was also expressed ectopically. Remarkably, it was seen that oocyte-like cells in the FLSs exhibited androgenetic genomic imprinting, which is ordinarily indicative of male GCs. Although the FLSs did not express male GC marker genes, the DNA methyltransferase, Dnmt3L, was expressed at an abnormally high level. Furthermore, the expression of sex determination factors was ambiguous in FLSs as both male and female determinants were expressed weakly. These data suggest that the developmental dysfunction of the ESC-derived FLSs may be attributable to aberrant gene expression and genomic imprinting, possibly associated with uncertain sex determination in culture.
Collapse
|
23
|
Lavery R, Chassot AA, Pauper E, Gregoire EP, Klopfenstein M, de Rooij DG, Mark M, Schedl A, Ghyselinck NB, Chaboissier MC. Testicular differentiation occurs in absence of R-spondin1 and Sox9 in mouse sex reversals. PLoS Genet 2012; 8:e1003170. [PMID: 23300469 PMCID: PMC3531470 DOI: 10.1371/journal.pgen.1003170] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 10/30/2012] [Indexed: 01/27/2023] Open
Abstract
In mammals, male sex determination is governed by SRY-dependent activation of Sox9, whereas female development involves R-spondin1 (RSPO1), an activator of the WNT/beta-catenin signaling pathway. Genetic analyses in mice have demonstrated Sry and Sox9 to be both required and sufficient to induce testicular development. These genes are therefore considered as master regulators of the male pathway. Indeed, female-to-male sex reversal in XX Rspo1 mutant mice correlates with Sox9 expression, suggesting that this transcription factor induces testicular differentiation in pathological conditions. Unexpectedly, here we show that testicular differentiation can occur in XX mutants lacking both Rspo1 and Sox9 (referred to as XX Rspo1KOSox9cKO), indicating that Sry and Sox9 are dispensable to induce female-to-male sex reversal. Molecular analyses show expression of both Sox8 and Sox10, suggesting that activation of Sox genes other than Sox9 can induce male differentiation in Rspo1KOSox9cKO mice. Moreover, since testis development occurs in XY Rspo1KOSox9cKO mice, our data show that Rspo1 is the main effector for male-to-female sex reversal in XY Sox9cKO mice. Thus, Rspo1 is an essential activator of ovarian development not only in normal situations, but also in sex reversal situations. Taken together these data demonstrate that both male and female sex differentiation is induced by distinct, active, genetic pathways. The dogma that considers female differentiation as a default pathway therefore needs to be definitively revised. Mammalian sex determination is controlled by the paternal transmission of the Y-linked gene, SRY. Using mouse models, it has been shown that the main, if not the only, role of Sry is to activate the transcription factor Sox9, and these two genes are necessary and sufficient to allow male development. Indeed, defects in Sry and/or Sox9 expression result in male-to-female sex reversal of XY individuals. In XX individuals, Rspo1 is important for ovarian development as evidenced by female-to-male sex reversal of XX Rspo1 mutants. Since testicular differentiation appears concomitantly with Sox9 expression, it was assumed that Sox9 is the inducer of testicular differentiation in XX Rspo1 mutants. Our genetic study shows that i) neither Sry nor Sox9 are required for female-to-male sex reversals; ii) other masculinizing factors like Sox8 and Sox10 are activated in sex reversal conditions; iii) Rspo1 is the main effector of male-to-female sex reversal in the XY Sox9 mutants. Together these data suggest that male and female genetic pathways are both main effectors involved in sex determination and that the long-standing dogma of a default female pathway should definitively be revised.
Collapse
Affiliation(s)
- Rowena Lavery
- University of Nice–Sophia Antipolis, UFR Sciences, Nice, France
- INSERM U1091, CNRS UMR7277, iBV, Nice, France
| | - Anne-Amandine Chassot
- University of Nice–Sophia Antipolis, UFR Sciences, Nice, France
- INSERM U1091, CNRS UMR7277, iBV, Nice, France
| | - Eva Pauper
- University of Nice–Sophia Antipolis, UFR Sciences, Nice, France
- INSERM U1091, CNRS UMR7277, iBV, Nice, France
| | - Elodie P. Gregoire
- University of Nice–Sophia Antipolis, UFR Sciences, Nice, France
- INSERM U1091, CNRS UMR7277, iBV, Nice, France
| | - Muriel Klopfenstein
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moleculaire et Cellulaire (IGBMC), CNRS UMR7104–INSERM U964, Illkirch, France
| | - Dirk G. de Rooij
- Center for Reproductive Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Manuel Mark
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moleculaire et Cellulaire (IGBMC), CNRS UMR7104–INSERM U964, Illkirch, France
| | - Andreas Schedl
- University of Nice–Sophia Antipolis, UFR Sciences, Nice, France
- INSERM U1091, CNRS UMR7277, iBV, Nice, France
| | - Norbert B. Ghyselinck
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moleculaire et Cellulaire (IGBMC), CNRS UMR7104–INSERM U964, Illkirch, France
| | - Marie-Christine Chaboissier
- University of Nice–Sophia Antipolis, UFR Sciences, Nice, France
- INSERM U1091, CNRS UMR7277, iBV, Nice, France
- * E-mail:
| |
Collapse
|
24
|
An organism arises from every nucleus. Folia Histochem Cytobiol 2009; 47:179-83. [PMID: 19995701 DOI: 10.2478/v10042-009-0034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fact that, cloning using somatic cell nuclear transfer (SCNT) method has been performed, opened new horizons for cloning, and changed the way of our understanding and approach to cell and nucleus. The progress in cloning technology, brought the anticipation of the ability to clone an organism from each somatic cell nucleus. Therefore, the 'Cell Theory' is about to take the additional statement as "An organism arises from every nucleus". The development of gene targeting procedures which can be applied with SCNT, showed us that it may be possible to obtain different versions of the original genetic constitution of a cell. Because of this opportunity which is provided by SCNT, in reproductive cloning, it would be possible to clone enhanced organisms which can adapt to different environmental conditions and survive. Furthermore, regaining the genetic characteristics of ancestors or reverse herediter variations would be possible. On the other hand, in therapeutic cloning, more precise and easily obtainable alternatives for cell replacement therapy could be presented. However, while producing healthier or different organisms from a nucleus, it is hard to foresee the side effects influencing natural processes in long term is rather difficult.
Collapse
|
25
|
Nicholas CR, Haston KM, Grewall AK, Longacre TA, Reijo Pera RA. Transplantation directs oocyte maturation from embryonic stem cells and provides a therapeutic strategy for female infertility. Hum Mol Genet 2009; 18:4376-89. [PMID: 19696121 PMCID: PMC2766296 DOI: 10.1093/hmg/ddp393] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ten to 15% of couples are infertile, with the most common causes being linked to the production of few or no oocytes or sperm. Yet, our understanding of human germ cell development is poor, at least in part due to the inaccessibility of early stages to genetic and developmental studies. Embryonic stem cells (ESCs) provide an in vitro system to study oocyte development and potentially treat female infertility. However, most studies of ESC differentiation to oocytes have not documented fundamental properties of endogenous development, making it difficult to determine the physiologic relevance of differentiated germ cells. Here, we sought to establish fundamental parameters of oocyte development during ESC differentiation to explore suitability for basic developmental genetic applications using the mouse as a model prior to translating to the human system. We demonstrate a timeline of definitive germ cell differentiation from ESCs in vitro that initially parallels endogenous oocyte development in vivo by single-cell expression profiling and analysis of functional milestones including responsiveness to defined maturation media, shared genetic requirement of Dazl, and entry into meiosis. However, ESC-derived oocyte maturation ultimately fails in vitro. To overcome this obstacle, we transplant ESC-derived oocytes into an ovarian niche to direct their functional maturation and, thereby, present rigorous evidence of oocyte physiologic relevance and a potential therapeutic strategy for infertility.
Collapse
Affiliation(s)
- Cory R Nicholas
- Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, CA 94304, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
During mouse development, primordial germ cells (PGCs) that give rise to the entire germ line are first identified within the proximal epiblast. However, long-term tracing of the fate of the cells has not been done wherein all cells in and around the germ-cell lineage are identified. Also, quantitative estimates of the number of founder PGCs using different models have come up with various numbers. Here, we use tetrachimeric mice to show that the progenitor numbers for the entire germ line in adult testis, and for the initiating embryonic PGCs, are both 4 cells. Although they proliferate to form polyclonal germ-cell populations in fetal and neonatal testes, germ cells that actually contribute to adult spermatogenesis originate from a small number of secondary founder cells that originate in the fetal period. The rest of the "deciduous" germ cells are lost, most likely by apoptosis, before the reproductive period. The second "actual" founder germ cells generally form small numbers of large monoclonal areas in testes by the reproductive period. Our results also demonstrate that there is no contribution of somatic cells to the male germ cell pool during development or in adulthood. These results suggest a model of 2-step oligoclonal development of male germ cells in mice, the second step distinguishing the heritable germ line from cells selected not to participate in forming the next generation.
Collapse
|
27
|
Otsuka S, Konno A, Hashimoto Y, Sasaki N, Endoh D, Kon Y. Oocytes in Newborn MRL Mouse Testes1. Biol Reprod 2008; 79:9-16. [PMID: 18354036 DOI: 10.1095/biolreprod.107.064519] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Saori Otsuka
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Tanaka H, Hirose M, Tokuhiro K, Tainaka H, Miyagawa Y, Tsujimura A, Okuyama A, Nishimune Y. Molecular biological features of male germ cell differentiation. Reprod Med Biol 2007; 6:1-9. [PMID: 29699260 DOI: 10.1111/j.1447-0578.2007.00158.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Somatic cell differentiation is required throughout the life of a multicellular organism to maintain homeostasis. In contrast, germ cells have only one specific function; to preserve the species by conveying the parental genes to the next generation. Recent studies of the development and molecular biology of the male germ cell have identified many genes, or isoforms, that are specifically expressed in the male germ cell. In the present review, we consider the unique features of male germ cell differentiation. (Reprod Med Biol 2007; 6: 1-9).
Collapse
Affiliation(s)
| | - Mika Hirose
- TANAKA Project, Center for Advanced Science and Innovation
| | - Keizo Tokuhiro
- TANAKA Project, Center for Advanced Science and Innovation
| | | | - Yasushi Miyagawa
- Department of Urology, Osaka University Graduate School of Medicine and
| | - Akira Tsujimura
- Department of Urology, Osaka University Graduate School of Medicine and
| | - Akihiko Okuyama
- Department of Urology, Osaka University Graduate School of Medicine and
| | - Yoshitake Nishimune
- Research Collaboration Center on Emerging and Re-emerging Infections, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
29
|
Durcova-Hills G, Hajkova P, Sullivan S, Barton S, Surani MA, McLaren A. Influence of sex chromosome constitution on the genomic imprinting of germ cells. Proc Natl Acad Sci U S A 2006; 103:11184-8. [PMID: 16847261 PMCID: PMC1544062 DOI: 10.1073/pnas.0602621103] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Germ cells in XY male mice establish site-specific methylation on imprinted genes during spermatogenesis, whereas germ cells in XX females establish their imprints in growing oocytes. We showed previously that in vitro, sex-specific methylation patterns of pluripotent stem cell lines derived from germ cells were influenced more by the sex chromosome constitution of the cells themselves than by the gender of the embryo from which they had been derived. To see whether the same situation would prevail in vivo, we have now determined the methylation status of H19 expressed from the maternal allele, and the expression and methylation status of a paternally expressed gene Peg3, in germ cells from sex-reversed and control embryos. For these imprinted genes, we conclude that the female imprint is a response of the germ cells to undergoing oogenesis, rather than to their XX chromosome constitution. Similarly, both our XY and our sex-reversed XX male germ cells clearly showed a male rather than a female pattern of DNA methylation; here, however, the sex chromosome constitution had a significant effect, with XX male germ cells less methylated than the XY controls.
Collapse
Affiliation(s)
- Gabriela Durcova-Hills
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Petra Hajkova
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Stephen Sullivan
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Sheila Barton
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Anne McLaren
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Lacham-Kaplan O, Chy H, Trounson A. Testicular Cell Conditioned Medium Supports Differentiation of Embryonic Stem Cells into Ovarian Structures Containing Oocytes. Stem Cells 2006; 24:266-73. [PMID: 16109761 DOI: 10.1634/stemcells.2005-0204] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous reports and the current study have found that germ cell precursor cells appear in embryoid bodies (EBs) formed from mouse embryonic stem cells as identified by positive expression of specific germ cell markers such as Oct-3/4, Mvh, c-kit, Stella, and DAZL. We hypothesized that if exposed to appropriate growth factors, the germ cell precursor cells within the EBs would differentiate into gametes. The source for growth factors used in the present study is conditioned medium collected from testicular cell cultures prepared from the testes of newborn males. Testes at this stage of development contain most growth factors required for the transformation of germ stem cells into differentiated gametes. When EBs were cultured in the conditioned medium, they developed into ovarian structures, which contained putative oocytes. The oocytes were surrounded by one to two layers of flattened cells and did not have a visible zona pellucida. However, oocyte-specific markers such as Fig-alpha and ZP3 were found expressed by the ovarian structures. The production of oocytes using this method is repeatable and reliable and may be applicable to other mammalian species, including the human.
Collapse
Affiliation(s)
- Orly Lacham-Kaplan
- Monash Immunology and Stem Cell Laboratories, Monash University, Wellington Rd., Clayton, Australia 3165.
| | | | | |
Collapse
|
31
|
Abstract
The International Symposium entitled "Germ Cells, Epigenetics, Reprogramming, and Embryonic Stem Cells" was organized by Norio Nakatsuji (Kyoto University) and Hiromitsu Nakauchi (University of Tokyo) in Kyoto, Japan (November 15-18, 2005). The meeting provided an overview of this important research area and highlighted recent advances.
Collapse
Affiliation(s)
- Minoru S H Ko
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | |
Collapse
|