1
|
Xia JW, Li JJ, Qian Y, Han J, Lin M, Wang MY, Chen T, Chai GL, Zhao YN, Hao JW. Observational and genetic evidence highlight the association of modifiable risk factors with the incidence and severity of neuroimmunological disorders. Brain Behav Immun Health 2025; 45:100975. [PMID: 40235834 PMCID: PMC11999315 DOI: 10.1016/j.bbih.2025.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/23/2025] [Accepted: 03/06/2025] [Indexed: 04/17/2025] Open
Abstract
Background Myasthenia gravis (MG), multiple sclerosis (MS), and neuromyelitis optica spectrum disorders (NMOSD) are a heterogeneous group of rare neuroimmunological disorders whose incidence rates have increased in recent years. The relationships between modifiable risk factors and neuroimmunological disorders are not fully understood. Methods We utilized multiple logistic regression to estimate the relationships between 38 modifiable risk factors and two neuroimmunological diseases using data from nearly 500,000 individuals in the UK Biobank. Additionally, we applied two-sample Mendelian Randomization (MR) analyses using genetic variants as instrumental variables to investigate the causal relationships of 32 modifiable lifestyle factors with 8 outcomes, representing risk and severity across three neuroimmunological diseases. To further explore the underlying mechanisms, mediation analysis was conducted to elucidate how significant associations might be mediated by intermediate variables. Results Our observational and MR analyses consistently found significant associations (P < 0.05) indicating the number of cigarettes smoked daily, television watching, waist circumference, and BMI are all positively associated with the risk of developing MG. In contrast, moderate-to-vigorous physical activity and higher vitamin D levels are associated with a reduced risk of MS. Moreover, we discovered that the impact of television watching on the risk of MG was mediated by BMI (observational mediation analysis: 26.22%; MR mediation analysis: 9.90%). Conclusions These findings underscore the importance of modifiable risk factors in the development of neuroimmune diseases and support the identification of personalized intervention and prevention strategies. Notably, BMI significantly mediates the relationship between television watching and MG, indicating potential for targeted interventions to mitigate the risk of MG.
Collapse
Affiliation(s)
- Jiang-wei Xia
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Jia-jian Li
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Yu Qian
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou, 310024, Zhejiang, China
| | - Jinmin Han
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Ming Lin
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Ming-yang Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Teng Chen
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Guo-liang Chai
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
| | - Yi-nan Zhao
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China
- Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100069, China
| | - Jun-wei Hao
- Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, 100053, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China
- Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100069, China
| |
Collapse
|
2
|
Ghaffary EM, Bjørklund G, Bhat RS, Mirmosayyeb O. Adipokines in multiple sclerosis: Immune dysregulation, neuroinflammation, and therapeutic opportunities. Autoimmun Rev 2025:103825. [PMID: 40311722 DOI: 10.1016/j.autrev.2025.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS), characterized by demyelination, neuroinflammation, and the progressive accumulation of neurologic deficits. Adipose tissue secretes predominantly the bioactive molecules, known as adipokines, which have drawn considerable attention for their roles in modulating immune and metabolic pathways in people with MS (PwMS). Dysregulated adipokines, such as resistin, leptin, and chemerin, induce pro-inflammatory T-cell polarization while deteriorating Blood-Brain Barrier (BBB) integrity. Adiponectin, by contrast, has both immunomodulatory and neuroprotective functions. The opposing functionality highlights the biomarker and the therapeutic potential of adipokines. Preclinical and translational findings have shed light on the role of adipokines in the pathophysiology of MS by influencing T-cell, glial, and BBB functions. In clinical settings, the assessment of adipokines can function as an indicator of prognosis and diagnosis via distinct patterns of expression. In addition, alterations to adipokine profiles through lifestyle changes and pharmaceutical treatment may complement established disease-modifying treatments (DMTs). This study has highlighted the multifaceted role of adipokines in MS management, while further studies exploring the role of adipokine-mediated immunometabolic regulation are suggested.
Collapse
Affiliation(s)
- Elham Moases Ghaffary
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City School of Pharmacy, Kansas City, MO, USA
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College of King Saud University, Riyadh, Saudi Arabia
| | - Omid Mirmosayyeb
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
3
|
Ghezzi L, Tosti V, Shi L, Cantoni C, Mikesell R, Lancia S, Zhou Y, Obert K, Dula C, Sen MK, Ge A, Tolentino M, Bollman B, Don AS, Matarese G, Colamatteo A, La Rocca C, Lepore MT, Raji CA, Rahmani F, Wu GF, Naismith RT, Fontana L, Cross AH, Salter A, Piccio L. Randomised controlled trial of intermittent calorie restriction in people with multiple sclerosis. J Neurol Neurosurg Psychiatry 2025; 96:158-169. [PMID: 39137977 PMCID: PMC11877063 DOI: 10.1136/jnnp-2024-333465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/19/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Calorie restriction (CR) ameliorates preclinical models of multiple sclerosis (MS) via multiple mechanisms. These include decreased leptin, a proinflammatory adipokine, but mechanistic studies in humans are lacking. Tests of daily and intermittent CR (iCR) in people with MS (pwMS) showed improvements in fatigue and well-being measures. This trial studied the effects of 12-week iCR on metabolic, immunological, and clinical outcomes in pwMS. METHOD Relapsing-remitting MS participants were randomised to iCR or a control group. Study visits were conducted at baseline, 6 and 12 weeks. The primary outcome was reduction in serum leptin levels at 12 weeks. Feasibility and safety were assessed by diet adherence and adverse events (AEs). Secondary outcomes included changes in anthropometric and body composition measures, metabolic and immunologic profiling, and clinical measures. Mixed effects linear regression models were used to evaluate outcome differences between and within groups over time. RESULTS Forty-two pwMS were randomised, 34 completed the study (17/group). Leptin serum levels at 12 weeks were significantly lower in the iCR versus the control group (mean decrease -6.98 µg/dL, 95% CI: -28.02 to 14.06; p=0.03). Adherence to iCR was 99.5% and 97.2% at 6 and 12 weeks, respectively, and no serious AEs were reported. An increase in blood CD45RO+ regulatory T-cell numbers was seen after 6 weeks of iCR. Exploratory cognitive testing demonstrated a significant improvement in the Symbol Digit Modality Test Score in the iCR group at 12 weeks. CONCLUSIONS iCR has the potential to benefit metabolic and immunologic profiles and is safe and feasible in pwMS. TRIAL REGISTRATION NUMBER NCT03539094 .
Collapse
Affiliation(s)
- Laura Ghezzi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milano, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Lombardia, Italy
| | - Valeria Tosti
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Lisa Shi
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Claudia Cantoni
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Robert Mikesell
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Samantha Lancia
- Department of Neurology, Section on Statistical Planning and Analysis, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Kathleen Obert
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Courtney Dula
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Monokesh K Sen
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anjie Ge
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Miguel Tolentino
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Bryan Bollman
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Anthony S Don
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Giuseppe Matarese
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli, Campania, Italy
- Consiglio Nazionale delle Ricerche (IEOS-CNR), Istituto per l'endocrinologia e l'oncologia Gaetano Salvatore, Naples, Campania, Italy
| | - Alessandra Colamatteo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli, Campania, Italy
| | - Claudia La Rocca
- Consiglio Nazionale delle Ricerche (IEOS-CNR), Istituto per l'endocrinologia e l'oncologia Gaetano Salvatore, Naples, Campania, Italy
| | - Maria Teresa Lepore
- Consiglio Nazionale delle Ricerche (IEOS-CNR), Istituto per l'endocrinologia e l'oncologia Gaetano Salvatore, Naples, Campania, Italy
| | - Cyrus A Raji
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, Saint Louis, Missouri, USA
| | - Farzaneh Rahmani
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, Saint Louis, Missouri, USA
| | - Gregory F Wu
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Robert T Naismith
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Luigi Fontana
- The University of Sydney, Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Amber Salter
- Department of Neurology, Section on Statistical Planning and Analysis, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
5
|
Lorefice L, Zoledziewska M. Propionic Acid Impact on Multiple Sclerosis: Evidence and Challenges. Nutrients 2024; 16:3887. [PMID: 39599673 PMCID: PMC11597849 DOI: 10.3390/nu16223887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Accumulating evidence suggests that multiple sclerosis (MS) is an environmentally influenced disorder with contributions from life-time exposure to factors including Epstein-Barr virus infection or shifts in microbiome, diet and lifestyle. One suggested factor is a deficiency in propionic acid, a short-chain fatty acid produced by gut bacteria that may contribute to the disease pathology both in animal models and in human cases of MS. Propionate appears to exert beneficial effects on the immune, peripheral and central nervous systems of people with MS (pwMS), showing immunoregulatory, neuroprotective and neurogenerative effects. These functions are crucial, given that MS is characterized by immune-mediated damage of myelin in the central nervous system. Accordingly, propionate supplementation or a modulated increase in its levels through the microbiome and diet may help counteract the pro-inflammatory state in MS by directly regulating immune system and/or by decreasing permeability of gut barrier and blood-brain barrier. This could potentially improve outcomes when used with immune-modulating therapy. However, while its broad effects are promising, further large clinical trials are necessary to evaluate its efficacy and safety in pwMS and clarify its role as a complementary therapeutic strategy. This review provides a comprehensive analysis of the evidence, challenges and limitations concerning propionic acid supplementation in MS.
Collapse
Affiliation(s)
- Lorena Lorefice
- Multiple Sclerosis Center, ASL Cagliari, Department of Medical Sciences and Public Health, Binaghi Hospital, University of Cagliari, via Is Guadazzonis 2, 09126 Cagliari, Italy;
| | - Magdalena Zoledziewska
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), 09042 Monserrato, Italy
| |
Collapse
|
6
|
Stefanakis K, Samiotaki M, Papaevangelou V, Valenzuela-Vallejo L, Giannoukakis N, Mantzoros CS. Longitudinal proteomics of leptin treatment in humans with acute and chronic energy deficiency-induced hypoleptinemia reveal novel, mainly immune-related, pleiotropic effects. Metabolism 2024; 159:155984. [PMID: 39097160 DOI: 10.1016/j.metabol.2024.155984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Leptin is known for its metabolic, immunomodulatory and neuroendocrine properties, but the full spectrum of molecules downstream of leptin and relevant underlying mechanisms remain to be fully clarified. Our objective was to identify proteins and pathways influenced by leptin through untargeted proteomics in two clinical trials involving leptin administration in lean individuals. METHODS We performed untargeted liquid chromatography-tandem mass spectrometry serum proteomics across two studies a) Short-term randomized controlled crossover study of lean male and female humans undergoing a 72-h fast with concurrent administration of either placebo or high-dose leptin; b) Long-term (36-week) randomized controlled trial of leptin replacement therapy in human females with acquired relative energy deficiency and hypoleptinemia. We explored longitudinal proteomic changes and run adjusted mixed models followed by post-hoc tests. We further attempted to identify ontological pathways modulated during each experimental condition and/or comparison, through integrated qualitative pathway and enrichment analyses. We also explored dynamic longitudinal relationships between the circulating proteome with clinical and hormonal outcomes. RESULTS 289 and 357 unique proteins were identified per each respective study. Short-term leptin administration during fasting markedly upregulated several proinflammatory molecules, notably C-reactive protein (CRP) and cluster of differentiation (CD) 14, and downregulated lecithin cholesterol acyltransferase and several immunoglobulin variable chains, in contrast with placebo, which produced minimal changes. Quantitative pathway enrichment further indicated an upregulation of the acute phase response and downregulation of immunoglobulin- and B cell-mediated immunity by leptin. These changes were independent of participants' biological sex. In the long term study, leptin likewise robustly and persistently upregulated proteins of the acute phase response, and downregulated immunoglobulin-mediated immunity. Leptin also significantly and differentially affected a wide array of proteins related to immune function, defense response, coagulation, and inflammation compared with placebo. These changes were more notable at the 24-week visit, coinciding with the highest measured levels of serum leptin. We further identified distinct co-regulated clusters of proteins and clinical features during leptin administration indicating robust longitudinal correlations between the regulation of immunoglobulins, immune-related molecules, serpins (including cortisol and thyroxine-binding globulins), lipid transport molecules and growth factors, in contrast with placebo, which did not produce similar associations. CONCLUSIONS These high-throughput longitudinal results provide unique functional insights into leptin physiology, and pave the way for affinity-based proteomic analyses measuring several thousands of molecules, that will confirm these data and may fully delineate underlying mechanisms.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Fleming 34, 166 72 Vari, Greece
| | - Vassiliki Papaevangelou
- Third Department of Paediatrics, Attikon University Hospital, National and Kapodistrian University of Athens, Greece
| | - Laura Valenzuela-Vallejo
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nick Giannoukakis
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christos S Mantzoros
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
7
|
Mallardo M, Mazzeo F, Lus G, Signoriello E, Daniele A, Nigro E. Impact of Lifestyle Interventions on Multiple Sclerosis: Focus on Adipose Tissue. Nutrients 2024; 16:3100. [PMID: 39339700 PMCID: PMC11434938 DOI: 10.3390/nu16183100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by demyelination in the central nervous system (CNS), affecting individuals globally. The pathological mechanisms underlying MS remain unclear, but current evidence suggests that inflammation and immune dysfunction play a critical role in the pathogenesis of MS disease. Adipose tissue (AT) is a dynamic multifunctional organ involved in various immune diseases, including MS, due to its endocrine function and the secretion of adipokines, which can influence inflammation and immune responses. Physical activity represents an efficacious non-pharmacological strategy for the management of a spectrum of conditions that not only improves inflammatory and immune functions but also directly affects the status and function of AT. Additionally, the exploration of nutritional supplementation represents an important field of MS research aimed at enhancing clinical symptoms and is closely tied to the regulation of metabolic responses, including adipokine secretion. This review, therefore, aims to elucidate the intricate relationship between lifestyle and MS by providing an overview of the latest published data about the involvement of AT and the main adipokines, such as adiponectin, leptin, and tumor necrosis factor α (TNFα) in the pathogenesis of MS. Furthermore, we explore whether physical activity and dietary management could serve as useful strategies to improve the quality of life of MS patients.
Collapse
Affiliation(s)
- Marta Mallardo
- Department of Molecular and Biotechnological Medicine, University of Naples "Federico II", 80138 Naples, Italy
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences (DiSEGIM), University of Naples "Parthenope", 80035 Naples, Italy
| | - Giacomo Lus
- Multiple Sclerosis Center, II Neurological Clinic, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Elisabetta Signoriello
- Multiple Sclerosis Center, II Neurological Clinic, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Department of Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Aurora Daniele
- Department of Molecular and Biotechnological Medicine, University of Naples "Federico II", 80138 Naples, Italy
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Ersilia Nigro
- CEINGE-Biotechnologies Advances S.c.a r.l., Via G. Salvatore 486, 80145 Naples, Italy
- Department of Pharmaceutical, Biological, Environmental Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via G. Vivaldi 42, 81100 Caserta, Italy
| |
Collapse
|
8
|
Carbone F, Colamatteo A, La Rocca C, Lepore MT, Russo C, De Rosa G, Matarese A, Procaccini C, Matarese G. Metabolic Plasticity of Regulatory T Cells in Health and Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1859-1866. [PMID: 38830147 DOI: 10.4049/jimmunol.2400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
Immunometabolism has been demonstrated to control immune tolerance and the pathogenic events leading to autoimmunity. Compelling experimental evidence also suggests that intracellular metabolic programs influence differentiation, phenotype, proliferation, and effector functions of anti-inflammatory CD4+CD25+Foxp3+ regulatory T (Treg) cells. Indeed, alterations in intracellular metabolism associate with quantitative and qualitative impairments of Treg cells in several pathological conditions. In this review, we summarize the most recent advances linking how metabolic pathways control Treg cell homeostasis and their alterations occurring in autoimmunity. Also, we analyze how metabolic manipulations could be employed to restore Treg cell frequency and function with the aim to create novel therapeutic opportunities to halt immune-mediated disorders.
Collapse
Grants
- 2022LNHZAP Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- PE00000007 Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- PE00000006 Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- RF-2019-12371111 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- PNRR-MAD-2022-12375634 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- GR-2018-12366154 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- 2022-PRsingle/013 Fondazione Italiana Sclerosi Multipla (FISM)
- P2022T4PKT Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- PNRR-MAD-2022-12376126 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- GR-2021-12373337 Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute (AIFA)
- 2022YMJXYT Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- P2022CMK43 Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
- 20225KH7BZ Ministero dell''''Istruzione, dell''''Università e della Ricerca (MIUR)
Collapse
Affiliation(s)
- Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Maria Teresa Lepore
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Claudia Russo
- D.A.I. Medicina di Laboratorio e Trasfusionale, Azienda Ospedaliera Universitaria "Federico II," Napoli, Italy
| | - Giusy De Rosa
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Alessandro Matarese
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II," Napoli, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Roma, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore," Consiglio Nazionale delle Ricerche, Napoli, Italy
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II," Napoli, Italy
| |
Collapse
|
9
|
Meyer-Arndt L, Brasanac J, Gamradt S, Bellmann-Strobl J, Maurer L, Mai K, Steward T, Spranger J, Schmitz-Hübsch T, Paul F, Gold SM, Weygandt M. Body mass, neuro-hormonal stress processing, and disease activity in lean to obese people with multiple sclerosis. J Neurol 2024; 271:1584-1598. [PMID: 38010499 DOI: 10.1007/s00415-023-12100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Overweight and obesity can worsen disease activity in multiple sclerosis (MS). Although psychobiological stress processing is increasingly recognized as important obesity factor that is tightly connected to proinflammatory metabolic hormones and cytokines, its role for MS obesity remains unexplored. Consequently, we investigated the interplay between body mass index (BMI), neural stress processing (functional connectivity, FC), and immuno-hormonal stress parameters (salivary cortisol and T cell glucocorticoid [GC] sensitivity) in 57 people with MS (six obese, 19 over-, 28 normal-, and four underweight; 37 females, 46.4 ± 10.6 years) using an Arterial-Spin-Labeling MRI task comprising a rest and stress stage, along with quantitative PCR. Our findings revealed significant positive connections between BMI and MS disease activity (i.e., higher BMI was accompanied by higher relapse rate). BMI was positively linked to right supramarginal gyrus and anterior insula FC during rest and negatively to right superior parietal lobule and cerebellum FC during stress. BMI showed associations with GC functioning, with higher BMI associated with lower CD8+ FKBP4 expression and higher CD8+ FKBP5 expression on T cells. Finally, the expression of CD8+ FKBP4 positively correlated with the FC of right supramarginal gyrus and left superior parietal lobule during rest. Overall, our study provides evidence that body mass is tied to neuro-hormonal stress processing in people with MS. The observed pattern of associations between BMI, neural networks, and GC functioning suggests partial overlap between neuro-hormonal and neural-body mass networks. Ultimately, the study underscores the clinical importance of understanding multi-system crosstalk in MS obesity.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Jelena Brasanac
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203, Berlin, Germany
| | - Stefanie Gamradt
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Lukas Maurer
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Max Rubner Center for Cardiovascular-Metabolic-Renal Research, 10117, Berlin, Germany
- Berlin Institute of Health, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
| | - Knut Mai
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
| | - Trevor Steward
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Redmond Barry Building #817, Parkville, VIC, 3010, Australia
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Max Rubner Center for Cardiovascular-Metabolic-Renal Research, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Stefan M Gold
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203, Berlin, Germany
- Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Martin Weygandt
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany.
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany.
| |
Collapse
|
10
|
Zhang YS, Chen YQ. Dysfunctional regulatory T cell: May be an obstacle to immunotherapy in cardiovascular diseases. Biomed Pharmacother 2024; 173:116359. [PMID: 38430633 DOI: 10.1016/j.biopha.2024.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
Inflammatory responses are linked to cardiovascular diseases (CVDs) in various forms. Tregs, members of CD4+ T cells, play important roles in regulating immune system and suppressing inflammatory response, thus contributing to maintaining immune homeostasis. However, Tregs exert their powerful suppressive function relying on the stable phenotype and function. The stability of Tregs primarily depends on the FOXP3 (Forkhead box P3) expression and epigenetic regulation. Although Tregs are quite stable under physiological conditions, prolonged exposure to inflammatory cues, Tregs may lose suppressive function and require proinflammatory phenotype, namely plastic Tregs or ex-Tregs. There are extensive researches have established the beneficial role of Tregs in CVDs. Nevertheless, the potential risks of dysfunctional Tregs lack deep research. Anti-inflammatory and immunological modulation have been hotspots in the treatment of CVDs. Tregs are appealing because of their crucial role in resolving inflammation and promoting tissue repair. If alleviating inflammatory response through modulating Tregs could be a new therapeutic strategy for CVDs, the next step to consider is how to prevent the formation of dysfunctional Tregs or reverse detrimental Tregs to normal phenotype.
Collapse
Affiliation(s)
- Yu-Sha Zhang
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Hunan, China
| | - Ya-Qin Chen
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Hunan, China.
| |
Collapse
|
11
|
Kalusche W, Case C, Taylor E. Leptin antagonism attenuates hypertension and renal injury in an experimental model of autoimmune disease. Clin Sci (Lond) 2023; 137:1771-1785. [PMID: 38031726 PMCID: PMC10721433 DOI: 10.1042/cs20230924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder that is characterized by B- and T-lymphocyte dysfunction and altered cytokine production, including elevated levels of the adipocytokine leptin. Leptin has various immunomodulatory properties, including promoting the expansion of proinflammatory T lymphocytes and the proliferation and survival of B cells. In the present study, we hypothesized that leptin antagonism would improve B- and T-cell dysfunction and attenuate hypertension in an experimental model of SLE, the NZBWF1 mouse. To test this hypothesis, 28-week-old female control and SLE mice were administered 5 mg/kg of murine leptin superantagonist (LA) or vehicle via ip injection every other day for four weeks. Analysis of peripheral blood immune cell populations showed no changes in total CD45R+ B and CD3+ T cell percentages after treatment with LA. However, SLE mice treated with LA had an improved CD4/CD8 ratio and decreased CD3+CD4-CD8- double negative (DN) T cells. Blood pressure was higher in SLE than in control, and treatment with LA decreased blood pressure in SLE mice. Treatment with LA also delayed the onset of albuminuria and decreased glomerulosclerosis in SLE mice. Renal immune cell infiltration was significantly higher in SLE mice as compared with control, but LA treatment was associated with decreased levels of renal CD4+ T cells. In conclusion, these data suggest that leptin plays a pathogenic role in the development of hypertension in SLE, in part, by promoting the expansion of inflammatory DN T cells and the infiltration of T cells into the kidneys.
Collapse
Affiliation(s)
- William J. Kalusche
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Clinton T. Case
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Erin B. Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| |
Collapse
|
12
|
Zhang X, Gao L, Meng H, Zhang A, Liang Y, Lu J. Obesity alters immunopathology in cancers and inflammatory diseases. Obes Rev 2023; 24:e13638. [PMID: 37724622 DOI: 10.1111/obr.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Obesity is characterized by chronic low-grade inflammation and is strongly associated with multiple immunological diseases, including cancer and inflammatory diseases. Recent animal studies revealed that obesity-induced immunological changes worsen immune-driven diseases and cause resistance to immunotherapy. Here, we discuss the role of obesity in the immunopathology and treatment responses of cancers, respiratory and allergic diseases, and IL-17-mediated inflammatory diseases. We summarize the unique features of the inflammatory state of these diseases, which are orchestrated by obesity. In particular, obesity alters the immune landscape in cancers with a reprogrammed metabolic profile of tumor-infiltrating immune cells. Obesity exacerbates airway inflammation by dysregulating multiple immune-cell subsets. Obesity also dysregulates Th17, IL-17-producing mucosal-associated invariant T (MAIT), and γδ T cells, which contribute to IL-17-mediated inflammatory response in multiple sclerosis, inflammatory bowel disease, psoriasis, atopic dermatitis, and rheumatoid arthritis. By identifying the effects of obesity on immunological diseases, new strategies could be devised to target immune dysregulation caused by obesity.
Collapse
Affiliation(s)
- Xiaofen Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Gao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ailing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Neto A, Fernandes A, Barateiro A. The complex relationship between obesity and neurodegenerative diseases: an updated review. Front Cell Neurosci 2023; 17:1294420. [PMID: 38026693 PMCID: PMC10665538 DOI: 10.3389/fncel.2023.1294420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is a global epidemic, affecting roughly 30% of the world's population and predicted to rise. This disease results from genetic, behavioral, societal, and environmental factors, leading to excessive fat accumulation, due to insufficient energy expenditure. The adipose tissue, once seen as a simple storage depot, is now recognized as a complex organ with various functions, including hormone regulation and modulation of metabolism, inflammation, and homeostasis. Obesity is associated with a low-grade inflammatory state and has been linked to neurodegenerative diseases like multiple sclerosis (MS), Alzheimer's (AD), and Parkinson's (PD). Mechanistically, reduced adipose expandability leads to hypertrophic adipocytes, triggering inflammation, insulin and leptin resistance, blood-brain barrier disruption, altered brain metabolism, neuronal inflammation, brain atrophy, and cognitive decline. Obesity impacts neurodegenerative disorders through shared underlying mechanisms, underscoring its potential as a modifiable risk factor for these diseases. Nevertheless, further research is needed to fully grasp the intricate connections between obesity and neurodegeneration. Collaborative efforts in this field hold promise for innovative strategies to address this complex relationship and develop effective prevention and treatment methods, which also includes specific diets and physical activities, ultimately improving quality of life and health.
Collapse
Affiliation(s)
- Alexandre Neto
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Adelaide Fernandes
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Barateiro
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Bittner S, Pape K, Klotz L, Zipp F. Implications of immunometabolism for smouldering MS pathology and therapy. Nat Rev Neurol 2023:10.1038/s41582-023-00839-6. [PMID: 37430070 DOI: 10.1038/s41582-023-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/12/2023]
Abstract
Clinical symptom worsening in patients with multiple sclerosis (MS) is driven by inflammation compartmentalized within the CNS, which results in chronic neuronal damage owing to insufficient repair mechanisms. The term 'smouldering inflammation' summarizes the biological aspects underlying this chronic, non-relapsing and immune-mediated mechanism of disease progression. Smouldering inflammation is likely to be shaped and sustained by local factors in the CNS that account for the persistence of this inflammatory response and explain why current treatments for MS do not sufficiently target this process. Local factors that affect the metabolic properties of glial cells and neurons include cytokines, pH value, lactate levels and nutrient availability. This Review summarizes current knowledge of the local inflammatory microenvironment in smouldering inflammation and how it interacts with the metabolism of tissue-resident immune cells, thereby promoting inflammatory niches within the CNS. The discussion highlights environmental and lifestyle factors that are increasingly recognized as capable of altering immune cell metabolism and potentially responsible for smouldering pathology in the CNS. Currently approved MS therapies that target metabolic pathways are also discussed, along with their potential for preventing the processes that contribute to smouldering inflammation and thereby to progressive neurodegenerative damage in MS.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Katrin Pape
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
15
|
Trends in the environmental risks associated with earlier onset in multiple sclerosis. Mult Scler Relat Disord 2022; 68:104250. [PMID: 36544313 DOI: 10.1016/j.msard.2022.104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/27/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Several environmental and lifestyle factors relating to sunlight/vitamin D, body mass index (BMI), and smoking are associated with the risk of developing multiple sclerosis (MS). However, their relation to disease progression, particularly age at symptomatic onset, remains inconsistent, which may be the result of significant changes in human-environment interactions over the last century. This study investigates historical trends in the association between common MS environmental risk factors and age at disease onset. METHODS Using a narrative approach, we evaluated the current literature for published studies assessing the association between vitamin-D, BMI, and tobacco smoking exposures with the risk of early/pediatric-onset MS and direct correlations with age at MS onset using MEDLINE, EMBASE, and Web of Science. Measures were plotted by the average calendar year of disease onset for each cohort to examine trends over time. In total, 25, 9, and 11 articles were identified for vitamin D, BMI, and smoking-related exposures, respectively. RESULTS Higher sun exposure habits and residential solar radiation were associated with older age at onset. On the contrary, two studies observed a negative correlation between age at onset and serum 25-hydroxyvitamin D (25(OH)D) levels. Higher adolescent BMI was generally associated with younger age at onset, although genetic susceptibility for childhood obesity was not significantly associated. Tobacco smoking was associated with later disease onset, despite being a risk factor for MS. Association with age at onset was inflated for more recent studies relating to smoking, while often weaker for serum vitamin D and BMI. CONCLUSION Current findings indicate a likely association between age at onset and environmental risk factors, such as sun exposure, adolescent BMI, and tobacco smoking, in certain populations. However, findings are often inconsistent and assessment of the relationships and potential changes over time require further investigation.
Collapse
|
16
|
Correale J, Marrodan M. Multiple sclerosis and obesity: The role of adipokines. Front Immunol 2022; 13:1038393. [PMID: 36457996 PMCID: PMC9705772 DOI: 10.3389/fimmu.2022.1038393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2023] Open
Abstract
Multiple Sclerosis (MS), a chronic inflammatory disease of the central nervous system that leads to demyelination and neurodegeneration has been associated with various environmental and lifestyle factors. Population-based studies have provided evidence showing the prevalence of MS is increasing worldwide. Because a similar trend has been observed for obesity and metabolic syndrome, interest has grown in possible underlying biological mechanisms shared by both conditions. Adipokines, a family of soluble factors produced by adipose tissue that participate in a wide range of biological functions, contribute to a low state of chronic inflammation observed in obesity, and influence immune function, metabolism, and nutritional state. In this review, we aim to describe epidemiological and biological factors common to MS and obesity, as well as provide an update on current knowledge of how different pro- and anti-inflammatory adipokines participate as immune response mediators in MS, as well as in the animal model for MS, namely, experimental autoimmune encephalomyelitis (EAE). Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) leading to demyelination, and neurodegeneration. Although its pathogenesis is not yet fully understood, there is considerable evidence to suggest MS arises from complex interactions between individual genetic susceptibility and external environmental factors. In recent decades, population-based studies have provided evidence indicating the prevalence of MS is increasing worldwide, in parallel with the rise in obesity and metabolic syndrome. This synchronous increment in the incidence of both MS and obesity has led to a search for potential biological mechanisms linking both conditions. Notably, a large number of studies have established significant correlation between obesity and higher prevalence, or worse prognosis, of several immune-mediated conditions. Fat tissue has been found to produce a variety of soluble factors named adipokines. These mediators, secreted by both adipocytes as well as diverse immune cells, participate in a wide range of biological functions, further strengthening the concept of a link between immune function, metabolism, and nutritional state. Because obesity causes overproduction of pro-inflammatory adipokines (namely leptin, resistin and visfatin) and reduction of anti-inflammatory adipokines (adiponectin and apelin), adipose tissue dysregulation would appear to contribute to a state of chronic, low-grade inflammation favoring the development of disease. In this review, we present a summary of current knowledge related to the pathological effects of different adipokines, prevalent in obese MS patients.
Collapse
Affiliation(s)
- Jorge Correale
- Departamento de Neurología, Fleni, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
17
|
de Candia P, Procaccini C, Russo C, Lepore MT, Matarese G. Regulatory T cells as metabolic sensors. Immunity 2022; 55:1981-1992. [PMID: 36351373 DOI: 10.1016/j.immuni.2022.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Compelling experimental evidence links immunity and metabolism. In this perspective, we propose forkhead-box-P3 (FoxP3)+CD4+CD25+ regulatory T (Treg) cells as key metabolic sensors controlling the immunological state in response to their intrinsic capacity to perceive nutritional changes. Treg cell high anabolic state in vivo, residency in metabolically crucial districts, and recirculation between lymphoid and non-lymphoid sites enable them to recognize the metabolic cues and adapt their intracellular metabolism and anti-inflammatory function at the paracrine and systemic levels. As privileged regulators at the interface between neuroendocrine and immune systems, the role of Treg cells in maintaining metabolic homeostasis makes these cells promising targets of therapeutic strategies aimed at restoring organismal homeostasis not only in autoimmune but also metabolic disorders.
Collapse
Affiliation(s)
- Paola de Candia
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Claudia Russo
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Teresa Lepore
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy.
| |
Collapse
|
18
|
Buonaiuto R, Napolitano F, Parola S, De Placido P, Forestieri V, Pecoraro G, Servetto A, Formisano L, Formisano P, Giuliano M, Arpino G, De Placido S, De Angelis C. Insight on the Role of Leptin: A Bridge from Obesity to Breast Cancer. Biomolecules 2022; 12:biom12101394. [PMID: 36291602 PMCID: PMC9599120 DOI: 10.3390/biom12101394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022] Open
Abstract
Leptin is a peptide hormone, mainly known for its role as a mediator of adipose tissue endocrine functions, such as appetite control and energy homeostasis. In addition, leptin signaling is involved in several physiological processes as modulation of innate and adaptive immune responses and regulation of sex hormone levels. When adipose tissue expands, an imbalance of adipokines secretion may occur and increasing leptin levels contribute to promoting a chronic inflammatory state, which is largely acknowledged as a hallmark of cancer. Indeed, upon binding its receptor (LEPR), leptin activates several oncogenic pathways, such as JAK/STAT, MAPK, and PI3K/AKT, and seems to affect cancer immune response by inducing a proinflammatory immune polarization and eventually enhancing T-cell exhaustion. In particular, obesity-associated hyperleptinemia has been related to breast cancer risk development, although the underlying mechanism is yet to be completely clarified and needs to be deemed in light of multiple variables, such as menopausal state and immune response. The aim of this review is to provide an overview of the potential role of leptin as a bridge between obesity and breast cancer and to establish the physio-pathological basis of the linkage between these major health concerns in order to identify appropriate and novel therapeutic strategies to adopt in daily clinical practice.
Collapse
Affiliation(s)
- Roberto Buonaiuto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Fabiana Napolitano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Sara Parola
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Valeria Forestieri
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Giovanna Pecoraro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Sabino De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
19
|
Misch M, Puthanveetil P. The Head-to-Toe Hormone: Leptin as an Extensive Modulator of Physiologic Systems. Int J Mol Sci 2022; 23:ijms23105439. [PMID: 35628271 PMCID: PMC9141226 DOI: 10.3390/ijms23105439] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Leptin is a well-known hunger-sensing peptide hormone. The role of leptin in weight gain and metabolic homeostasis has been explored for the past two decades. In this review, we have tried to shed light upon the impact of leptin signaling on health and diseases. At low or moderate levels, this peptide hormone supports physiological roles, but at chronically higher doses exhibits detrimental effects on various systems. The untoward effects we observe with chronically higher levels of leptin are due to their receptor-mediated effect or due to leptin resistance and are not well studied. This review will help us in understanding the non-anorexic roles of leptin, including their contribution to the metabolism of various systems and inflammation. We will be able to get an alternative perspective regarding the physiological and pathological roles of this mysterious peptide hormone.
Collapse
Affiliation(s)
- Monica Misch
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
| | - Prasanth Puthanveetil
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
- Correspondence: ; Tel.: +1-630-960-3935
| |
Collapse
|
20
|
Cantoni C, Dorsett Y, Fontana L, Zhou Y, Piccio L. Effects of dietary restriction on gut microbiota and CNS autoimmunity. Clin Immunol 2022; 235:108575. [PMID: 32822833 PMCID: PMC7889763 DOI: 10.1016/j.clim.2020.108575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/12/2020] [Accepted: 08/14/2020] [Indexed: 02/03/2023]
Abstract
Multiple sclerosis (MS) is the most common central nervous system (CNS) autoimmune disease. It is due to the interplay of genetic and environmental factors. Current opinion is that diet could play a pathogenic role in disease onset and development. Dietary restriction (DR) without malnutrition markedly improves health and increases lifespan in multiple model organisms. DR regimens that utilize continuous or intermittent food restriction can induce anti-inflammatory, immuno-modulatory and neuroendocrine adaptations promoting health. These adaptations exert neuroprotective effects in the main MS animal model, experimental autoimmune encephalomyelitis (EAE). This review summarizes the current knowledge on DR-induced changes in gut microbial composition and metabolite production and its impact on underlying functional mechanisms. Studies demonstrating the protective effects of DR regimens on EAE and people with MS are also presented. This is a rapidly developing research field with important clinical implications for personalized dietary interventions in MS prevention and treatment.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yair Dorsett
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2006, Australia,Department of Clinical and Experimental Sciences, Brescia University School of Medicine, Brescia, Italy
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia.,Corresponding author: Laura Piccio, MD PhD, 1) Brain and Mind Centre, University of Sydney, 94 Mallett St Camperdown, NSW, 2050, Australia, , 2) Washington University School of Medicine, Dept. of Neurology, Campus Box 8111; 660 S. Euclid Avenue, St. Louis, MO 63110; USA, Phone: (314) 747-4591; Fax: (314) 747-1345;
| |
Collapse
|
21
|
Woolbright E, Koshiya H, Brenton JN. Body size perceptions & diet modification in youth with multiple sclerosis. Mult Scler Relat Disord 2022; 58:103402. [PMID: 35216785 PMCID: PMC8882224 DOI: 10.1016/j.msard.2021.103402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Investigate the perceptions of pediatric multiple sclerosis (MS) patients regarding their body size and assess the feasibility of recruitment for a study of diet modification in this unique population. METHODS This cross-sectional study surveyed a cohort of 43 consecutive youth with MS. The survey queried participant demographics, clinical disease characteristics, body size perception, and opinions of diet modification RESULTS: : While over three quarters of surveyed participants were overweight/obese, 58% of these participants did not self-identify as such. A single participant was attempting a diet at the time of survey, but 88% of participants indicated interest in pursuing diet modification. BMI category did not impact an individual's willingness to pursue diet intervention; however, obese participants were more willing to participate in diet intervention for longer durations. CONCLUSION A significant proportion of MS youth have an elevated BMI, yet the majority have the self-perception that they are not overweight or obese. Regardless of BMI, most youth with MS have an interest in pursuing diet modification in attempts to benefit their disease course.
Collapse
Affiliation(s)
- Emma Woolbright
- Department of Neurology, Division of Pediatric Neurology, University of Virginia, Charlottesville, VA, USA
| | - Hitoshi Koshiya
- School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - J Nicholas Brenton
- Department of Neurology, Division of Pediatric Neurology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
22
|
Liao E, Ghezzi L, Piccio L. Dietary restriction in multiple sclerosis: evidence from preclinical and clinical studies. ADVANCES IN CLINICAL NEUROSCIENCE & REHABILITATION 2022. [DOI: 10.47795/mcln8939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dietary restriction (DR) interventions, which encompass both chronic and intermittent reductions in energy intake, are emerging as potential therapeutic approaches for dampening neuroinflammation and demyelination in multiple sclerosis (MS). Mechanisms mediating the beneficial effects of DR include the regulation of pro- and anti-inflammatory signalling molecules and gut microbiome remodelling. This article summarises the preclinical evidence supporting the role of DR in attenuating disease in animal models of MS and the developing clinical evidence indicating the safety and feasibility of such DR interventions in people with MS (pwMS).
Collapse
|
23
|
Wang Q, Zheng B, Chen P, Lei Y. Leptin and PCSK9 concentrations are associated with vascular endothelial cytokines in patients with stable coronary heart disease. Open Med (Wars) 2022; 17:185-190. [PMID: 35087951 PMCID: PMC8768505 DOI: 10.1515/med-2021-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 06/27/2021] [Accepted: 10/28/2021] [Indexed: 12/03/2022] Open
Abstract
Leptin and proprotein convertase subtilisin kexin 9 (PCSK9) play an important role in regulating blood lipid concentration. Recently, they have been found to show the ability to independently regulate the immune response. Vascular immune response has an important pathological function in the development of coronary heart disease (CHD) and thrombosis. The aim of this study was to explore the relationship between leptin, PCSK9, and vascular endothelial cell related inflammatory factors. First, detailed clinical information were collected and analyzed for 27 patients with stable CHD and corresponding 27 healthy controls. Second, using liquid-phase protein chip technology, leptin, PCSK9, and vascular-related inflammatory factors, such as E-selectin, vascular cell adhesion protein 1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), interferon-gamma (IFN-γ), and interleukin-17 (IL-17), were detected on the same platform. Finally, the correlation between leptin, PCSK9, and the inflammatory factors was analyzed. Through collecting clinical information of patients, it was suggested that there was a significant positive correlation between leptin and blood lipid level in CHD. Compared with healthy people, the levels of leptin, PCSK9, E-selectin, and ICAM-1 were significantly high in patients with CHD. There was a high positive correlation between leptin and E-selectin, ICAM-1, IFN-γ, and IL-17. Also, a high positive correlation between PCSK9 and E-selectin, IFN-γ, and IL-17 concentrations was observed. In general, leptin and PCSK9 may not only be able to regulate lipid metabolism, but may also be able to regulate inflammation in CHD.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Cardiovascular Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Chaoyang District , Beijing 100102 , China
| | - Bo Zheng
- Department of Cardiovascular Medicine, Affiliated Hospital of Binzhou Medical University , BinZhou City , China
| | - Peng Chen
- Department of Molecular Biology, Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Dongcheng District , Beijing 100700 , China
| | - Yan Lei
- Department of Molecular Biology, Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Dongcheng District , Beijing 100700 , China
| |
Collapse
|
24
|
Pinzon Grimaldos A, Bini S, Pacella I, Rossi A, Di Costanzo A, Minicocci I, D’Erasmo L, Arca M, Piconese S. The role of lipid metabolism in shaping the expansion and the function of regulatory T cells. Clin Exp Immunol 2021; 208:181-192. [PMID: 35020862 PMCID: PMC9188345 DOI: 10.1093/cei/uxab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic inflammation, defined as a chronic low-grade inflammation, is implicated in numerous metabolic diseases. In recent years, the role of regulatory T cells (Tregs) as key controllers of metabolic inflammation has emerged, but our comprehension on how different metabolic pathways influence Treg functions needs a deeper understanding. Here we focus on how circulating and intracellular lipid metabolism, in particular cholesterol metabolism, regulates Treg homeostasis, expansion, and functions. Cholesterol is carried through the bloodstream by circulating lipoproteins (chylomicrons, very low-density lipoproteins, low-density lipoproteins). Tregs are equipped with a wide array of metabolic sensors able to perceive and respond to changes in the lipid environment through the activation of different intracellular pathways thus conferring to these cells a crucial metabolic and functional plasticity. Nevertheless, altered cholesterol transport, as observed in genetic dyslipidemias and atherosclerosis, impairs Treg proliferation and function through defective cellular metabolism. The intracellular pathway devoted to the cholesterol synthesis is the mevalonate pathway and several studies have shown that this pathway is essential for Treg stability and suppressive activity. High cholesterol concentrations in the extracellular environment may induce massive accumulation of cholesterol inside the cell thus impairing nutrients sensors and inhibiting the mevalonate pathway. This review summarizes the current knowledge regarding the role of circulating and cellular cholesterol metabolism in the regulation of Treg metabolism and functions. In particular, we will discuss how different pathological conditions affecting cholesterol transport may affect cellular metabolism in Tregs.
Collapse
Affiliation(s)
| | | | - Ilenia Pacella
- Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessandra Rossi
- Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Laura D’Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Silvia Piconese
- Correspondence: Silvia Piconese, Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
25
|
Adipokines as Immune Cell Modulators in Multiple Sclerosis. Int J Mol Sci 2021; 22:ijms221910845. [PMID: 34639186 PMCID: PMC8509121 DOI: 10.3390/ijms221910845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS), a chronic inflammatory and demyelinating disease of the central nervous system (CNS), is a major clinical and societal problem, which has a tremendous impact on the life of patients and their proxies. Current immunomodulatory and anti-inflammatory therapies prove to be relatively effective; however, they fail to concomitantly stop ongoing neurological deterioration and do not reverse acquired disability. The proportion to which genetic and environmental factors contribute to the etiology of MS is still incompletely understood; however, a recent association between MS etiology and obesity was shown, with obesity greatly increasing the risk of developing MS. An altered balance of adipokines, which are white adipose tissue (WAT) hormones, plays an important role in the low-grade chronic inflammation during obesity by their pervasive modification of local and systemic inflammation. Vice versa, inflammatory factors secreted by immune cells affect adipokine function. To explore the role of adipokines in MS pathology, we will here review the reciprocal effects of adipokines and immune cells and summarize alterations in adipokine levels in MS patient cohorts. Finally, we will discuss proof-of-concept studies demonstrating the therapeutic potential of adipokines to target both neuroinflammation and neurodegeneration processes in MS.
Collapse
|
26
|
Bai Z, Ye Y, Ye X, Yuan B, Tang Y, Wei J, Jin M, Wang G, Li X. Leptin promotes glycolytic metabolism to induce dendritic cells activation via STAT3-HK2 pathway. Immunol Lett 2021; 239:88-95. [PMID: 34480980 DOI: 10.1016/j.imlet.2021.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/08/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022]
Abstract
Leptin is over-secreted in many autoimmune diseases, which can promote dendritic cells (DCs) maturation and up-regulate the expression of inflammatory cytokines, but the underlying mechanisms are not fully elucidated. Considering the major role of leptin in maintaining energy balance and the significant role of glycolysis in DCs activation, our study aims to investigate whether leptin promotes the activation of DCs via glycolysis and its underlying mechanisms. We demonstrated that leptin promoted the activation of DCs, including up-regulating the expression of co-stimulatory molecules and inflammatory cytokines, enhancing the proliferation and T helper 17 (Th17) cell ratio in peripheral blood mononuclear cells (PBMC) co-cultured with leptin-stimulated DCs. Leptin also enhanced DCs glycolysis with increased glucose consumption, lactate production, and the expression of hexokinase 2 (HK2). In addition, the activation of DCs stimulated by leptin could be inhibited by the glycolysis inhibitor 2-deoxy-d-glucose (2-DG). To explore the signaling pathways involved in leptin-induced HK2 expression, we observed that the inhibitors of STAT3 (NSC74859) could repress the enhancement of HK2 triggered by leptin stimulation. Therefore, our results indicated that leptin promoted glycolytic metabolism to induce DCs activation via STAT3-HK2 pathway.
Collapse
Affiliation(s)
- Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yunshan Ye
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Xiaokang Ye
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Bo Yuan
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yawei Tang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Jing Wei
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Minli Jin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Guan Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.
| |
Collapse
|
27
|
Signals of pseudo-starvation unveil the amino acid transporter SLC7A11 as key determinant in the control of Treg cell proliferative potential. Immunity 2021; 54:1543-1560.e6. [PMID: 34004141 DOI: 10.1016/j.immuni.2021.04.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/30/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Human CD4+CD25hiFOXP3+ regulatory T (Treg) cells are key players in the control of immunological self-tolerance and homeostasis. Here, we report that signals of pseudo-starvation reversed human Treg cell in vitro anergy through an integrated transcriptional response, pertaining to proliferation, metabolism, and transmembrane solute carrier transport. At the molecular level, the Treg cell proliferative response was dependent on the induction of the cystine/glutamate antiporter solute carrier (SLC)7A11, whose expression was controlled by the nuclear factor erythroid 2-related factor 2 (NRF2). SLC7A11 induction in Treg cells was impaired in subjects with relapsing-remitting multiple sclerosis (RRMS), an autoimmune disorder associated with reduced Treg cell proliferative capacity. Treatment of RRMS subjects with dimethyl fumarate (DMF) rescued SLC7A11 induction and fully recovered Treg cell expansion. These results suggest a previously unrecognized mechanism that may account for the progressive loss of Treg cells in autoimmunity and unveil SLC7A11 as major target for the rescue of Treg cell proliferation.
Collapse
|
28
|
Small noncoding RNA profiling across cellular and biofluid compartments and their implications for multiple sclerosis immunopathology. Proc Natl Acad Sci U S A 2021; 118:2011574118. [PMID: 33879606 PMCID: PMC8092379 DOI: 10.1073/pnas.2011574118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs), a type of small noncoding RNAs (sncRNAs), has frequently been associated with multiple sclerosis (MS). However, most studies have focused on peripheral blood, and few investigated other classes of sncRNAs. To address this, we analyzed all classes of sncRNAs in matching peripheral blood mononuclear cells, plasma, cerebrospinal fluid (CSF) cells, and cell-free CSF from MS patients and controls. We demonstrate widespread alterations of small nuclear (snRNA)–derived RNAs, small nucleolar-derived RNAs (sdRNAs), transfer RNA–derived fragments, and miRNAs, particularly in CSF cells. The striking contrast between the periphery and central nervous system and between relapse and remission phases of disease highlights the importance of sncRNA-mediated mechanisms in MS, in particular alternative splicing and mRNA translation. Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system (CNS). Small non-coding RNAs (sncRNAs) and, in particular, microRNAs (miRNAs) have frequently been associated with MS. Here, we performed a comprehensive analysis of all classes of sncRNAs in matching samples of peripheral blood mononuclear cells (PBMCs), plasma, cerebrospinal fluid (CSF) cells, and cell-free CSF from relapsing-remitting (RRMS, n = 12 in relapse and n = 11 in remission) patients, secondary progressive (SPMS, n = 6) MS patients, and noninflammatory and inflammatory neurological disease controls (NINDC, n = 11; INDC, n = 5). We show widespread changes in miRNAs and sncRNA-derived fragments of small nuclear, nucleolar, and transfer RNAs. In CSF cells, 133 out of 133 and 115 out of 117 differentially expressed sncRNAs were increased in RRMS relapse compared to remission and RRMS compared to NINDC, respectively. In contrast, 65 out of 67 differentially expressed PBMC sncRNAs were decreased in RRMS compared to NINDC. The striking contrast between the periphery and CNS suggests that sncRNA-mediated mechanisms, including alternative splicing, RNA degradation, and mRNA translation, regulate the transcriptome of pathogenic cells primarily in the CNS target organ.
Collapse
|
29
|
de Candia P, Prattichizzo F, Garavelli S, Alviggi C, La Cava A, Matarese G. The pleiotropic roles of leptin in metabolism, immunity, and cancer. J Exp Med 2021; 218:211994. [PMID: 33857282 PMCID: PMC8056770 DOI: 10.1084/jem.20191593] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The discovery of the archetypal adipocytokine leptin and how it regulates energy homeostasis have represented breakthroughs in our understanding of the endocrine function of the adipose tissue and the biological determinants of human obesity. Investigations on leptin have also been instrumental in identifying physio-pathological connections between metabolic regulation and multiple immunological functions. For example, the description of the promoting activities of leptin on inflammation and cell proliferation have recognized the detrimental effects of leptin in connecting dysmetabolic conditions with cancer and with onset and/or progression of autoimmune disease. Here we review the multiple biological functions and complex framework of operations of leptin, discussing why and how the pleiotropic activities of this adipocytokine still pose major hurdles in the development of effective leptin-based therapeutic opportunities for different clinical conditions.
Collapse
Affiliation(s)
- Paola de Candia
- Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, Milan, Italy
| | | | - Silvia Garavelli
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Carlo Alviggi
- Department of Neuroscience, Reproductive Science and Odontostomatology, Università di Napoli "Federico II," Naples, Italy
| | - Antonio La Cava
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Naples, Italy.,T reg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II," Naples, Italy
| |
Collapse
|
30
|
Chu DT, Rosso M, Gonzalez CT, Saxena S, Healy BC, Weiner HL, Chitnis T. Obesity is associated with the Optic Neuritis severity in Male patients with Multiple Sclerosis. Mult Scler Relat Disord 2021; 51:102910. [PMID: 33799288 DOI: 10.1016/j.msard.2021.102910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/27/2021] [Accepted: 03/13/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Obesity is an important modifiable risk factor of MS; a deeper biological understanding of this association is needed. OBJECTIVE To evaluate the determinants of acute optic neuritis (AON) severity and recovery in multiple sclerosis (MS). METHODS We included 61 patients with MS with recorded AON severity and recovery according to visual acuity outcomes before, at, and, after the relapse. We measured body mass index (BMI) and the serum concentration of estrogen, leptin, testosterone, sex hormone-binding globulin, and vitamin D. We tested the association between BMI and serum hormones and AON severity and recovery with logistic regressions. RESULTS In males, moderate/severe AON was associated with higher BMI (31.26 kg/m2 vs 25.73 kg/m2, logistic regression, p= 0.03), higher serum estrogen levels (32.24 nmol/L vs 23.06 nmol/L, logistic regression, p=0.04), and higher serum leptin levels (12.29 ng/mL vs mild AON: 4.1 ng/mL, logistic regression, p=0.06) than mild AON. These observations were not seen in female patients. We did not find an association with BMI or hormone levels and AON recovery. CONCLUSION BMI, serum leptin, and serum estrogen were associated with AON severity in male patients but not in female patients. No association of these factors and AON recovery was observed.
Collapse
Affiliation(s)
- Duong T Chu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, US; Harvard Medical School, Boston, Massachusetts, US
| | - Mattia Rosso
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, US; Harvard Medical School, Boston, Massachusetts, US
| | - Cindy T Gonzalez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, US; Harvard Medical School, Boston, Massachusetts, US
| | - Shrishti Saxena
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, US; Harvard Medical School, Boston, Massachusetts, US
| | - Brian C Healy
- Harvard Medical School, Boston, Massachusetts, US; Massachusetts General Hospital Biostatistics Center, Boston, Massachusetts, US; Partners Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, US
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, US; Harvard Medical School, Boston, Massachusetts, US; Partners Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, US
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, US; Harvard Medical School, Boston, Massachusetts, US; Partners Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, US.
| |
Collapse
|
31
|
The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin Sci (Lond) 2021; 135:731-752. [PMID: 33729498 PMCID: PMC7969664 DOI: 10.1042/cs20200895] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
The global obesity epidemic is a major contributor to chronic disease and disability in the world today. Since the discovery of leptin in 1994, a multitude of studies have characterized the pathological changes that occur within adipose tissue in the obese state. One significant change is the dysregulation of adipokine production. Adipokines are an indispensable link between metabolism and optimal immune system function; however, their dysregulation in obesity contributes to chronic low-grade inflammation and disease pathology. Herein, I will highlight current knowledge on adipokine structure and physiological function, and focus on the known roles of these factors in the modulation of the immune response. I will also discuss adipokines in rheumatic and autoimmune diseases.
Collapse
|
32
|
Yildirim Z, Karabekiroglu K, Yildiran A, Celiksoy MH, Artukoglu B, Baykal S, Babadağı Z, Leckman J. An examination of the relationship between regulatory T cells and symptom flare-ups in children and adolescents diagnosed with chronic tic disorder and Tourette syndrome. Nord J Psychiatry 2021; 75:18-24. [PMID: 32580599 DOI: 10.1080/08039488.2020.1779808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Tourette syndrome (TS) is a childhood-onset neurodevelopmental disorder characterized by several motor and phonic tics. AIMS In this study, we aimed to compare activated regulatory T cell (Treg) values between patients with TS/chronic tic disorder (CTD) and age- and sex-matched healthy controls (HCs). MATERIALS AND METHOD Patients with TS/CTD and age- and sex-matched HCs were included in the study. The severity of the disease was evaluated using the Yale Global Tic Severity Scale. CD4+CD25+CD127low Tregs from the patient group and the control group were compared using flow cytometry. RESULTS The study included 48 patients diagnosed with TS/CTD (36 males and 12 females, mean age: 11.58 ± 2.61) and 24 HCs (18 males and 6 females, mean age: 11.63 ± 2.60). The TS/CTD group had significantly higher activated regulatory T percentile with respect to the T helper value compared to the HCs (p = 0.010). Lymphocyte count, T lymphocyte count, T lymphocyte percentage, T-helper lymphocyte count, and T-helper lymphocyte percentage were lower in the patient group compared to the control group (p = 0.024, 0.003, 0.007, <0.001, <0.001, respectively). The comparison of three groups (mild, moderate-severe, and HCs) revealed that T lymphocyte number and percentage and the T helper number and percentage were significantly higher in the HC group compared to the moderate-severe group, whereas the activated Treg percentage with respect to the T helper value was significantly higher in the moderate-severe group compared to the HC group (0.002, 0.026, <0.001, <0.001, 0.027, respectively). CONCLUSION Our results suggest that Tregs may have a role in the pathogenesis of TS/CTD.
Collapse
Affiliation(s)
- Zeynep Yildirim
- Department of Child and Adolescent Psychiatry, Medikal Park Hospital, Samsun, Turkey
| | - Koray Karabekiroglu
- Department of Child and Adolescent Psychiatry, Ondokuz Mayis University, Samsun, Turkey
| | - Alisan Yildiran
- Division of Pediatric Allergy and Immunology, Ondokuz Mayis University, Samsun, Turkey
| | - Mehmet Halil Celiksoy
- Division of Pediatric Allergy and Immunology, Ondokuz Mayis University, Samsun, Turkey
| | | | - Saliha Baykal
- Department of Child and Adolescent Psychiatry, Namik Kemal University, Tekirdag, Turkey
| | - Zehra Babadağı
- Department of Child and Adolescent Psychiatry, Kayseri Education and Research Hospital, Kayseri, Turkey
| | | |
Collapse
|
33
|
Marrodan M, Farez MF, Balbuena Aguirre ME, Correale J. Obesity and the risk of Multiple Sclerosis. The role of Leptin. Ann Clin Transl Neurol 2020; 8:406-424. [PMID: 33369280 PMCID: PMC7886048 DOI: 10.1002/acn3.51291] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To investigate the effects of leptin on different T-cell populations, in order to gain more insight into the link between leptin and obesity. METHODS Three hundred and nine RRMS patients and 322 controls participated in a cross-sectional survey, to confirm whether excess weight/obesity in adolescence or early adulthood increased the risk of MS. Serum leptin levels were determined by ELISA. MBP83-102 , and MOG63-87 peptide-specific T cells lines were expanded from peripheral blood mononuclear cells. Leptin receptor expression was measured by RT-PCR and flow cytometry. Bcl-2, p-STAT3, pERK1/2, and p27kip1 expression were assayed using ELISA, and apoptosis induction was determined by Annexin V detection. Cytokines were assessed by ELISPOT and ELISA, and regulatory T cells (Tregs) by flow cytometry. RESULTS Logistic regression analysis, showed excess weight at age 15, and obesity at 20 years of age increased MS risk (OR = 2.16, P = 0.01 and OR = 3.9, P = 0.01). Leptin levels correlated with BMI in both groups. The addition of Leptin increased autoreactive T-cell proliferation, reduced apoptosis induction, and promoted proinflammatory cytokine secretion. Obese patients produced more proinflammatory cytokines compared to overweight/normal/underweight subjects. Inverse correlation was found between leptin levels and circulating Treg cells (r = -0.97, P < 0.0001). Leptin inhibited Treg proliferation. Effects of leptin on CD4+ CD25- effector T cells were mediated by increased STAT3 and ERK1/2 phosphorylation, and down modulation of the cell cycle inhibitor P27kip1 . In contrast, leptin effects on Tregs resulted from decreased phosphorylation of ERK1/2 and upregulation of p27kip1 . INTERPRETATION Leptin promotes autoreactive T-cell proliferation and proinflammatory cytokine secretion, but inhibits Treg-cell proliferation.
Collapse
|
34
|
Abd Elhafeez MA, Zamzam DA, Fouad MM, Elkhawas HM, Abdel Rahman HA. Serum leptin and body mass index in a sample of Egyptian multiple sclerosis patients. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-00239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The adipose tissues release pro-inflammatory cytokines such as leptin that can be considered a link between obesity and autoimmunity. This study aimed to investigate a possible correlation between BMI, serum leptin, and multiple sclerosis (MS).
Methods
This case-control study recruited consecutively 169 patients from our MS Unit and 50 healthy controls. Clinical history and examination with Expanded Disability Status Scale (EDSS) scoring were done for all patients. Calculation of body mass index (BMI) and measurement of serum leptin level were done for patients and controls.
Results
The case group had significantly higher BMI (mean of 26.85 ± 6.06 versus 19.55 ± 1.62; P < 0.001) and higher serum leptin levels (median [IQR] of 280 pgm/ml [175–525] versus 102.5 pgm/ml [80–125]; P < 0.001) compared to the control group. Serum leptin levels did not have a correlation with either disease activity or degree of disability.
Conclusions
MS patients had significantly higher BMI and higher serum leptin levels compared to controls.
Collapse
|
35
|
Impact of Exercise on Immunometabolism in Multiple Sclerosis. J Clin Med 2020; 9:jcm9093038. [PMID: 32967206 PMCID: PMC7564219 DOI: 10.3390/jcm9093038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic, autoimmune condition characterized by demyelinating lesions and axonal degradation. Even though the cause of MS is heterogeneous, it is known that peripheral immune invasion in the central nervous system (CNS) drives pathology at least in the most common form of MS, relapse-remitting MS (RRMS). The more progressive forms’ mechanisms of action remain more elusive yet an innate immune dysfunction combined with neurodegeneration are likely drivers. Recently, increasing studies have focused on the influence of metabolism in regulating immune cell function. In this regard, exercise has long been known to regulate metabolism, and has emerged as a promising therapy for management of autoimmune disorders. Hence, in this review, we inspect the role of key immunometabolic pathways specifically dysregulated in MS and highlight potential therapeutic benefits of exercise in modulating those pathways to harness an anti-inflammatory state. Finally, we touch upon current challenges and future directions for the field of exercise and immunometabolism in MS.
Collapse
|
36
|
Han H, Zhou W. Leptin and Its Derivatives: A Potential Target for Autoimmune Diseases. Curr Drug Targets 2020; 20:1563-1571. [PMID: 31362672 DOI: 10.2174/1389450120666190729120557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/22/2022]
Abstract
Leptin is an adipocyte-derived hormone product of the obese (ob) gene. Leptin plays an important regulatory role as an immunomodulatory factor in the maintenance and homeostasis of immune functions. Indeed, the role of leptin as an immunomodulator in inflammatory and immune responses has attracted increasing attention in recent years. Leptin mostly affects responses through the immunomodulation of monocytes, dendritic cells, neutrophils, NK cells, and dendritic cells in addition to modulating T and B cell development and functions. Leptin is also an important inflammatory regulator, wherein higher expression influences the secretion rates of IL-6, C-reactive proteins, and TNF-α. Moreover, leptin is highly involved in processes related to human metabolism, inflammatory reactions, cellular development, and diseases, including hematopoiesis. Owing to its diverse immunerelated functions, leptin has been explored as a potential target for therapeutic development in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Han Han
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, No.146 North Huanghe St. Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, No.146 North Huanghe St. Huanggu Dis. Shenyang City, Liaoning Pro 110034, China
| |
Collapse
|
37
|
Packer M, Lam CS, Lund LH, Maurer MS, Borlaug BA. Characterization of the inflammatory-metabolic phenotype of heart failure with a preserved ejection fraction: a hypothesis to explain influence of sex on the evolution and potential treatment of the disease. Eur J Heart Fail 2020; 22:1551-1567. [PMID: 32441863 PMCID: PMC7687188 DOI: 10.1002/ejhf.1902] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence points to the existence of an inflammatory-metabolic phenotype of heart failure with a preserved ejection fraction (HFpEF), which is characterized by biomarkers of inflammation, an expanded epicardial adipose tissue mass, microvascular endothelial dysfunction, normal-to-mildly increased left ventricular volumes and systolic blood pressures, and possibly, altered activity of adipocyte-associated inflammatory mediators. A broad range of adipogenic metabolic and systemic inflammatory disorders - e.g. obesity, diabetes and metabolic syndrome as well as rheumatoid arthritis and psoriasis - can cause this phenotype, independent of the presence of large vessel coronary artery disease. Interestingly, when compared with men, women are both at greater risk of and may suffer greater cardiac consequences from these systemic inflammatory and metabolic disorders. Women show disproportionate increases in left ventricular filling pressures following increases in central blood volume and have greater arterial stiffness than men. Additionally, they are particularly predisposed to epicardial and intramyocardial fat expansion and imbalances in adipocyte-associated proinflammatory mediators. The hormonal interrelationships seen in inflammatory-metabolic phenotype may explain why mineralocorticoid receptor antagonists and neprilysin inhibitors may be more effective in women than in men with HFpEF. Recognition of the inflammatory-metabolic phenotype may improve an understanding of the pathogenesis of HFpEF and enhance the ability to design clinical trials of interventions in this heterogeneous syndrome.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular InstituteBaylor University Medical CenterDallasTXUSA
- Imperial College LondonLondonUK
| | - Carolyn S.P. Lam
- National Heart Centre Singapore and Duke‐National University of SingaporeSingapore
- University Medical Centre GroningenGroningenThe Netherlands
- The George Institute for Global HealthSydneyAustralia
| | - Lars H. Lund
- Department of Medicine, Karolinska Institutet and Heart and Vascular ThemeKarolinska University HospitalStockholmSweden
| | | | | |
Collapse
|
38
|
Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, Sánchez-Margalet V. Role of Leptin in Inflammation and Vice Versa. Int J Mol Sci 2020; 21:E5887. [PMID: 32824322 PMCID: PMC7460646 DOI: 10.3390/ijms21165887] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is an essential immune response for the maintenance of tissue homeostasis. In a general sense, acute and chronic inflammation are different types of adaptive response that are called into action when other homeostatic mechanisms are insufficient. Although considerable progress has been made in understanding the cellular and molecular events that are involved in the acute inflammatory response to infection and tissue injury, the causes and mechanisms of systemic chronic inflammation are much less known. The pathogenic capacity of this type of inflammation is puzzling and represents a common link of the multifactorial diseases, such as cardiovascular diseases and type 2 diabetes. In recent years, interest has been raised by the discovery of novel mediators of inflammation, such as microRNAs and adipokines, with different effects on target tissues. In the present review, we discuss the data emerged from research of leptin in obesity as an inflammatory mediator sustaining multifactorial diseases and how this knowledge could be instrumental in the design of leptin-based manipulation strategies to help restoration of abnormal immune responses. On the other direction, chronic inflammation, either from autoimmune or infectious diseases, or impaired microbiota (dysbiosis) may impair the leptin response inducing resistance to the weight control, and therefore it may be a cause of obesity. Thus, we are reviewing the published data regarding the role of leptin in inflammation, and the other way around, the role of inflammation on the development of leptin resistance and obesity.
Collapse
Affiliation(s)
- Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (F.S.-J.); (T.V.-G.)
| | | | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (F.S.-J.); (T.V.-G.)
| |
Collapse
|
39
|
Arroyo Hornero R, Hamad I, Côrte-Real B, Kleinewietfeld M. The Impact of Dietary Components on Regulatory T Cells and Disease. Front Immunol 2020; 11:253. [PMID: 32153577 PMCID: PMC7047770 DOI: 10.3389/fimmu.2020.00253] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
The rise in the prevalence of autoimmune diseases in developed societies has been associated with a change in lifestyle patterns. Among other factors, increased consumption of certain dietary components, such as table salt and fatty acids and excessive caloric intake has been associated with defective immunological tolerance. Dietary nutrients have shown to modulate the immune response by a direct effect on the function of immune cells or, indirectly, by acting on the microbiome of the gastrointestinal tract. FOXP3+ regulatory T cells (Tregs) suppress immune responses and are critical for maintaining peripheral tolerance and immune homeostasis, modulating chronic tissue inflammation and autoimmune disease. It is now well-recognized that Tregs show certain degree of plasticity and can gain effector functions to adapt their regulatory function to different physiological situations during an immune response. However, plasticity of Tregs might also result in conversion into effector T cells that may contribute to autoimmune pathogenesis. Yet, which environmental cues regulate Treg plasticity and function is currently poorly understood, but it is of significant importance for therapeutic purposes. Here we review the current understanding on the effect of certain dietary nutrients that characterize Western diets in Treg metabolism, stability, and function. Moreover, we will discuss the role of Tregs linking diet and autoimmunity and the potential of dietary-based interventions to modulate Treg function in disease.
Collapse
Affiliation(s)
- Rebeca Arroyo Hornero
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium
| | - Ibrahim Hamad
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium
| | - Beatriz Côrte-Real
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), University of Hasselt, Hasselt, Belgium
| |
Collapse
|
40
|
Carbone E, De Felice M, Di Rosa F, D'Oro U, Fontana S, La Cava A, Maio M, Matarese G, Racioppi L, Ruggiero G, Terrazzano G. Serafino Zappacosta: An Enlightened Mentor and Educator. Front Immunol 2020; 11:217. [PMID: 32117323 PMCID: PMC7031500 DOI: 10.3389/fimmu.2020.00217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 11/22/2022] Open
Abstract
With this article, the authors aim to honor the memory of Serafino Zappacosta, who had been their mentor during the early years of their career in science. The authors discuss how the combination of Serafino Zappacosta's extraordinary commitment to teaching and passion for science created a fostering educational environment that led to the creation of the “Ruggero Ceppellini Advanced School of Immunology.” The review also illustrates how the research on the MHC and the inspirational scientific context in the Zappacosta's laboratory influenced the authors' early scientific interests, and subsequent professional work as immunologists.
Collapse
Affiliation(s)
- Ennio Carbone
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.,Department of Microbiology, Cell and Tumor Biology, Karolinska Intitutet, Stockholm, Sweden
| | - Mario De Felice
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche (IBPM-CNR), Rome, Italy
| | | | - Silvia Fontana
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Antonio La Cava
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michele Maio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Siena, Italy
| | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Luigi Racioppi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.,Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II", Naples, Italy
| | - Giuseppe Terrazzano
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II", Naples, Italy.,Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| |
Collapse
|
41
|
Kolić I, Stojković L, Dinčić E, Jovanović I, Stanković A, Živković M. Expression of LEP, LEPR and PGC1A genes is altered in peripheral blood mononuclear cells of patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 2020; 338:577090. [DOI: 10.1016/j.jneuroim.2019.577090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/01/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
|
42
|
Tadić D, Đajić V, Grgić S, Miljković S. Association of body mass index with progression and prediction of multiple sclerosis. SCRIPTA MEDICA 2020. [DOI: 10.5937/scriptamed51-24916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
43
|
Ziegler JF, Böttcher C, Letizia M, Yerinde C, Wu H, Freise I, Rodriguez-Sillke Y, Stoyanova AK, Kreis ME, Asbach P, Kunkel D, Priller J, Anagnostopoulos I, Kühl AA, Miehle K, Stumvoll M, Tran F, Fredrich B, Forster M, Franke A, Bojarski C, Glauben R, Löscher BS, Siegmund B, Weidinger C. Leptin induces TNFα-dependent inflammation in acquired generalized lipodystrophy and combined Crohn's disease. Nat Commun 2019; 10:5629. [PMID: 31822667 PMCID: PMC6904732 DOI: 10.1038/s41467-019-13559-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/14/2019] [Indexed: 12/27/2022] Open
Abstract
Leptin has been shown to modulate intestinal inflammation in mice. However, clinical evidence regarding its immune-stimulatory potential in human Crohn’s disease remains sparse. We here describe a patient with the unique combination of acquired generalized lipodystrophy and Crohn’s disease (AGLCD) featuring a lack of adipose tissue, leptin deficiency and intestinal inflammation. Using mass and flow cytometry, immunohistochemistry and functional metabolic analyses, the AGLCD patient was compared to healthy individuals and Crohn’s disease patients regarding immune cell composition, function and metabolism and the effects of recombinant N-methionylleptin (rLeptin) were evaluated. We provide evidence that rLeptin exerts diverse pro-inflammatory effects on immune cell differentiation and function, including the metabolic reprogramming of immune cells and the induction of TNFα, ultimately aggravating Crohn’s disease in the AGLCD patient, which can be reversed by anti-TNFα therapy. Our results indicate that leptin is required for human immune homeostasis and contributes to autoimmunity in a TNFα-dependent manner. The adipokine leptin modulates intestinal inflammation in mice. Here the authors describe a patient with inflammatory bowel disease and lipodystrophy, providing evidence that leptin aggravates intestinal inflammation with proinflammatory effects on leukocytes that are reversible by TNFα blockade.
Collapse
Affiliation(s)
- Jörn F Ziegler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Chotima Böttcher
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Laboratory of Molecular Psychiatry and Department of Neuropsychiatry, Berlin, Germany
| | - Marilena Letizia
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Cansu Yerinde
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Hao Wu
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Inka Freise
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Yasmina Rodriguez-Sillke
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Ani K Stoyanova
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Visceral Surgery, Campus Benjamin Franklin, Berlin, Germany
| | - Martin E Kreis
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Visceral Surgery, Campus Benjamin Franklin, Berlin, Germany
| | - Patrick Asbach
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Radiology, Campus Benjamin Franklin, Berlin, Germany
| | - Desiree Kunkel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,BIH Cytometry Core, Berlin Institute of Health, 10178, Berlin, Germany
| | - Josef Priller
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Laboratory of Molecular Psychiatry and Department of Neuropsychiatry, Berlin, Germany.,BIH Berlin, DZNE Berlin and University of Edinburgh and UK DRI, Edinburgh, UK
| | - Ioannis Anagnostopoulos
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Pathology, Campus Charité Mitte, Berlin, Germany
| | - Anja A Kühl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,iPATH.Berlin-Immunopathology for Experimental Models, Core Facility of the Charité, Berlin, Germany
| | - Konstanze Miehle
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Broder Fredrich
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Bojarski
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Rainer Glauben
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Britt-Sabina Löscher
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Britta Siegmund
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany. .,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany.
| | - Carl Weidinger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany. .,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany. .,Clinician Scientist Program, Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
44
|
Leptin: an unappreciated key player in SLE. Clin Rheumatol 2019; 39:305-317. [PMID: 31707542 DOI: 10.1007/s10067-019-04831-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/08/2023]
Abstract
Leptin is the forerunner of the adipokine superfamily and plays a key role in regulating energy expenditure and neuroendocrine function. Researches into leptin put emphasize not only on the metabolic role but also its immunoregulatory effect on immune response through immunocyte activation and cytokine secretion. Leptin acts on receptors that are widespread throughout the body and that are expressed across many tissue types. As a consequence, the abnormal expression of leptin has been found to correlate with a number of diseases, including cancers, autoimmune diseases, and cardiovascular diseases. The significance of leptin in the development of autoimmune diseases is becoming increasingly prominent. Systemic lupus erythematosus (SLE) is a severe atypical autoimmune disease that causes damage to multiple organ systems. It is characterised by the following: impaired clearance of apoptotic cells, loss of tolerance to self-antigens, aberrant activation of T cells and B cells, and chronic inflammation. The heightened immunocyte response in SLE means that these physiological systems are particularly vulnerable to regulation by leptin in addition to being of great significance to the research field. Our current review provides insight into the regulatory roles that leptin plays on immune effector cells in SLE.
Collapse
|
45
|
Adipokines are associated with pediatric multiple sclerosis risk and course. Mult Scler Relat Disord 2019; 36:101384. [DOI: 10.1016/j.msard.2019.101384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/26/2019] [Accepted: 09/04/2019] [Indexed: 02/02/2023]
|
46
|
Schepici G, Silvestro S, Bramanti P, Mazzon E. The Gut Microbiota in Multiple Sclerosis: An Overview of Clinical Trials. Cell Transplant 2019; 28:1507-1527. [PMID: 31512505 PMCID: PMC6923550 DOI: 10.1177/0963689719873890] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating, and
degenerative disease that affects the central nervous system. A recent study
showed that interaction between the immune system and the gut microbiota plays a
crucial role in the development of MS. This review reports the clinical studies
carried out in recent years that aimed to evaluate the composition of the
microbiota in patients with relapsing–remitting MS (RR-MS). We also report what
is available in the literature regarding the effectiveness of fecal microbiota
transplantation and the role of the diet in restoring the intestinal bacterial
population. Studies report that patients with RR-MS have a microbiota that,
compared with healthy controls, has higher amounts of
Pedobacteria, Flavobacterium,
Pseudomonas, Mycoplana,
Acinetobacter, Eggerthella,
Dorea, Blautia,
Streptococcus and Akkermansia. In
contrast, MS patients have a microbiota with impoverished microbial populations
of Prevotella, Bacteroides,
Parabacteroides, Haemophilus,
Sutterella, Adlercreutzia,
Coprobacillus, Lactobacillus,
Clostridium, Anaerostipes and
Faecalibacterium. In conclusion, the restoration of the
microbial population in patients with RR-MS appears to reduce inflammatory
events and the reactivation of the immune system.
Collapse
Affiliation(s)
- Giovanni Schepici
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy.,Both the authors contributed equally to this article
| | - Serena Silvestro
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy.,Both the authors contributed equally to this article
| | | | | |
Collapse
|
47
|
Toghi M, Bitarafan S, Kasmaei HD, Ghafouri-Fard S. Bifidobacteria: A probable missing puzzle piece in the pathogenesis of multiple sclerosis. Mult Scler Relat Disord 2019; 36:101378. [PMID: 31487552 DOI: 10.1016/j.msard.2019.101378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/29/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder in which the immunopathogenesis is not fully understood. In the recent years, the role of gut microbiome in the pathogenesis of this disorder has been highlighted. Bifidobacteria as a component of gut microbiome might also be involved in MS pathogenesis. Being emerged in early days after birth, bifidobacteria have a prominent role in immune system maturation and function. Some factors like mode of delivery, breast feeding, mother's blood group and her secretory state and also environmental factors could influence its level in the early infancy, which may remain throughout lifetime. In this review, we discussed possible immunopathogenic link between the bifidobacteria and MS.
Collapse
Affiliation(s)
- Mehdi Toghi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Bitarafan
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hosein Delavar Kasmaei
- Department of Neurology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory disease characterized by limitation of expiratory airflow. Cellular and molecular pathways involved in disease pathogenesis are not completely defined. Our study reveals that metabolism and immune response cooperate in COPD pathogenesis and progression. COPD subjects with different disease stages showed progressive increase of systemic leptin, an adipose tissue-derived proinflammatory molecule, that, at high concentrations, impaired the capacity of T cells to engage in glycolysis and to generate regulatory T cells. Thus, the loss of these immunoregulatory circuits during COPD determined the hyperactivation of effector T cells that amplified inflammation, leading to progressive decline of lung function. Understanding these immunometabolic mechanisms can have important implications for monitoring COPD progression and for disease treatment. Chronic obstructive pulmonary disease (COPD) is an inflammatory condition associated with abnormal immune responses, leading to airflow obstruction. Lungs of COPD subjects show accumulation of proinflammatory T helper (Th) 1 and Th17 cells resembling that of autoreactive immune responses. As regulatory T (Treg) cells play a central role in the control of autoimmune responses and their generation and function are controlled by the adipocytokine leptin, we herein investigated the association among systemic leptin overproduction, reduced engagement of glycolysis in T cells, and reduced peripheral frequency of Treg cells in different COPD stages. These phenomena were also associated with an impaired capacity to generate inducible Treg (iTreg) cells from conventional T (Tconv) cells. At the molecular level, we found that leptin inhibited the expression of forkhead-boxP3 (FoxP3) and its splicing variants containing the exon 2 (FoxP3-E2) that correlated inversely with inflammation and weakened lung function during COPD progression. Our data reveal that the immunometabolic pathomechanism leading to COPD progression is characterized by leptin overproduction, a decline in the expression of FoxP3 splicing forms, and an impairment in Treg cell generation and function. These results have potential implications for better understanding the autoimmune-like nature of COPD and the pathogenic events leading to lung damage.
Collapse
|
49
|
Stampanoni Bassi M, Iezzi E, Buttari F, Gilio L, Simonelli I, Carbone F, Micillo T, De Rosa V, Sica F, Furlan R, Finardi A, Fantozzi R, Storto M, Bellantonio P, Pirollo P, Di Lemme S, Musella A, Mandolesi G, Centonze D, Matarese G. Obesity worsens central inflammation and disability in multiple sclerosis. Mult Scler 2019; 26:1237-1246. [PMID: 31161863 DOI: 10.1177/1352458519853473] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Previous studies evidenced a link between metabolic dysregulation, inflammation, and neurodegeneration in multiple sclerosis (MS). OBJECTIVES To explore whether increased adipocyte mass expressed as body mass index (BMI) and increased serum lipids influence cerebrospinal fluid (CSF) inflammation and disease severity. METHODS In this cross-sectional study, 140 consecutive relapsing-remitting (RR)-MS patients underwent clinical assessment, BMI evaluation, magnetic resonance imaging scan, and blood and CSF collection before any specific drug treatment. The CSF levels of the following cytokines, adipocytokines, and inflammatory factors were measured: interleukin (IL)-6, IL-13, granulocyte macrophage colony-stimulating factor, leptin, ghrelin, osteoprotegerin, osteopontin, plasminogen activator inhibitor-1, resistin, and Annexin A1. Serum levels of triglycerides, total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C) were assessed. RESULTS A positive correlation emerged between BMI and Expanded Disability Status Scale score. Obese RR-MS patients showed higher clinical disability, increased CSF levels of the proinflammatory molecules IL-6 and leptin, and reduced concentrations of the anti-inflammatory cytokine IL-13. Moreover, both the serum levels of triglycerides and TC/HDL-C ratio showed a positive correlation with IL-6 CSF concentrations. CONCLUSION Obesity and altered lipid profile are associated with exacerbated central inflammation and higher clinical disability in RR-MS at the time of diagnosis. Increased adipocytokines and lipids can mediate the negative impact of high adiposity on RR-MS course.
Collapse
Affiliation(s)
| | - Ennio Iezzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Fabio Buttari
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Luana Gilio
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Ilaria Simonelli
- Service of Medical Statistics & Information Technology, Fondazione Fatebenefratelli per la Ricerca e la Formazione Sanitaria e Sociale, Lungotevere de' Cenci 5, Rome, Italy
| | - Fortunata Carbone
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Naples, Italy; Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Teresa Micillo
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Veronica De Rosa
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Naples, Italy; Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Sica
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Roberto Furlan
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Fantozzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Marianna Storto
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Paolo Bellantonio
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Pamela Pirollo
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Sonia Di Lemme
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Alessandra Musella
- Laboratory of Neuroimmunology and Synaptic Plasticity, IRCCS San Raffaele Pisana, Rome, Italy
| | - Georgia Mandolesi
- Laboratory of Neuroimmunology and Synaptic Plasticity, IRCCS San Raffaele Pisana, Rome, Italy
| | - Diego Centonze
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy; Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, Naples, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
50
|
Dardiotis E, Tsouris Z, Aslanidou P, Aloizou AM, Sokratous M, Provatas A, Siokas V, Deretzi G, Hadjigeorgiou GM. Body mass index in patients with Multiple Sclerosis: a meta-analysis. Neurol Res 2019; 41:836-846. [DOI: 10.1080/01616412.2019.1622873] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Paraskevi Aslanidou
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Maria Sokratous
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Antonios Provatas
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Georgia Deretzi
- Papageorgiou hospital, Neurology clinic, Thessaloniki, Greece
| | - Georgios M. Hadjigeorgiou
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|