1
|
Kurup HM, Kvach MV, Harjes S, Barzak FM, Jameson GB, Harjes E, Filichev VV. Design, Synthesis, and Evaluation of a Cross-Linked Oligonucleotide as the First Nanomolar Inhibitor of APOBEC3A. Biochemistry 2022; 61:2568-2578. [DOI: 10.1021/acs.biochem.2c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Harikrishnan M. Kurup
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Maksim V. Kvach
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Stefan Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Fareeda M. Barzak
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Geoffrey B. Jameson
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Elena Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Vyacheslav V. Filichev
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| |
Collapse
|
2
|
Pääkkönen J, Penttinen L, Andberg M, Koivula A, Hakulinen N, Rouvinen J, Jänis J. Xylonolactonase from Caulobacter crescentus Is a Mononuclear Nonheme Iron Hydrolase. Biochemistry 2021; 60:3046-3049. [PMID: 34633186 PMCID: PMC8529709 DOI: 10.1021/acs.biochem.1c00249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Caulobacter crescentus xylonolactonase (Cc XylC, EC 3.1.1.68) catalyzes an intramolecular ester bond hydrolysis over a nonenzymatic acid/base catalysis. Cc XylC is a member of the SMP30 protein family, whose members have previously been reported to be active in the presence of bivalent metal ions, such as Ca2+, Zn2+, and Mg2+. By native mass spectrometry, we studied the binding of several bivalent metal ions to Cc XylC and observed that it binds only one of them, namely, the Fe2+ cation, specifically and with a high affinity (Kd = 0.5 μM), pointing out that Cc XylC is a mononuclear iron protein. We propose that bivalent metal cations also promote the reaction nonenzymatically by stabilizing a short-lived bicyclic intermediate on the lactone isomerization reaction. An analysis of the reaction kinetics showed that Cc XylC complexed with Fe2+ can speed up the hydrolysis of d-xylono-1,4-lactone by 100-fold and that of d-glucono-1,5-lactone by 10-fold as compared to the nonenzymatic reaction. To our knowledge, this is the first discovery of a nonheme mononuclear iron-binding enzyme that catalyzes an ester bond hydrolysis reaction.
Collapse
Affiliation(s)
- Johan Pääkkönen
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Leena Penttinen
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Martina Andberg
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT Espoo, Finland
| | - Anu Koivula
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT Espoo, Finland
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Juha Rouvinen
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| |
Collapse
|
3
|
Kvach MV, Barzak FM, Harjes S, Schares HAM, Kurup HM, Jones KF, Sutton L, Donahue J, D'Aquila RT, Jameson GB, Harki DA, Krause KL, Harjes E, Filichev VV. Differential Inhibition of APOBEC3 DNA-Mutator Isozymes by Fluoro- and Non-Fluoro-Substituted 2'-Deoxyzebularine Embedded in Single-Stranded DNA. Chembiochem 2019; 21:1028-1035. [PMID: 31633265 PMCID: PMC7142307 DOI: 10.1002/cbic.201900505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/20/2019] [Indexed: 12/17/2022]
Abstract
The APOBEC3 (APOBEC3A‐H) enzyme family is part of the human innate immune system that restricts pathogens by scrambling pathogenic single‐stranded (ss) DNA by deamination of cytosines to produce uracil residues. However, APOBEC3‐mediated mutagenesis of viral and cancer DNA promotes its evolution, thus enabling disease progression and the development of drug resistance. Therefore, APOBEC3 inhibition offers a new strategy to complement existing antiviral and anticancer therapies by making such therapies effective for longer periods of time, thereby preventing the emergence of drug resistance. Here, we have synthesised 2′‐deoxynucleoside forms of several known inhibitors of cytidine deaminase (CDA), incorporated them into oligodeoxynucleotides (oligos) in place of 2′‐deoxycytidine in the preferred substrates of APOBEC3A, APOBEC3B, and APOBEC3G, and evaluated their inhibitory potential against these enzymes. An oligo containing a 5‐fluoro‐2′‐deoxyzebularine (5FdZ) motif exhibited an inhibition constant against APOBEC3B 3.5 times better than that of the comparable 2′‐deoxyzebularine‐containing (dZ‐containing) oligo. A similar inhibition trend was observed for wild‐type APOBEC3A. In contrast, use of the 5FdZ motif in an oligo designed for APOBEC3G inhibition resulted in an inhibitor that was less potent than the dZ‐containing oligo both in the case of APOBEC3GCTD and in that of full‐length wild‐type APOBEC3G.
Collapse
Affiliation(s)
- Maksim V Kvach
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Fareeda M Barzak
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Stefan Harjes
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Henry A M Schares
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - Harikrishnan M Kurup
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | - Katherine F Jones
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN, 55455, USA
| | - Lorraine Sutton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, 21st Ave S, Nashville, TN, 37232, USA
| | - John Donahue
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, 21st Ave S, Nashville, TN, 37232, USA
| | - Richard T D'Aquila
- Division of Infectious Diseases and, Northwestern HIV Translational Research Center, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2330, Chicago, IL, 60611, USA
| | - Geoffrey B Jameson
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th Street SE, Minneapolis, MN, 55455, USA.,Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN, 55455, USA
| | - Kurt L Krause
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand.,Department of Biochemistry, University of Otago, P. O. Box 56, Dunedin, 9054, New Zealand
| | - Elena Harjes
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| | - Vyacheslav V Filichev
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
4
|
Barzak FM, Harjes S, Kvach MV, Kurup HM, Jameson GB, Filichev VV, Harjes E. Selective inhibition of APOBEC3 enzymes by single-stranded DNAs containing 2'-deoxyzebularine. Org Biomol Chem 2019; 17:9435-9441. [PMID: 31603457 DOI: 10.1039/c9ob01781j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To restrict pathogens, in a normal human cell, APOBEC3 enzymes mutate cytosine to uracil in foreign single-stranded DNAs. However, in cancer cells, APOBEC3B (one of seven APOBEC3 enzymes) has been identified as the primary source of genetic mutations. As such, APOBEC3B promotes evolution and progression of cancers and leads to development of drug resistance in multiple cancers. As APOBEC3B is a non-essential protein, its inhibition can be used to suppress emergence of drug resistance in existing anti-cancer therapies. Because of the vital role of APOBEC3 enzymes in innate immunity, selective inhibitors targeting only APOBEC3B are required. Here, we use the discriminative properties of wild-type APOBEC3A, APOBEC3B and APOBEC3G to deaminate different cytosines in the CCC-recognition motif in order to best place the cytidine analogue 2'-deoxyzebularine (dZ) in the CCC-motif. Using several APOBEC3 variants that mimic deamination patterns of wild-type enzymes, we demonstrate that selective inhibition of APOBEC3B in preference to other APOBEC3 constructs is feasible for the dZCC motif. This work is an important step towards development of in vivo tools to inhibit APOBEC3 enzymes in living cells by using short, chemically modified oligonucleotides.
Collapse
Affiliation(s)
- Fareeda M Barzak
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Transition state theory teaches that chemically stable mimics of enzymatic transition states will bind tightly to their cognate enzymes. Kinetic isotope effects combined with computational quantum chemistry provides enzymatic transition state information with sufficient fidelity to design transition state analogues. Examples are selected from various stages of drug development to demonstrate the application of transition state theory, inhibitor design, physicochemical characterization of transition state analogues, and their progress in drug development.
Collapse
Affiliation(s)
- Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
6
|
Abstract
Enzymatic transition states have lifetimes of a few femtoseconds (fs). Computational analysis of enzyme motions leading to transition state formation suggests that local catalytic site motions on the fs time scale provide the mechanism to locate transition states. An experimental test of protein fs motion and its relation to transition state formation can be provided by isotopically heavy proteins. Heavy enzymes have predictable mass-altered bond vibration states without altered electrostatic properties, according to the Born-Oppenheimer approximation. On-enzyme chemistry is slowed in most heavy proteins, consistent with altered protein bond frequencies slowing the search for the transition state. In other heavy enzymes, structural changes involved in reactant binding and release are also influenced. Slow protein motions associated with substrate binding and catalytic site preorganization are essential to allow the subsequent fs motions to locate the transition state and to facilitate the efficient release of products. In the catalytically competent geometry, local groups move in stochastic atomic motion on the fs time scale, within transition state-accessible conformations created by slower protein motions. The fs time scale for the transition state motions does not permit thermodynamic equilibrium between the transition state and stable enzyme states. Isotopically heavy enzymes provide a diagnostic tool for fast coupled protein motions to transition state formation and mass-dependent conformational changes. The binding of transition state analogue inhibitors is the opposite in catalytic time scale to formation of the transition state but is related by similar geometries of the enzyme-transition state and enzyme-inhibitor interactions. While enzymatic transition states have lifetimes as short as 10(-15) s, transition state analogues can bind tightly to enzymes with release rates greater than 10(3) s. Tight-binding transition state analogues stabilize the rare but evolved enzymatic geometry to form the transition state. Evolution to efficient catalysis optimized this geometry and its stabilization by a transition state mimic results in tight binding. Release rates of transition state analogues are orders of magnitude slower than product release in normal catalytic function. During catalysis, product release is facilitated by altered chemistry. Compared to the weak associations found in Michaelis complexes, transition state analogues involve strong interactions related to those in the transition state. Optimum binding of transition state analogues occurs when the complex retains the system motions intrinsic to transition state formation. Conserved dynamic motion retains the entropic components of inhibitor complexes, improving the thermodynamics of analogue binding.
Collapse
Affiliation(s)
- Vern L. Schramm
- Department
of Biochemistry, Albert Einstein College of Medicine, 1300 Morris
Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
7
|
Schroeder GK, Zhou L, Snider MJ, Chen X, Wolfenden R. Flight of a Cytidine Deaminase Complex with an Imperfect Transition State Analogue Inhibitor: Mass Spectrometric Evidence for the Presence of a Trapped Water Molecule. Biochemistry 2012; 51:6476-86. [DOI: 10.1021/bi300516u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gottfried K. Schroeder
- Department of Biochemistry and
Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Li Zhou
- Department of Biochemistry and
Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Mark J. Snider
- Department of Chemistry, College of Wooster, Wooster, Ohio 44691, United States
| | - Xian Chen
- Department of Biochemistry and
Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Richard Wolfenden
- Department of Biochemistry and
Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Shah B, Kozlowski RL, Han J, Borchers CH. Emerging mass spectrometry-based technologies for analyses of chromatin changes: analysis of histones and histone modifications. Methods Mol Biol 2011; 773:259-303. [PMID: 21898261 DOI: 10.1007/978-1-61779-231-1_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mass spectrometry (MS) is rapidly becoming an indispensable tool for the analysis of posttranslational modifications (PTMs) of proteins, and particularly histone PTMs that regulate physiological processes. The more traditional bottom-up approach of searching for modifications on peptides rather than intact proteins (top-down) has proven useful for finding phosphorylation, acetylation, and ubiquitination sites. With the use of modern instrumentation and various MS-based techniques, peptides and their PTMs can be characterized in a high-throughput manner while still maintaining high sensitivity and specificity. In complement to bottom-up MS, recent advances in MS technology, such as high-field Fourier transform ion cyclotron resonance (FTICR)-mass spectrometry, have permitted the study of intact proteins and their modifications. On-line and off-line protein separation instruments coupled to FTICR-MS allow the characterization of PTMs previously undetectable with bottom-up approaches. The use of unique fragmentation techniques in FTICR-MS provides a viable option for the study of labile modifications. In this chapter, we provide a detailed description of the analytical tools - mass spectrometry in particular - that are used to characterize modifications on peptides and proteins. We also examine the applicability of these mass spectrometric techniques to the study of PTMs on histones via both the bottom-up and top-down proteomics approaches.
Collapse
Affiliation(s)
- Brinda Shah
- Department of Biochemistry and Microbiology, and the University of Victoria - Genome British Columbia Protein Center, University of Victoria, Victoria, BC, Canada
| | | | | | | |
Collapse
|
9
|
Zhuravlev PI, Materese CK, Papoian GA. Deconstructing the native state: energy landscapes, function, and dynamics of globular proteins. J Phys Chem B 2009; 113:8800-12. [PMID: 19453123 DOI: 10.1021/jp810659u] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Proteins are highly complex molecules with features exquisitely selected by nature to carry out essential biological functions. Physical chemistry and polymer physics provide us with the tools needed to make sense of this complexity. Upon translation, many proteins fold to a thermodynamically stable form known as the native state. The native state is not static, but consists of a hierarchy of conformations, that are continuously explored through dynamics. In this review we provide a brief introduction to some of the core concepts required in the discussion of the protein native dynamics using energy landscapes ideas. We first discuss recent works which have challenged the structure-function paradigm by demonstrating function in disordered proteins. Next we examine the hierarchical organization in the energy landscapes using atomistic molecular dynamics simulations and principal component analysis. In particular, the role of direct and water-mediated contacts in sculpting the landscape is elaborated. Another approach to studying the native state ensemble is based on choosing high-resolution order parameters for computing one- or two-dimensional free energy surfaces. We demonstrate that 2D free energy surfaces provide rich thermodynamic and kinetic information about the native state ensemble. Brownian dynamics simulations on such a surface indicate that protein conformational dynamics is weakly activated. Finally, we briefly discuss implicit and coarse-grained protein models and emphasize the solvent role in determining native state structure and dynamics.
Collapse
Affiliation(s)
- Pavel I Zhuravlev
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | | | | |
Collapse
|
10
|
Ouvry-Patat SA, Torres MP, Gelfand CA, Quek HH, Easterling M, Speir JP, Borchers CH. Top-down proteomics on a high-field Fourier transform ion cyclotron resonance mass spectrometer. Methods Mol Biol 2009; 492:215-231. [PMID: 19241035 DOI: 10.1007/978-1-59745-493-3_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mass spectrometry is the tool of choice for sequencing peptides and determining the sites of posttranslational modifications; however, this bottom-up approach lacks in providing global information about the modification states of proteins including the number and types of isoforms and their stoichiometry. Recently, various techniques and mass spectrometers, such as high-field Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometers, have been developed to study intact proteins (top-down proteomics). While the protein molecular mass and the qualitative and quantitative information about protein isoforms can be revealed by FTICR-MS analysis, their primary structure (including the identification of modifications and their exact locations in the amino acid sequence) can directly be determined using the MS/MS capability offered by the FTICR mass spectrometer. The distinct advantage of top-down methods are that modifications can be determined for a specific protein isoform rather than for peptides belonging to one or several isoforms. In this chapter, we describe different top-down proteomic approaches enabled by high-field (7, 9.4, and 12 T) FTICR mass spectrometers, and their applicability to answer biological and biomedical questions. We also describe the use of the free flow electrophoresis (FFE) to separate proteins prior to top-down mass spectrometric characterization.
Collapse
Affiliation(s)
- Séverine A Ouvry-Patat
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Ouvry-Patat SA, Torres MP, Quek HH, Gelfand CA, O'Mullan P, Nissum M, Schroeder GK, Han J, Elliott M, Dryhurst D, Ausio J, Wolfenden R, Borchers CH. Free-flow electrophoresis for top-down proteomics by Fourier transform ion cyclotron resonance mass spectrometry. Proteomics 2008; 8:2798-808. [DOI: 10.1002/pmic.200800079] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Affiliation(s)
- Richard Wolfenden
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
13
|
Borchers CH, Thapar R, Petrotchenko EV, Torres MP, Speir JP, Easterling M, Dominski Z, Marzluff WF. Combined top-down and bottom-up proteomics identifies a phosphorylation site in stem-loop-binding proteins that contributes to high-affinity RNA binding. Proc Natl Acad Sci U S A 2006; 103:3094-9. [PMID: 16492733 PMCID: PMC1413926 DOI: 10.1073/pnas.0511289103] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Indexed: 11/18/2022] Open
Abstract
The stem-loop-binding protein (SLBP) is involved in multiple aspects of histone mRNA metabolism. To characterize the modification status and sites of SLBP, we combined mass spectrometric bottom-up (analysis of peptides) and top-down (analysis of intact proteins) proteomic approaches. Drosophilia SLBP is heavily phosphorylated, containing up to seven phosphoryl groups. Accurate M(r) determination by Fourier transform ion cyclotron resonance (FTICR)-MS and FTICR-MS top-down experiments using a variety of dissociation techniques show there is removal of the initiator methionine and acetylation of the N terminus in the baculovirus-expressed protein, and that T230 is stoichiometrically phosphorylated. T230 is highly conserved; we have determined that this site is also completely phosphorylated in baculovirus-expressed mammalian SLBP and extensively phosphorylated in both Drosophila and mammalian cultured cells. Removal of the phosphoryl group from T230 by either dephosphorylation or mutation results in a 7-fold reduction in the affinity of SLBP for the stem-loop RNA.
Collapse
Affiliation(s)
| | - Roopa Thapar
- *Department of Biochemistry and Biophysics and
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599; and
| | | | | | | | | | - Zbigniew Dominski
- *Department of Biochemistry and Biophysics and
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599; and
| | - William F. Marzluff
- *Department of Biochemistry and Biophysics and
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599; and
| |
Collapse
|
14
|
Kelleher NL, Hicks LM. Contemporary mass spectrometry for the direct detection of enzyme intermediates. Curr Opin Chem Biol 2005; 9:424-30. [PMID: 16129650 DOI: 10.1016/j.cbpa.2005.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 08/16/2005] [Indexed: 11/28/2022]
Abstract
The field of enzymology has long used small-molecule mass spectrometry. However, the direct interrogation of covalent and non-covalent intermediates by large-molecule mass spectrometry of enzymes or large peptide substrates is illuminating an increasingly diverse array of chemistries used in nature. Recent advances now allow improved detection of several modifications formed at sub-stoichiometric levels on the same polypeptide, and elucidation of intermediate dynamics with low millisecond temporal resolution. Highlighting recent applications in both ribosomal and non-ribosomal biosynthesis of natural products, along with acetyl transferases, sulfonucleotide reducatases, and PEP-utilizing enzymes, the utility of small- and large-molecule mass spectrometry to reveal enzyme intermediates and illuminate mechanism is described briefly. From ever more complex mixtures, mass spectrometry continues to evolve into a key technology for a larger number of today's enzymologists.
Collapse
Affiliation(s)
- Neil L Kelleher
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|