1
|
Schuntermann DB, Jaskolowski M, Reynolds NM, Vargas-Rodriguez O. The central role of transfer RNAs in mistranslation. J Biol Chem 2024; 300:107679. [PMID: 39154912 PMCID: PMC11415595 DOI: 10.1016/j.jbc.2024.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Transfer RNAs (tRNA) are essential small non-coding RNAs that enable the translation of genomic information into proteins in all life forms. The principal function of tRNAs is to bring amino acid building blocks to the ribosomes for protein synthesis. In the ribosome, tRNAs interact with messenger RNA (mRNA) to mediate the incorporation of amino acids into a growing polypeptide chain following the rules of the genetic code. Accurate interpretation of the genetic code requires tRNAs to carry amino acids matching their anticodon identity and decode the correct codon on mRNAs. Errors in these steps cause the translation of codons with the wrong amino acids (mistranslation), compromising the accurate flow of information from DNA to proteins. Accumulation of mutant proteins due to mistranslation jeopardizes proteostasis and cellular viability. However, the concept of mistranslation is evolving, with increasing evidence indicating that mistranslation can be used as a mechanism for survival and acclimatization to environmental conditions. In this review, we discuss the central role of tRNAs in modulating translational fidelity through their dynamic and complex interplay with translation factors. We summarize recent discoveries of mistranslating tRNAs and describe the underlying molecular mechanisms and the specific conditions and environments that enable and promote mistranslation.
Collapse
Affiliation(s)
- Dominik B Schuntermann
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Noah M Reynolds
- School of Integrated Sciences, Sustainability, and Public Health, University of Illinois Springfield, Springfield, Illinois, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
2
|
Izadi M, Ali TA, Shurrab FM, Aharpour E, Pourkarimi E. Tryptophanyl-tRNA synthetase-1 (WARS-1) depletion and high tryptophan concentration lead to genomic instability in Caenorhabditis elegans. Cell Death Discov 2024; 10:165. [PMID: 38575580 PMCID: PMC10995160 DOI: 10.1038/s41420-024-01917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
The fidelity of translation is ensured by a family of proteins named aminoacyl-tRNA synthetases (ARSs), making them crucial for development and survival. More recently, mutations in the tryptophanyl-tRNA synthetase 1 (WARS1) have been linked to various human diseases, from intellectual disability to various types of cancer. To understand the function of WARS1, we investigated the effect of WARS-1 depletion during the mitotic and meiotic cell cycle in the developing germline of Caenorhabditis elegans (C. elegans) and demonstrated the role of WARS-1 in genome integrity. wars-1 knockdown results in cell cycle arrest of the mitotically active germ cells. Such mitotic arrest is also associated with canonical DNA damage-induced checkpoint signaling in mitotic and meiotic germ cells. Significantly, such DNA checkpoint activation is associated with the morphological anomalies in chromatin structures that are the hallmarks of genome instability, such as the formation of chromatin bridges, micronuclei, and chromatin buds. We demonstrated that knocking down wars-1 results in an elevation of the intracellular concentration of tryptophan and its catabolites, a surprising finding emphasizing the impact of cellular amino acid availability and organismal/individual dietary uptake on genome integrity. Our result demonstrates that exposing C. elegans to a high tryptophan dosage leads to DNA damage checkpoint activation and a significant increase in the tryptophan metabolites. Targeting tryptophan catabolism, the least utilized amino acid in nature, can be important in developing new cancer therapeutic approaches. All in all, we have strong evidence that knocking down wars-1 results in defects in genomic integrity.
Collapse
Affiliation(s)
- Mahmoud Izadi
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar
| | - Tayyiba Akbar Ali
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar
| | - Farah M Shurrab
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar
| | | | - Ehsan Pourkarimi
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar.
| |
Collapse
|
3
|
Schuntermann DB, Fischer JT, Bile J, Gaier SA, Shelley BA, Awawdeh A, Jahn M, Hoffman KS, Westhof E, Söll D, Clarke CR, Vargas-Rodriguez O. Mistranslation of the genetic code by a new family of bacterial transfer RNAs. J Biol Chem 2023; 299:104852. [PMID: 37224963 PMCID: PMC10404621 DOI: 10.1016/j.jbc.2023.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
The correct coupling of amino acids with transfer RNAs (tRNAs) is vital for translating genetic information into functional proteins. Errors during this process lead to mistranslation, where a codon is translated using the wrong amino acid. While unregulated and prolonged mistranslation is often toxic, growing evidence suggests that organisms, from bacteria to humans, can induce and use mistranslation as a mechanism to overcome unfavorable environmental conditions. Most known cases of mistranslation are caused by translation factors with poor substrate specificity or when substrate discrimination is sensitive to molecular changes such as mutations or posttranslational modifications. Here we report two novel families of tRNAs, encoded by bacteria from the Streptomyces and Kitasatospora genera, that adopted dual identities by integrating the anticodons AUU (for Asn) or AGU (for Thr) into the structure of a distinct proline tRNA. These tRNAs are typically encoded next to a full-length or truncated version of a distinct isoform of bacterial-type prolyl-tRNA synthetase. Using two protein reporters, we showed that these tRNAs translate asparagine and threonine codons with proline. Moreover, when expressed in Escherichia coli, the tRNAs cause varying growth defects due to global Asn-to-Pro and Thr-to-Pro mutations. Yet, proteome-wide substitutions of Asn with Pro induced by tRNA expression increased cell tolerance to the antibiotic carbenicillin, indicating that Pro mistranslation can be beneficial under certain conditions. Collectively, our results significantly expand the catalog of organisms known to possess dedicated mistranslation machinery and support the concept that mistranslation is a mechanism for cellular resiliency against environmental stress.
Collapse
Affiliation(s)
- Dominik B Schuntermann
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Jonathan T Fischer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jonmatthew Bile
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Sarah A Gaier
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Brett A Shelley
- Genetic Improvement for Fruits and Vegetables Lab, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, Maryland, USA
| | - Aya Awawdeh
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Martina Jahn
- Department of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | | | - Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Chemistry, Yale University, New Haven, Connecticut, USA.
| | - Christopher R Clarke
- Genetic Improvement for Fruits and Vegetables Lab, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, Maryland, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
4
|
Romero Romero ML, Landerer C, Poehls J, Toth‐Petroczy A. Phenotypic mutations contribute to protein diversity and shape protein evolution. Protein Sci 2022; 31:e4397. [PMID: 36040266 PMCID: PMC9375231 DOI: 10.1002/pro.4397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Errors in DNA replication generate genetic mutations, while errors in transcription and translation lead to phenotypic mutations. Phenotypic mutations are orders of magnitude more frequent than genetic ones, yet they are less understood. Here, we review the types of phenotypic mutations, their quantifications, and their role in protein evolution and disease. The diversity generated by phenotypic mutation can facilitate adaptive evolution. Indeed, phenotypic mutations, such as ribosomal frameshift and stop codon readthrough, sometimes serve to regulate protein expression and function. Phenotypic mutations have often been linked to fitness decrease and diseases. Thus, understanding the protein heterogeneity and phenotypic diversity caused by phenotypic mutations will advance our understanding of protein evolution and have implications on human health and diseases.
Collapse
Affiliation(s)
- Maria Luisa Romero Romero
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Cedric Landerer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Jonas Poehls
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Agnes Toth‐Petroczy
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| |
Collapse
|
5
|
Translation error clusters induced by aminoglycoside antibiotics. Nat Commun 2021; 12:1830. [PMID: 33758186 PMCID: PMC7987974 DOI: 10.1038/s41467-021-21942-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/08/2021] [Indexed: 02/04/2023] Open
Abstract
Aminoglycoside antibiotics target the ribosome and induce mistranslation, yet which translation errors induce bacterial cell death is unclear. The analysis of cellular proteins by quantitative mass spectrometry shows that bactericidal aminoglycosides induce not only single translation errors, but also clusters of errors in full-length proteins in vivo with as many as four amino acid substitutions in a row. The downstream errors in a cluster are up to 10,000-fold more frequent than the first error and independent of the intracellular aminoglycoside concentration. The prevalence, length, and composition of error clusters depends not only on the misreading propensity of a given aminoglycoside, but also on its ability to inhibit ribosome translocation along the mRNA. Error clusters constitute a distinct class of misreading events in vivo that may provide the predominant source of proteotoxic stress at low aminoglycoside concentration, which is particularly important for the autocatalytic uptake of the drugs. Aminoglycoside antibiotics target the ribosome and induce misreading, yet which translation errors induce bacterial cell death is unclear. Here authors use quantitative mass spectrometry and show that bactericidal aminoglycosides induce clusters of errors in full-length proteins in vivo with as many as four amino acid substitutions in a row.
Collapse
|
6
|
Chemical-Genetic Interactions with the Proline Analog L-Azetidine-2-Carboxylic Acid in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:4335-4345. [PMID: 33082270 PMCID: PMC7718759 DOI: 10.1534/g3.120.401876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Non-proteinogenic amino acids, such as the proline analog L-azetidine-2-carboxylic acid (AZC), are detrimental to cells because they are mis-incorporated into proteins and lead to proteotoxic stress. Our goal was to identify genes that show chemical-genetic interactions with AZC in Saccharomyces cerevisiae and thus also potentially define the pathways cells use to cope with amino acid mis-incorporation. Screening the yeast deletion and temperature sensitive collections, we found 72 alleles with negative chemical-genetic interactions with AZC treatment and 12 alleles that suppress AZC toxicity. Many of the genes with negative chemical-genetic interactions are involved in protein quality control pathways through the proteasome. Genes involved in actin cytoskeleton organization and endocytosis also had negative chemical-genetic interactions with AZC. Related to this, the number of actin patches per cell increases upon AZC treatment. Many of the same cellular processes were identified to have interactions with proteotoxic stress caused by two other amino acid analogs, canavanine and thialysine, or a mistranslating tRNA variant that mis-incorporates serine at proline codons. Alleles that suppressed AZC-induced toxicity functioned through the amino acid sensing TOR pathway or controlled amino acid permeases required for AZC uptake. Further suggesting the potential of genetic changes to influence the cellular response to proteotoxic stress, overexpressing many of the genes that had a negative chemical-genetic interaction with AZC suppressed AZC toxicity.
Collapse
|
7
|
Kuncha SK, Kruparani SP, Sankaranarayanan R. Chiral checkpoints during protein biosynthesis. J Biol Chem 2019; 294:16535-16548. [PMID: 31591268 DOI: 10.1074/jbc.rev119.008166] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein chains contain only l-amino acids, with the exception of the achiral glycine, making the chains homochiral. This homochirality is a prerequisite for proper protein folding and, hence, normal cellular function. The importance of d-amino acids as a component of the bacterial cell wall and their roles in neurotransmission in higher eukaryotes are well-established. However, the wider presence and the corresponding physiological roles of these specific amino acid stereoisomers have been appreciated only recently. Therefore, it is expected that enantiomeric fidelity has to be a key component of all of the steps in translation. Cells employ various molecular mechanisms for keeping d-amino acids away from the synthesis of nascent polypeptide chains. The major factors involved in this exclusion are aminoacyl-tRNA synthetases (aaRSs), elongation factor thermo-unstable (EF-Tu), the ribosome, and d-aminoacyl-tRNA deacylase (DTD). aaRS, EF-Tu, and the ribosome act as "chiral checkpoints" by preferentially binding to l-amino acids or l-aminoacyl-tRNAs, thereby excluding d-amino acids. Interestingly, DTD, which is conserved across all life forms, performs "chiral proofreading," as it removes d-amino acids erroneously added to tRNA. Here, we comprehensively review d-amino acids with respect to their occurrence and physiological roles, implications for chiral checkpoints required for translation fidelity, and potential use in synthetic biology.
Collapse
Affiliation(s)
- Santosh Kumar Kuncha
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India.,Academy of Scientific and Innovative Research, CSIR-CCMB Campus, Hyderabad, Telangana 500007, India
| | - Shobha P Kruparani
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India
| | - Rajan Sankaranarayanan
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India
| |
Collapse
|
8
|
Abstract
The pool of transfer RNA (tRNA) molecules in cells allows the ribosome to decode genetic information. This repertoire of molecular decoders is positioned in the crossroad of the genome, the transcriptome, and the proteome. Omics and systems biology now allow scientists to explore the entire repertoire of tRNAs of many organisms, revealing basic exciting biology. The tRNA gene set of hundreds of species is now characterized, in addition to the tRNA genes of organelles and viruses. Genes encoding tRNAs for certain anticodon types appear in dozens of copies in a genome, while others are universally absent from any genome. Transcriptome measurement of tRNAs is challenging, but in recent years new technologies have allowed researchers to determine the dynamic expression patterns of tRNAs. These advances reveal that availability of ready-to-translate tRNA molecules is highly controlled by several transcriptional and posttranscriptional regulatory processes. This regulation shapes the proteome according to the cellular state. The tRNA pool profoundly impacts many aspects of cellular and organismal life, including protein expression level, translation accuracy, adequacy of folding, and even mRNA stability. As a result, the shape of the tRNA pool affects organismal health and may participate in causing conditions such as cancer and neurological conditions.
Collapse
Affiliation(s)
- Roni Rak
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100 Israel;
| | - Orna Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100 Israel;
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100 Israel;
| |
Collapse
|
9
|
Kuncha SK, Suma K, Pawar KI, Gogoi J, Routh SB, Pottabathini S, Kruparani SP, Sankaranarayanan R. A discriminator code-based DTD surveillance ensures faithful glycine delivery for protein biosynthesis in bacteria. eLife 2018; 7:38232. [PMID: 30091703 PMCID: PMC6097841 DOI: 10.7554/elife.38232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/07/2018] [Indexed: 11/13/2022] Open
Abstract
D-aminoacyl-tRNA deacylase (DTD) acts on achiral glycine, in addition to D-amino acids, attached to tRNA. We have recently shown that this activity enables DTD to clear non-cognate Gly-tRNAAla with 1000-fold higher efficiency than its activity on Gly-tRNAGly, indicating tRNA-based modulation of DTD (Pawar et al., 2017). Here, we show that tRNA's discriminator base predominantly accounts for this activity difference and is the key to selection by DTD. Accordingly, the uracil discriminator base, serving as a negative determinant, prevents Gly-tRNAGly misediting by DTD and this protection is augmented by EF-Tu. Intriguingly, eukaryotic DTD has inverted discriminator base specificity and uses only G3•U70 for tRNAGly/Ala discrimination. Moreover, DTD prevents alanine-to-glycine misincorporation in proteins rather than only recycling mischarged tRNAAla. Overall, the study reveals the unique co-evolution of DTD and discriminator base, and suggests DTD's strong selection pressure on bacterial tRNAGlys to retain a pyrimidine discriminator code.
Collapse
Affiliation(s)
- Santosh Kumar Kuncha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, CSIR-CCMB Campus, Hyderabad, India
| | - Katta Suma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Jotin Gogoi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | | | |
Collapse
|
10
|
A chiral selectivity relaxed paralog of DTD for proofreading tRNA mischarging in Animalia. Nat Commun 2018; 9:511. [PMID: 29410408 PMCID: PMC5802732 DOI: 10.1038/s41467-017-02204-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023] Open
Abstract
D-aminoacyl-tRNA deacylase (DTD), a bacterial/eukaryotic trans-editing factor, removes D-amino acids mischarged on tRNAs and achiral glycine mischarged on tRNAAla. An invariant cross-subunit Gly-cisPro motif forms the mechanistic basis of L-amino acid rejection from the catalytic site. Here, we present the identification of a DTD variant, named ATD (Animalia-specific tRNA deacylase), that harbors a Gly-transPro motif. The cis-to-trans switch causes a "gain of function" through L-chiral selectivity in ATD resulting in the clearing of L-alanine mischarged on tRNAThr(G4•U69) by eukaryotic AlaRS. The proofreading activity of ATD is conserved across diverse classes of phylum Chordata. Animalia genomes enriched in tRNAThr(G4•U69) genes are in strict association with the presence of ATD, underlining the mandatory requirement of a dedicated factor to proofread tRNA misaminoacylation. The study highlights the emergence of ATD during genome expansion as a key event associated with the evolution of Animalia.
Collapse
|
11
|
Fluorothreonyl-tRNA deacylase prevents mistranslation in the organofluorine producer Streptomyces cattleya. Proc Natl Acad Sci U S A 2017; 114:11920-11925. [PMID: 29078362 DOI: 10.1073/pnas.1711482114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fluorine is an element with unusual properties that has found significant utility in the design of synthetic small molecules, ranging from therapeutics to materials. In contrast, only a few fluorinated compounds made by living organisms have been found to date, most of which derive from the fluoroacetate/fluorothreonine biosynthetic pathway first discovered in Streptomyces cattleya While fluoroacetate has long been known to act as an inhibitor of the tricarboxylic acid cycle, the fate of the amino acid fluorothreonine is still not well understood. Here, we show that fluorothreonine can be misincorporated into protein in place of the proteinogenic amino acid threonine. We have identified two conserved proteins from the organofluorine biosynthetic locus, FthB and FthC, that are involved in managing fluorothreonine toxicity. Using a combination of biochemical, genetic, physiological, and proteomic studies, we show that FthB is a trans-acting transfer RNA (tRNA) editing protein, which hydrolyzes fluorothreonyl-tRNA 670-fold more efficiently than threonyl-RNA, and assign a role to FthC in fluorothreonine transport. While trans-acting tRNA editing proteins have been found to counteract the misacylation of tRNA with commonly occurring near-cognate amino acids, their role has yet to be described in the context of secondary metabolism. In this regard, the recruitment of tRNA editing proteins to biosynthetic clusters may have enabled the evolution of pathways to produce specialized amino acids, thereby increasing the diversity of natural product structure while also attenuating the risk of mistranslation that would ensue.
Collapse
|
12
|
Fan Y, Evans CR, Barber KW, Banerjee K, Weiss KJ, Margolin W, Igoshin OA, Rinehart J, Ling J. Heterogeneity of Stop Codon Readthrough in Single Bacterial Cells and Implications for Population Fitness. Mol Cell 2017; 67:826-836.e5. [PMID: 28781237 PMCID: PMC5591071 DOI: 10.1016/j.molcel.2017.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/22/2017] [Accepted: 07/07/2017] [Indexed: 12/30/2022]
Abstract
Gene expression noise (heterogeneity) leads to phenotypic diversity among isogenic individual cells. Our current understanding of gene expression noise is mostly limited to transcription, as separating translational noise from transcriptional noise has been challenging. It also remains unclear how translational heterogeneity originates. Using a transcription-normalized reporter system, we discovered that stop codon readthrough is heterogeneous among single cells, and individual cells with higher UGA readthrough grow faster from stationary phase. Our work also revealed that individual cells with lower protein synthesis levels exhibited higher UGA readthrough, which was confirmed with ribosome-targeting antibiotics (e.g., chloramphenicol). Further experiments and mathematical modeling suggest that varied competition between ternary complexes and release factors perturbs the UGA readthrough level. Our results indicate that fluctuations in the concentrations of translational components lead to UGA readthrough heterogeneity among single cells, which enhances phenotypic diversity of the genetically identical population and facilitates its adaptation to changing environments.
Collapse
MESH Headings
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Codon, Terminator
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Proteins/biosynthesis
- Escherichia coli Proteins/genetics
- Gene Expression Regulation, Bacterial
- Genes, Reporter
- Genetic Fitness
- Genotype
- Kinetics
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Microscopy, Fluorescence
- Models, Genetic
- One-Carbon Group Transferases
- Phenotype
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Transcription, Genetic
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Yongqiang Fan
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Christopher R Evans
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Karl W Barber
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Kinshuk Banerjee
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Kalyn J Weiss
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Oleg A Igoshin
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Evolving Mistranslating tRNAs Through a Phenotypically Ambivalent Intermediate in Saccharomyces cerevisiae. Genetics 2017; 206:1865-1879. [PMID: 28576863 PMCID: PMC5560794 DOI: 10.1534/genetics.117.203232] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/31/2017] [Indexed: 12/15/2022] Open
Abstract
The genetic code converts information from nucleic acid into protein. The genetic code was thought to be immutable, yet many examples in nature indicate that variations to the code provide a selective advantage. We used a sensitive selection system involving suppression of a deleterious allele (tti2-L187P) in Saccharomyces cerevisiae to detect mistranslation and identify mechanisms that allow genetic code evolution. Though tRNASer containing a proline anticodon (UGG) is toxic, using our selection system we identified four tRNASerUGG variants, each with a single mutation, that mistranslate at a tolerable level. Mistranslating tRNALeuUGG variants were also obtained, demonstrating the generality of the approach. We characterized two of the tRNASerUGG variants. One contained a G26A mutation, which reduced cell growth to 70% of the wild-type rate, induced a heat shock response, and was lost in the absence of selection. The reduced toxicity of tRNASerUGG-G26A is likely through increased turnover of the tRNA, as lack of methylation at G26 leads to degradation via the rapid tRNA decay pathway. The second tRNASerUGG variant, with a G9A mutation, had minimal effect on cell growth, was relatively stable in cells, and gave rise to less of a heat shock response. In vitro, the G9A mutation decreases aminoacylation and affects folding of the tRNA. Notably, the G26A and G9A mutations were phenotypically neutral in the context of an otherwise wild-type tRNASer These experiments reveal a model for genetic code evolution in which tRNA anticodon mutations and mistranslation evolve through phenotypically ambivalent intermediates that reduce tRNA function.
Collapse
|
14
|
Mistranslation can enhance fitness through purging of deleterious mutations. Nat Commun 2017; 8:15410. [PMID: 28524864 PMCID: PMC5454534 DOI: 10.1038/ncomms15410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/20/2017] [Indexed: 01/01/2023] Open
Abstract
Phenotypic mutations are amino acid changes caused by mistranslation. How phenotypic mutations affect the adaptive evolution of new protein functions is unknown. Here we evolve the antibiotic resistance protein TEM-1 towards resistance on the antibiotic cefotaxime in an Escherichia coli strain with a high mistranslation rate. TEM-1 populations evolved in such strains endow host cells with a general growth advantage, not only on cefotaxime but also on several other antibiotics that ancestral TEM-1 had been unable to deactivate. High-throughput sequencing of TEM-1 populations shows that this advantage is associated with a lower incidence of weakly deleterious genotypic mutations. Our observations show that mistranslation is not just a source of noise that delays adaptive evolution. It could even facilitate adaptive evolution by exacerbating the effects of deleterious mutations and leading to their more efficient purging. The ubiquity of mistranslation and its effects render mistranslation an important factor in adaptive protein evolution. Mistranslation results in amino acid changes in proteins known as phenotypic mutations and these occur at a much higher rate than DNA mutations. Here, the authors show that mistranslation can increase the response to directional selection by exacerbating the fitness effects of deleterious DNA mutations.
Collapse
|
15
|
Pawar KI, Suma K, Seenivasan A, Kuncha SK, Routh SB, Kruparani SP, Sankaranarayanan R. Role of D-aminoacyl-tRNA deacylase beyond chiral proofreading as a cellular defense against glycine mischarging by AlaRS. eLife 2017; 6. [PMID: 28362257 PMCID: PMC5409826 DOI: 10.7554/elife.24001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/30/2017] [Indexed: 12/18/2022] Open
Abstract
Strict L-chiral rejection through Gly-cisPro motif during chiral proofreading underlies the inability of D-aminoacyl-tRNA deacylase (DTD) to discriminate between D-amino acids and achiral glycine. The consequent Gly-tRNAGly ‘misediting paradox’ is resolved by EF-Tu in the cell. Here, we show that DTD’s active site architecture can efficiently edit mischarged Gly-tRNAAla species four orders of magnitude more efficiently than even AlaRS, the only ubiquitous cellular checkpoint known for clearing the error. Also, DTD knockout in AlaRS editing-defective background causes pronounced toxicity in Escherichia coli even at low-glycine levels which is alleviated by alanine supplementation. We further demonstrate that DTD positively selects the universally invariant tRNAAla-specific G3•U70. Moreover, DTD’s activity on non-cognate Gly-tRNAAla is conserved across all bacteria and eukaryotes, suggesting DTD’s key cellular role as a glycine deacylator. Our study thus reveals a hitherto unknown function of DTD in cracking the universal mechanistic dilemma encountered by AlaRS, and its physiological importance. DOI:http://dx.doi.org/10.7554/eLife.24001.001 Proteins are made up of many different building blocks called amino acids, which are linked together in chains. The exact order of amino acids in a protein chain is important for the protein to work properly. When a cell makes proteins, molecules known as transfer ribonucleic acids (or tRNAs for short) bind to specific amino acids to guide them to the growing protein chains in the correct order. Most amino acids – except one called glycine – have two forms that are mirror images of one another, known as left-handed (L-amino acids) and right-handed (D-amino acids). However, only L-amino acids and glycine are used to make proteins. This is because of the presence of multiple quality control checkpoints in the cell that prevent D-amino acids from being involved. One such checkpoint is an enzyme called D-amino acid deacylase (DTD), which removes D-amino acids that are attached to tRNAs. Other enzymes are responsible for linking a particular amino acid to its correct tRNA. Along with mistaking D-amino acids for L-amino acids, these enzymes can also make errors when they have to distinguish between amino acids that are similar in shape and size. For example, the enzyme that attaches L-alanine to its tRNA can also mistakenly attach larger L-serine or smaller glycine to it instead. Previous research has shown that attaching L-serine to this tRNA can lead to neurodegeneration in mice, whereas attaching glycine does not seem to cause any harm. It is not clear why this is the case. Pawar et al. investigated how incorrectly attaching glycine or L-serine to the tRNA that usually binds to L-alanine affects a bacterium called Escherichia coli. The experiments show that, if the mistake is not corrected, glycine can be just as harmful to the cells as L-serine. The reason that glycine appears to be less of a problem is that the DTD enzyme is able to remove glycine, but not L-serine, from the tRNA. Further experiments show that DTD can play a similar role in a variety of organisms from bacteria to mammals. The findings of Pawar et al. extend the role of DTD beyond preventing D-amino acids from being incorporated into proteins. The next step is to understand the role of this enzyme in humans and other multicellular organisms, especially in the context of nerve cells, where it is present at high levels. DOI:http://dx.doi.org/10.7554/eLife.24001.002
Collapse
Affiliation(s)
| | - Katta Suma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | | | | | |
Collapse
|
16
|
Kermgard E, Yang Z, Michel AM, Simari R, Wong J, Ibba M, Lazazzera BA. Quality Control by Isoleucyl-tRNA Synthetase of Bacillus subtilis Is Required for Efficient Sporulation. Sci Rep 2017; 7:41763. [PMID: 28139725 PMCID: PMC5282499 DOI: 10.1038/srep41763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/22/2016] [Indexed: 11/11/2022] Open
Abstract
Isoleucyl-tRNA synthetase (IleRS) is an aminoacyl-tRNA synthetase whose essential function is to aminoacylate tRNAIle with isoleucine. Like some other aminoacyl-tRNA synthetases, IleRS can mischarge tRNAIle and correct this misacylation through a separate post-transfer editing function. To explore the biological significance of this editing function, we created a ileS(T233P) mutant of Bacillus subtilis that allows tRNAIle mischarging while retaining wild-type Ile-tRNAIle synthesis activity. As seen in other species defective for aminoacylation quality control, the growth rate of the ileS(T233P) strain was not significantly different from wild-type. When the ileS(T233P) strain was assessed for its ability to promote distinct phenotypes in response to starvation, the ileS(T233P) strain was observed to exhibit a significant defect in formation of environmentally resistant spores. The sporulation defect ranged from 3-fold to 30-fold and was due to a delay in activation of early sporulation genes. The loss of aminoacylation quality control in the ileS(T233P) strain resulted in the inability to compete with a wild-type strain under selective conditions that required sporulation. These data show that the quality control function of IleRS is required in B. subtilis for efficient sporulation and suggests that editing by aminoacyl-tRNA synthetases may be important for survival under starvation/nutrient limitation conditions.
Collapse
Affiliation(s)
- Elizabeth Kermgard
- Department of Microbiology, Immunology and Molecular Genetics University of California, Los Angeles, California 90095, USA
| | - Zhou Yang
- Department of Microbiology, Immunology and Molecular Genetics University of California, Los Angeles, California 90095, USA
| | - Annika-Marisa Michel
- Department of Microbiology, Immunology and Molecular Genetics University of California, Los Angeles, California 90095, USA.,Technische Universität Braunschweig, Institut of Microbiology, Braunschweig, Germany
| | - Rachel Simari
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210, USA
| | - Jacqueline Wong
- Department of Microbiology, Immunology and Molecular Genetics University of California, Los Angeles, California 90095, USA
| | - Michael Ibba
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210, USA.,Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| | - Beth A Lazazzera
- Department of Microbiology, Immunology and Molecular Genetics University of California, Los Angeles, California 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
17
|
Mistranslation: from adaptations to applications. Biochim Biophys Acta Gen Subj 2017; 1861:3070-3080. [PMID: 28153753 DOI: 10.1016/j.bbagen.2017.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The conservation of the genetic code indicates that there was a single origin, but like all genetic material, the cell's interpretation of the code is subject to evolutionary pressure. Single nucleotide variations in tRNA sequences can modulate codon assignments by altering codon-anticodon pairing or tRNA charging. Either can increase translation errors and even change the code. The frozen accident hypothesis argued that changes to the code would destabilize the proteome and reduce fitness. In studies of model organisms, mistranslation often acts as an adaptive response. These studies reveal evolutionary conserved mechanisms to maintain proteostasis even during high rates of mistranslation. SCOPE OF REVIEW This review discusses the evolutionary basis of altered genetic codes, how mistranslation is identified, and how deviations to the genetic code are exploited. We revisit early discoveries of genetic code deviations and provide examples of adaptive mistranslation events in nature. Lastly, we highlight innovations in synthetic biology to expand the genetic code. MAJOR CONCLUSIONS The genetic code is still evolving. Mistranslation increases proteomic diversity that enables cells to survive stress conditions or suppress a deleterious allele. Genetic code variants have been identified by genome and metagenome sequence analyses, suppressor genetics, and biochemical characterization. GENERAL SIGNIFICANCE Understanding the mechanisms of translation and genetic code deviations enables the design of new codes to produce novel proteins. Engineering the translation machinery and expanding the genetic code to incorporate non-canonical amino acids are valuable tools in synthetic biology that are impacting biomedical research. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
|
18
|
Rewiring protein synthesis: From natural to synthetic amino acids. Biochim Biophys Acta Gen Subj 2017; 1861:3024-3029. [PMID: 28095316 DOI: 10.1016/j.bbagen.2017.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND The protein synthesis machinery uses 22 natural amino acids as building blocks that faithfully decode the genetic information. Such fidelity is controlled at multiple steps and can be compromised in nature and in the laboratory to rewire protein synthesis with natural and synthetic amino acids. SCOPE OF REVIEW This review summarizes the major quality control mechanisms during protein synthesis, including aminoacyl-tRNA synthetases, elongation factors, and the ribosome. We will discuss evolution and engineering of such components that allow incorporation of natural and synthetic amino acids at positions that deviate from the standard genetic code. MAJOR CONCLUSIONS The protein synthesis machinery is highly selective, yet not fixed, for the correct amino acids that match the mRNA codons. Ambiguous translation of a codon with multiple amino acids or complete reassignment of a codon with a synthetic amino acid diversifies the proteome. GENERAL SIGNIFICANCE Expanding the genetic code with synthetic amino acids through rewiring protein synthesis has broad applications in synthetic biology and chemical biology. Biochemical, structural, and genetic studies of the translational quality control mechanisms are not only crucial to understand the physiological role of translational fidelity and evolution of the genetic code, but also enable us to better design biological parts to expand the proteomes of synthetic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
|
19
|
Schwartz MH, Pan T. Function and origin of mistranslation in distinct cellular contexts. Crit Rev Biochem Mol Biol 2017; 52:205-219. [PMID: 28075177 DOI: 10.1080/10409238.2016.1274284] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mistranslation describes errors during protein synthesis that prevent the amino acid sequences specified in the genetic code from being reflected within proteins. For a long time, mistranslation has largely been considered an aberrant cellular process that cells actively avoid at all times. However, recent evidence has demonstrated that cells from all three domains of life not only tolerate certain levels and forms of mistranslation, but actively induce mistranslation under certain circumstances. To this end, dedicated biological mechanisms have recently been found to reduce translational fidelity, which indicates that mistranslation is not exclusively an erroneous process and can even benefit cells in particular cellular contexts. There currently exists a spectrum of mistranslational processes that differ not only in their origins, but also in their molecular and cellular effects. These findings suggest that the optimal degree of translational fidelity largely depends on a specific cellular context. This review aims to conceptualize the basis and functional consequence of the diverse types of mistranslation that have been described so far.
Collapse
Affiliation(s)
- Michael H Schwartz
- a Department of Biochemistry and Molecular Biology , University of Chicago, Chicago , IL , USA
| | - Tao Pan
- a Department of Biochemistry and Molecular Biology , University of Chicago, Chicago , IL , USA
| |
Collapse
|
20
|
Cvetesic N, Gruic-Sovulj I. Synthetic and editing reactions of aminoacyl-tRNA synthetases using cognate and non-cognate amino acid substrates. Methods 2016; 113:13-26. [PMID: 27713080 DOI: 10.1016/j.ymeth.2016.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 11/19/2022] Open
Abstract
The covalent coupling of cognate amino acid-tRNA pairs by corresponding aminoacyl-tRNA synthetases (aaRS) defines the genetic code and provides aminoacylated tRNAs for ribosomal protein synthesis. Besides the cognate substrate, some non-cognate amino acids may also compete for tRNA aminoacylation. However, their participation in protein synthesis is generally prevented by an aaRS proofreading activity located in the synthetic site and in a separate editing domain. These mechanisms, coupled with the ability of certain aaRSs to discriminate well against non-cognate amino acids in the synthetic reaction alone, define the accuracy of the aminoacylation reaction. aaRS quality control may also act as a gatekeeper for the standard genetic code and prevents infiltration by natural amino acids that are not normally coded for protein biosynthesis. This latter finding has reinforced interest in understanding the principles that govern discrimination against a range of potential non-cognate amino acids. This paper presents an overview of the kinetic assays that have been established for monitoring synthetic and editing reactions with cognate and non-cognate amino acid substrates. Taking into account the peculiarities of non-cognate reactions, the specific controls needed and the dedicated experimental designs are discussed in detail. Kinetic partitioning within the synthetic and editing sites controls the balance between editing and aminoacylation. We describe in detail steady-state and single-turnover approaches for the analysis of synthetic and editing reactions, which ultimately enable mechanisms of amino acid discrimination to be determined.
Collapse
Affiliation(s)
- Nevena Cvetesic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| |
Collapse
|
21
|
Elongation Factor Tu Prevents Misediting of Gly-tRNA(Gly) Caused by the Design Behind the Chiral Proofreading Site of D-Aminoacyl-tRNA Deacylase. PLoS Biol 2016; 14:e1002465. [PMID: 27224426 PMCID: PMC4880308 DOI: 10.1371/journal.pbio.1002465] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/19/2016] [Indexed: 01/07/2023] Open
Abstract
D-aminoacyl-tRNA deacylase (DTD) removes D-amino acids mischarged on tRNAs and is thus implicated in enforcing homochirality in proteins. Previously, we proposed that selective capture of D-aminoacyl-tRNA by DTD's invariant, cross-subunit Gly-cisPro motif forms the mechanistic basis for its enantioselectivity. We now show, using nuclear magnetic resonance (NMR) spectroscopy-based binding studies followed by biochemical assays with both bacterial and eukaryotic systems, that DTD effectively misedits Gly-tRNAGly. High-resolution crystal structure reveals that the architecture of DTD's chiral proofreading site is completely porous to achiral glycine. Hence, L-chiral rejection is the only design principle on which DTD functions, unlike other chiral-specific enzymes such as D-amino acid oxidases, which are specific for D-enantiomers. Competition assays with elongation factor thermo unstable (EF-Tu) and DTD demonstrate that EF-Tu precludes Gly-tRNAGly misediting at normal cellular concentrations. However, even slightly higher DTD levels overcome this protection conferred by EF-Tu, thus resulting in significant depletion of Gly-tRNAGly. Our in vitro observations are substantiated by cell-based studies in Escherichia coli that show that overexpression of DTD causes cellular toxicity, which is largely rescued upon glycine supplementation. Furthermore, we provide direct evidence that DTD is an RNA-based catalyst, since it uses only the terminal 2'-OH of tRNA for catalysis without the involvement of protein side chains. The study therefore provides a unique paradigm of enzyme action for substrate selection/specificity by DTD, and thus explains the underlying cause of DTD's activity on Gly-tRNAGly. It also gives a molecular and functional basis for the necessity and the observed tight regulation of DTD levels, thereby preventing cellular toxicity due to misediting.
Collapse
|
22
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
23
|
McKenney KM, Alfonzo JD. From Prebiotics to Probiotics: The Evolution and Functions of tRNA Modifications. Life (Basel) 2016; 6:E13. [PMID: 26985907 PMCID: PMC4810244 DOI: 10.3390/life6010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022] Open
Abstract
All nucleic acids in cells are subject to post-transcriptional chemical modifications. These are catalyzed by a myriad of enzymes with exquisite specificity and that utilize an often-exotic array of chemical substrates. In no molecule are modifications more prevalent than in transfer RNAs. In the present document, we will attempt to take a chemical rollercoaster ride from prebiotic times to the present, with nucleoside modifications as key players and tRNA as the centerpiece that drove the evolution of biological systems to where we are today. These ideas will be put forth while touching on several examples of tRNA modification enzymes and their modus operandi in cells. In passing, we submit that the choice of tRNA is not a whimsical one but rather highlights its critical function as an essential invention for the evolution of protein enzymes.
Collapse
Affiliation(s)
- Katherine M McKenney
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
24
|
Bezerra AR, Guimarães AR, Santos MAS. Non-Standard Genetic Codes Define New Concepts for Protein Engineering. Life (Basel) 2015; 5:1610-28. [PMID: 26569314 PMCID: PMC4695839 DOI: 10.3390/life5041610] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/12/2015] [Accepted: 10/21/2015] [Indexed: 11/16/2022] Open
Abstract
The essential feature of the genetic code is the strict one-to-one correspondence between codons and amino acids. The canonical code consists of three stop codons and 61 sense codons that encode 20% of the amino acid repertoire observed in nature. It was originally designated as immutable and universal due to its conservation in most organisms, but sequencing of genes from the human mitochondrial genomes revealed deviations in codon assignments. Since then, alternative codes have been reported in both nuclear and mitochondrial genomes and genetic code engineering has become an important research field. Here, we review the most recent concepts arising from the study of natural non-standard genetic codes with special emphasis on codon re-assignment strategies that are relevant to engineering genetic code in the laboratory. Recent tools for synthetic biology and current attempts to engineer new codes for incorporation of non-standard amino acids are also reviewed in this article.
Collapse
Affiliation(s)
- Ana R Bezerra
- Health Sciences Department, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal.
| | - Ana R Guimarães
- Health Sciences Department, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal.
| | - Manuel A S Santos
- Health Sciences Department, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal.
| |
Collapse
|
25
|
Silencing of Essential Genes within a Highly Coordinated Operon in Escherichia coli. Appl Environ Microbiol 2015; 81:5650-9. [PMID: 26070674 DOI: 10.1128/aem.01444-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/08/2015] [Indexed: 01/13/2023] Open
Abstract
Essential bacterial genes located within operons are particularly challenging to study independently because of coordinated gene expression and the nonviability of knockout mutants. Essentiality scores for many operon genes remain uncertain. Antisense RNA (asRNA) silencing or in-frame gene disruption of genes may help establish essentiality but can lead to polar effects on genes downstream or upstream of the target gene. Here, the Escherichia coli ribF-ileS-lspA-fkpB-ispH operon was used to evaluate the possibility of independently studying an essential gene using expressed asRNA and target gene overexpression to deregulate coupled expression. The gene requirement for growth in conditional silencing strains was determined by the relationship of target mRNA reduction with growth inhibition as the minimum transcript level required for 50% growth (MTL50). Mupirocin and globomycin, the protein inhibitors of IleS and LspA, respectively, were used in sensitization assays of strains containing both asRNA-expressing and open reading frame-expressing plasmids to examine deregulation of the overlapping ileS-lspA genes. We found upstream and downstream polar silencing effects when either ileS or lspA was silenced, indicating coupled expression. Weighted MTL50 values (means and standard deviations) of ribF, ileS, and lspA were 0.65 ± 0.18, 0.64 ± 0.06, and 0.76 ± 0.10, respectively. However, they were not significantly different (P = 0.71 by weighted one-way analysis of variance). The gene requirement for ispH could not be determined due to insufficient growth reduction. Mupirocin and globomycin sensitization experiments indicated that ileS-lspA expression could not be decoupled. The results highlight the inherent challenges associated with genetic analyses of operons; however, coupling of essential genes may provide opportunities to improve RNA-silencing antimicrobials.
Collapse
|
26
|
Homologous trans-editing factors with broad tRNA specificity prevent mistranslation caused by serine/threonine misactivation. Proc Natl Acad Sci U S A 2015; 112:6027-32. [PMID: 25918376 DOI: 10.1073/pnas.1423664112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) establish the rules of the genetic code, whereby each amino acid is attached to a cognate tRNA. Errors in this process lead to mistranslation, which can be toxic to cells. The selective forces exerted by species-specific requirements and environmental conditions potentially shape quality-control mechanisms that serve to prevent mistranslation. A family of editing factors that are homologous to the editing domain of bacterial prolyl-tRNA synthetase includes the previously characterized trans-editing factors ProXp-ala and YbaK, which clear Ala-tRNA(Pro) and Cys-tRNA(Pro), respectively, and three additional homologs of unknown function, ProXp-x, ProXp-y, and ProXp-z. We performed an in vivo screen of 230 conditions in which an Escherichia coli proXp-y deletion strain was grown in the presence of elevated levels of amino acids and specific ARSs. This screen, together with the results of in vitro deacylation assays, revealed Ser- and Thr-tRNA deacylase function for this homolog. A similar activity was demonstrated for Bordetella parapertussis ProXp-z in vitro. These proteins, now renamed "ProXp-ST1" and "ProXp-ST2," respectively, recognize multiple tRNAs as substrates. Taken together, our data suggest that these free-standing editing domains have the ability to prevent mistranslation errors caused by a number of ARSs, including lysyl-tRNA synthetase, threonyl-tRNA synthetase, seryl-tRNA synthetase, and alanyl-tRNA synthetase. The expression of these multifunctional enzymes is likely to provide a selective growth advantage to organisms subjected to environmental stresses and other conditions that alter the amino acid pool.
Collapse
|
27
|
Bullwinkle TJ, Reynolds NM, Raina M, Moghal A, Matsa E, Rajkovic A, Kayadibi H, Fazlollahi F, Ryan C, Howitz N, Faull KF, Lazazzera BA, Ibba M. Oxidation of cellular amino acid pools leads to cytotoxic mistranslation of the genetic code. eLife 2014; 3. [PMID: 24891238 PMCID: PMC4066437 DOI: 10.7554/elife.02501] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/29/2014] [Indexed: 12/15/2022] Open
Abstract
Aminoacyl-tRNA synthetases use a variety of mechanisms to ensure fidelity of the genetic code and ultimately select the correct amino acids to be used in protein synthesis. The physiological necessity of these quality control mechanisms in different environments remains unclear, as the cost vs benefit of accurate protein synthesis is difficult to predict. We show that in Escherichia coli, a non-coded amino acid produced through oxidative damage is a significant threat to the accuracy of protein synthesis and must be cleared by phenylalanine-tRNA synthetase in order to prevent cellular toxicity caused by mis-synthesized proteins. These findings demonstrate how stress can lead to the accumulation of non-canonical amino acids that must be excluded from the proteome in order to maintain cellular viability. DOI:http://dx.doi.org/10.7554/eLife.02501.001 Proteins are built from molecules called amino acids. The amino acids that make up a particular protein, and the order they appear in, are determined by the gene that encodes that protein. First, the gene is transcribed to produce a molecule of messenger RNA, which is then translated by a molecular machine called a ribosome. This involves other RNA molecules, called transfer RNAs (tRNAs), bringing the correct amino acids to the ribosome, which then joins the amino acids together to build the protein. Amino acids are loaded onto their corresponding tRNA molecules by enzymes called tRNA synthetases. Occasionally, however, the wrong amino acid can be loaded onto a tRNA. If this amino acid ends up in a protein, the protein might not be able to function properly, or it might even be toxic to the cell, so cells need to be able to fix this problem. Some tRNA synthetases can check if a wrong amino acid has been loaded onto a tRNA, and remove it before it can cause harm. However, the importance of these ‘editing’ activities to living cells is unclear. Here, Bullwinkle, Reynolds et al. show that, in the bacterium E. coli, a tRNA synthetase works to stop an incorrect amino acid—which accumulates in cells that are exposed to harmful chemicals—from being built into proteins. Without the enzyme’s editing activity, the build-up of this amino acid slows the growth of the bacteria. However, E. coli can thrive without this editing activity when it is grown under normal conditions in a laboratory. Yeast benefit slightly from this editing activity when exposed to the stress-produced amino acid. But, unlike E. coli, yeast strongly rely on this activity when grown in an excess of another amino acid, which is used to build proteins but is the wrong amino acid for this tRNA synthetase. The findings of Bullwinkle, Reynolds et al. will help to improve our understanding of which activities in a cell are most affected by mistakes in protein synthesis, and how these mistakes may relate to disease. DOI:http://dx.doi.org/10.7554/eLife.02501.002
Collapse
Affiliation(s)
- Tammy J Bullwinkle
- Department of Microbiology, Ohio State University, Columbus, United States
| | - Noah M Reynolds
- Department of Microbiology, Ohio State University, Columbus, United States
| | - Medha Raina
- Center for RNA Biology, Ohio State University, Columbus, United States
| | - Adil Moghal
- Center for RNA Biology, Ohio State University, Columbus, United States
| | - Eleftheria Matsa
- Department of Microbiology, Ohio State University, Columbus, United States
| | - Andrei Rajkovic
- Center for RNA Biology, Ohio State University, Columbus, United States
| | - Huseyin Kayadibi
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| | - Farbod Fazlollahi
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| | - Christopher Ryan
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| | - Nathaniel Howitz
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| | - Beth A Lazazzera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Michael Ibba
- Department of Microbiology, Ohio State University, Columbus, United States
| |
Collapse
|
28
|
Bullwinkle TJ, Reynolds NM, Raina M, Moghal A, Matsa E, Rajkovic A, Kayadibi H, Fazlollahi F, Ryan C, Howitz N, Faull KF, Lazazzera BA, Ibba M. Oxidation of cellular amino acid pools leads to cytotoxic mistranslation of the genetic code. eLife 2014. [PMID: 24891238 DOI: 10.7554/elife.02501.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aminoacyl-tRNA synthetases use a variety of mechanisms to ensure fidelity of the genetic code and ultimately select the correct amino acids to be used in protein synthesis. The physiological necessity of these quality control mechanisms in different environments remains unclear, as the cost vs benefit of accurate protein synthesis is difficult to predict. We show that in Escherichia coli, a non-coded amino acid produced through oxidative damage is a significant threat to the accuracy of protein synthesis and must be cleared by phenylalanine-tRNA synthetase in order to prevent cellular toxicity caused by mis-synthesized proteins. These findings demonstrate how stress can lead to the accumulation of non-canonical amino acids that must be excluded from the proteome in order to maintain cellular viability.
Collapse
Affiliation(s)
- Tammy J Bullwinkle
- Department of Microbiology, Ohio State University, Columbus, United States
| | - Noah M Reynolds
- Department of Microbiology, Ohio State University, Columbus, United States
| | - Medha Raina
- Center for RNA Biology, Ohio State University, Columbus, United States
| | - Adil Moghal
- Center for RNA Biology, Ohio State University, Columbus, United States
| | - Eleftheria Matsa
- Department of Microbiology, Ohio State University, Columbus, United States
| | - Andrei Rajkovic
- Center for RNA Biology, Ohio State University, Columbus, United States
| | - Huseyin Kayadibi
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| | - Farbod Fazlollahi
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| | - Christopher Ryan
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| | - Nathaniel Howitz
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| | - Beth A Lazazzera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Michael Ibba
- Department of Microbiology, Ohio State University, Columbus, United States
| |
Collapse
|
29
|
Wu J, Fan Y, Ling J. Mechanism of oxidant-induced mistranslation by threonyl-tRNA synthetase. Nucleic Acids Res 2014; 42:6523-31. [PMID: 24744241 PMCID: PMC4041444 DOI: 10.1093/nar/gku271] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aminoacyl-tRNA synthetases maintain the fidelity during protein synthesis by selective activation of cognate amino acids at the aminoacylation site and hydrolysis of misformed aminoacyl-tRNAs at the editing site. Threonyl-tRNA synthetase (ThrRS) misactivates serine and utilizes an editing site cysteine (C182 in Escherichia coli) to hydrolyze Ser-tRNAThr. Hydrogen peroxide oxidizes C182, leading to Ser-tRNAThr production and mistranslation of threonine codons as serine. The mechanism of C182 oxidation remains unclear. Here we used a chemical probe to demonstrate that C182 was oxidized to sulfenic acid by air, hydrogen peroxide and hypochlorite. Aminoacylation experiments in vitro showed that air oxidation increased the Ser-tRNAThr level in the presence of elongation factor Tu. C182 forms a putative metal binding site with three conserved histidine residues (H73, H77 and H186). We showed that H73 and H186, but not H77, were critical for activating C182 for oxidation. Addition of zinc or nickel ions inhibited C182 oxidation by hydrogen peroxide. These results led us to propose a model for C182 oxidation, which could serve as a paradigm for the poorly understood activation mechanisms of protein cysteine residues. Our work also suggests that bacteria may use ThrRS editing to sense the oxidant levels in the environment.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yongqiang Fan
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center, Houston, TX 77030, USA Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030, USA
| |
Collapse
|
30
|
Hu QH, Liu RJ, Fang ZP, Zhang J, Ding YY, Tan M, Wang M, Pan W, Zhou HC, Wang ED. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase. Sci Rep 2014; 3:2475. [PMID: 23959225 PMCID: PMC3747510 DOI: 10.1038/srep02475] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/18/2013] [Indexed: 01/01/2023] Open
Abstract
Streptococcus pneumoniae causes bacterial pneumonia with high mortality and morbidity. The emergency of multidrug-resistant bacteria threatens the treatment of the disease. Leucyl-tRNA synthetase (LeuRS) plays an essential role in cellular translation and is an attractive drug target for antimicrobial development. Here we report the compound ZCL039, a benzoxaborole-based derivative of AN2690, as a potent anti-pneumococcal agent that inhibits S. pneumoniae LeuRS (SpLeuRS) activity. We show using kinetic, biochemical analyses combined with the crystal structure of ZCL039-AMP in complex with the separated SpLeuRS editing domain, that ZCL039 binds to the LeuRS editing active site which requires the presence of tRNA(Leu), and employs an uncompetitive inhibition mechanism. Further docking models establish that ZCL039 clashes with the eukaryal/archaeal specific insertion I4ae helix within editing domains. These findings demonstrate the potential of benzoxaboroles as effective LeuRS inhibitors for pneumococcus infection therapy, and provide future structure-guided drug design and optimization.
Collapse
Affiliation(s)
- Qing-Hua Hu
- 1] State Key Laboratory of Molecular Biology, Center for RNA research, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China [2]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bohlke N, Budisa N. Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion. FEMS Microbiol Lett 2014; 351:133-44. [PMID: 24433543 PMCID: PMC4237120 DOI: 10.1111/1574-6968.12371] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 11/29/2022] Open
Abstract
One of the major challenges in contemporary synthetic biology is to find a route to engineer synthetic organisms with altered chemical constitution. In terms of core reaction types, nature uses an astonishingly limited repertoire of chemistries when compared with the exceptionally rich and diverse methods of organic chemistry. In this context, the most promising route to change and expand the fundamental chemistry of life is the inclusion of amino acid building blocks beyond the canonical 20 (i.e. expanding the genetic code). This strategy would allow the transfer of numerous chemical functionalities and reactions from the synthetic laboratory into the cellular environment. Due to limitations in terms of both efficiency and practical applicability, state-of-the-art nonsense suppression- or frameshift suppression-based methods are less suitable for such engineering. Consequently, we set out to achieve this goal by sense codon emancipation, that is, liberation from its natural decoding function – a prerequisite for the reassignment of degenerate sense codons to a new 21st amino acid. We have achieved this by redesigning of several features of the post-transcriptional modification machinery which are directly involved in the decoding process. In particular, we report first steps towards the reassignment of 5797 AUA isoleucine codons in Escherichia coli using efficient tools for tRNA nucleotide modification pathway engineering.
Collapse
Affiliation(s)
- Nina Bohlke
- Department of Chemistry, TU Berlin, Berlin, Germany
| | | |
Collapse
|
32
|
|
33
|
Zhou X, Wang E. Transfer RNA: a dancer between charging and mis-charging for protein biosynthesis. SCIENCE CHINA-LIFE SCIENCES 2013; 56:921-32. [PMID: 23982864 DOI: 10.1007/s11427-013-4542-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/13/2013] [Indexed: 01/17/2023]
Abstract
Transfer RNA plays a fundamental role in the protein biosynthesis as an adaptor molecule by functioning as a biological link between the genetic nucleotide sequence in the mRNA and the amino acid sequence in the protein. To perform its role in protein biosynthesis, it has to be accurately recognized by aminoacyl-tRNA synthetases (aaRSs) to generate aminoacyl-tRNAs (aa-tRNAs). The correct pairing between an amino acid with its cognate tRNA is crucial for translational quality control. Production and utilization of mis-charged tRNAs are usually detrimental for all the species, resulting in cellular dysfunctions. Correct aa-tRNAs formation is collectively controlled by aaRSs with distinct mechanisms and/or other trans-factors. However, in very limited instances, mis-charged tRNAs are intermediate for specific pathways or essential components for the translational machinery. Here, from the point of accuracy in tRNA charging, we review our understanding about the mechanism ensuring correct aa-tRNA generation. In addition, some unique mis-charged tRNA species necessary for the organism are also briefly described.
Collapse
Affiliation(s)
- Xiaolong Zhou
- Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | |
Collapse
|
34
|
Tan M, Wang M, Zhou XL, Yan W, Eriani G, Wang ED. The Yin and Yang of tRNA: proper binding of acceptor end determines the catalytic balance of editing and aminoacylation. Nucleic Acids Res 2013; 41:5513-23. [PMID: 23585282 PMCID: PMC3664829 DOI: 10.1093/nar/gkt252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Faithful translation of the genetic code depends on accurate coupling of amino acids with cognate transfer RNAs (tRNAs) catalyzed by aminoacyl-tRNA synthetases. The fidelity of leucyl-tRNA synthetase (LeuRS) depends mainly on proofreading at the pre- and post-transfer levels. During the catalytic cycle, the tRNA CCA-tail shuttles between the synthetic and editing domains to accomplish the aminoacylation and editing reactions. Previously, we showed that the Y330D mutation of Escherichia coli LeuRS, which blocks the entry of the tRNA CCA-tail into the connective polypeptide 1domain, abolishes both tRNA-dependent pre- and post-transfer editing. In this study, we identified the counterpart substitutions, which constrain the tRNA acceptor stem binding within the synthetic active site. These mutations negatively impact the tRNA charging activity while retaining the capacity to activate the amino acid. Interestingly, the mutated LeuRSs exhibit increased global editing activity in the presence of a non-cognate amino acid. We used a reaction mimicking post-transfer editing to show that these mutations decrease post-transfer editing owing to reduced tRNA aminoacylation activity. This implied that the increased editing activity originates from tRNA-dependent pre-transfer editing. These results, together with our previous work, provide a comprehensive assessment of how intra-molecular translocation of the tRNA CCA-tail balances the aminoacylation and editing activities of LeuRS.
Collapse
Affiliation(s)
- Min Tan
- Center for RNA research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Human cytoplasmic ProX edits mischarged tRNAPro with amino acid but not tRNA specificity. Biochem J 2013; 450:243-52. [PMID: 23210460 DOI: 10.1042/bj20121493] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
aaRSs (aminoacyl-tRNA synthetases) are responsible for ensuring the fidelity of the genetic code translation by accurately linking a particular amino acid to its cognate tRNA isoacceptor. To ensure accuracy of protein biosynthesis, some aaRSs have evolved an editing process to remove mischarged tRNA. The hydrolysis of the mischarged tRNA usually occurs in an editing domain, which is inserted into or appended to the main body of the aaRS. In addition, autonomous, editing domain-homologous proteins can also trans-edit mischarged tRNA in concert or in compensating for the editing function of its corresponding aaRS. The freestanding ProX is a homologue of the editing domain of bacterial ProRS (prolyl-tRNA synthetase). In the present study, we cloned for the first time a gene encoding HsProX (human cytoplasmic ProX) and purified the expressed recombinant protein. The catalytic specificity of HsProX for non-cognate amino acids and identity elements on tRNAPro for editing were also investigated. We found that HsProX could deacylate mischarged Ala-tRNAPro, but not Cys-HstRNA(UGGPro), and specifically targeted the alanine moiety of Ala-tRNAPro. The importance of the CCA76 end of the tRNA for deacylation activity and key amino acid residues in HsProX for its editing function were also identified.
Collapse
|
36
|
Interdomain communication modulates the tRNA-dependent pre-transfer editing of leucyl-tRNA synthetase. Biochem J 2013; 449:123-31. [PMID: 23035846 DOI: 10.1042/bj20121258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
EcLeuRS [Escherichia coli LeuRS (leucyl-tRNA synthetase)] has evolved both tRNA-dependent pre- and post-transfer editing capabilities to ensure catalytic specificity. Both editing functions rely on the entry of the tRNA CCA tail into the editing domain of the LeuRS enzyme, which, according to X-ray crystal structural studies, leads to a dynamic disordered orientation of the interface between the synthetic and editing domains. The results of the present study show that this tRNA-triggered conformational rearrangement leads to interdomain communication between the editing and synthetic domains through their interface, and this communication mechanism modulates the activity of tRNA-dependent pre-transfer editing. Furthermore, tRNA-dependent editing reaction inhibits misactivating non-cognate amino acids from the synthetic active site. These results also suggested a novel quality control mechanism of EcLeuRS which is achieved through the co-ordination between the synthetic and editing domains.
Collapse
|
37
|
Rokov-Plavec J, Lesjak S, Gruic-Sovulj I, Mocibob M, Dulic M, Weygand-Durasevic I. Substrate recognition and fidelity of maize seryl-tRNA synthetases. Arch Biochem Biophys 2013; 529:122-30. [DOI: 10.1016/j.abb.2012.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/27/2022]
|
38
|
Yadavalli SS, Ibba M. Selection of tRNA charging quality control mechanisms that increase mistranslation of the genetic code. Nucleic Acids Res 2012; 41:1104-12. [PMID: 23222133 PMCID: PMC3553970 DOI: 10.1093/nar/gks1240] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mistranslation can follow two events during protein synthesis: production of non-cognate amino acid:transfer RNA (tRNA) pairs by aminoacyl-tRNA synthetases (aaRSs) and inaccurate selection of aminoacyl-tRNAs by the ribosome. Many aaRSs actively edit non-cognate amino acids, but editing mechanisms are not evolutionarily conserved, and their physiological significance remains unclear. To address the connection between aaRSs and mistranslation, the evolutionary divergence of tyrosine editing by phenylalanyl-tRNA synthetase (PheRS) was used as a model. Certain PheRSs are naturally error prone, most notably a Mycoplasma example that displayed a low level of specificity consistent with elevated mistranslation of the proteome. Mycoplasma PheRS was found to lack canonical editing activity, relying instead on discrimination against the non-cognate amino acid by kinetic proofreading. This mechanism of discrimination is inadequate for organisms where translation is more accurate, as Mycoplasma PheRS failed to support Escherichia coli growth. However, minor changes in the defunct editing domain of the Mycoplasma enzyme were sufficient to restore E. coli growth, indicating that translational accuracy is an evolutionarily selectable trait.
Collapse
Affiliation(s)
- Srujana S Yadavalli
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
39
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
40
|
Ling J, Cho C, Guo LT, Aerni HR, Rinehart J, Söll D. Protein aggregation caused by aminoglycoside action is prevented by a hydrogen peroxide scavenger. Mol Cell 2012; 48:713-22. [PMID: 23122414 DOI: 10.1016/j.molcel.2012.10.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/20/2012] [Accepted: 09/19/2012] [Indexed: 12/20/2022]
Abstract
Protein mistranslation causes growth arrest in bacteria, mitochondrial dysfunction in yeast, and neurodegeneration in mammals. It remains poorly understood how mistranslated proteins cause such cellular defects. Here we demonstrate that streptomycin, a bactericidal aminoglycoside that increases ribosomal mistranslation, induces transient protein aggregation in wild-type Escherichia coli. We further determined the aggregated proteome using label-free quantitative mass spectrometry. To identify genes that reduce cellular mistranslation toxicity, we selected from an overexpression library protein products that increased resistance against streptomycin and kanamycin. The selected proteins were significantly enriched in members of the oxidation-reduction pathway. Overexpressing one of these proteins, alkyl hydroperoxide reductase subunit F (a protein defending bacteria against hydrogen peroxide), but not its inactive mutant suppressed aggregated protein formation upon streptomycin treatment and increased aminoglycoside resistance. This work provides in-depth analyses of an aggregated proteome caused by streptomycin and suggests that cellular defense against hydrogen peroxide lowers the toxicity of mistranslation.
Collapse
Affiliation(s)
- Jiqiang Ling
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
41
|
Huang Q, Yao P, Eriani G, Wang ED. In vivo identification of essential nucleotides in tRNALeu to its functions by using a constructed yeast tRNALeu knockout strain. Nucleic Acids Res 2012; 40:10463-77. [PMID: 22917587 PMCID: PMC3488233 DOI: 10.1093/nar/gks783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The fidelity of protein biosynthesis requires the aminoacylation of tRNA with its cognate amino acid catalyzed by aminoacyl-tRNA synthetase with high levels of accuracy and efficiency. Crucial bases in tRNALeu to aminoacylation or editing functions of leucyl-tRNA synthetase have been extensively studied mainly by in vitro methods. In the present study, we constructed two Saccharomyces cerevisiae tRNALeu knockout strains carrying deletions of the genes for tRNALeu(GAG) and tRNALeu(UAG). Disrupting the single gene encoding tRNALeu(GAG) had no phenotypic consequence when compared to the wild-type strain. While disrupting the three genes for tRNALeu(UAG) had a lethal effect on the yeast strain, indicating that tRNALeu(UAG) decoding capacity could not be compensated by another tRNALeu isoacceptor. Using the triple tRNA knockout strain and a randomly mutated library of tRNALeu(UAG), a selection to identify critical tRNALeu elements was performed. In this way, mutations inducing in vivo decreases of tRNA levels or aminoacylation or editing ability by leucyl-tRNA synthetase were identified. Overall, the data showed that the triple tRNA knockout strain is a suitable tool for in vivo studies and identification of essential nucleotides of the tRNA.
Collapse
Affiliation(s)
- Qian Huang
- Center for RNA research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|
42
|
Ling J, Peterson KM, Simonovic I, Söll D, Simonovic M. The mechanism of pre-transfer editing in yeast mitochondrial threonyl-tRNA synthetase. J Biol Chem 2012; 287:28518-25. [PMID: 22773845 DOI: 10.1074/jbc.m112.372920] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accurate translation of mRNA into protein is a fundamental biological process critical for maintaining normal cellular functions. To ensure translational fidelity, aminoacyl-tRNA synthetases (aaRSs) employ pre-transfer and post-transfer editing activities to hydrolyze misactivated and mischarged amino acids, respectively. Whereas post-transfer editing, which requires either a specialized domain in aaRS or a trans-protein factor, is well described, the mechanism of pre-transfer editing is less understood. Here, we show that yeast mitochondrial threonyl-tRNA synthetase (MST1), which lacks an editing domain, utilizes pre-transfer editing to discriminate against serine. MST1 misactivates serine and edits seryl adenylate (Ser-AMP) in a tRNA-independent manner. MST1 hydrolyzes 80% of misactivated Ser-AMP at a rate 4-fold higher than that for the cognate threonyl adenylate (Thr-AMP) while releasing 20% of Ser-AMP into the solution. To understand the mechanism of pre-transfer editing, we solved the crystal structure of MST1 complexed with an analog of Ser-AMP. The binding of the Ser-AMP analog to MST1 induces conformational changes in the aminoacylation active site, and it positions a potential hydrolytic water molecule more favorably for nucleophilic attack. In addition, inhibition results reveal that the Ser-AMP analog binds the active site 100-fold less tightly than the Thr-AMP analog. In conclusion, we propose that the plasticity of the aminoacylation site in MST1 allows binding of Ser-AMP and the appropriate positioning of the hydrolytic water molecule.
Collapse
Affiliation(s)
- Jiqiang Ling
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
43
|
A naturally occurring nonapeptide functionally compensates for the CP1 domain of leucyl-tRNA synthetase to modulate aminoacylation activity. Biochem J 2012; 443:477-84. [PMID: 22292813 DOI: 10.1042/bj20111925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
aaRSs (aminoacyl-tRNA synthetases) establish the rules of the genetic code by catalysing the formation of aminoacyl-tRNA. The quality control for aminoacylation is achieved by editing activity, which is usually carried out by a discrete editing domain. For LeuRS (leucyl-tRNA synthetase), the CP1 (connective peptide 1) domain is the editing domain responsible for hydrolysing mischarged tRNA. The CP1 domain is universally present in LeuRSs, except MmLeuRS (Mycoplasma mobile LeuRS). The substitute of CP1 in MmLeuRS is a nonapeptide (MmLinker). In the present study, we show that the MmLinker, which is critical for the aminoacylation activity of MmLeuRS, could confer remarkable tRNA-charging activity on the inactive CP1-deleted LeuRS from Escherichia coli (EcLeuRS) and Aquifex aeolicus (AaLeuRS). Furthermore, CP1 from EcLeuRS could functionally compensate for the MmLinker and endow MmLeuRS with post-transfer editing capability. These investigations provide a mechanistic framework for the modular construction of aaRSs and their co-ordination to achieve catalytic efficiency and fidelity. These results also show that the pre-transfer editing function of LeuRS originates from its conserved synthetic domain and shed light on future study of the mechanism.
Collapse
|
44
|
Yadavalli SS, Ibba M. Quality control in aminoacyl-tRNA synthesis its role in translational fidelity. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:1-43. [PMID: 22243580 DOI: 10.1016/b978-0-12-386497-0.00001-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accurate translation of mRNA into protein is vital for maintenance of cellular integrity. Translational fidelity is achieved by two key events: synthesis of correctly paired aminoacyl-tRNAs by aminoacyl-tRNA synthetases (aaRSs) and stringent selection of aminoacyl-tRNAs (aa-tRNAs) by the ribosome. AaRSs define the genetic code by catalyzing the formation of precise aminoacyl ester-linked tRNAs via a two-step reaction. AaRSs ensure faithful aa-tRNA synthesis via high substrate selectivity and/or by proofreading (editing) of noncognate products. About half of the aaRSs rely on proofreading mechanisms to achieve high levels of accuracy in aminoacylation. Editing functions in aaRSs contribute to the overall low error rate in protein synthesis. Over 40 years of research on aaRSs using structural, biochemical, and kinetic approaches has expanded our knowledge of their cellular roles and quality control mechanisms. Here, we review aaRS editing with an emphasis on the mechanistic and kinetic details of the process.
Collapse
Affiliation(s)
- Srujana S Yadavalli
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
45
|
Khan S, Sharma A, Jamwal A, Sharma V, Pole AK, Thakur KK, Sharma A. Uneven spread of cis- and trans-editing aminoacyl-tRNA synthetase domains within translational compartments of P. falciparum. Sci Rep 2011; 1:188. [PMID: 22355703 PMCID: PMC3240968 DOI: 10.1038/srep00188] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/28/2011] [Indexed: 11/24/2022] Open
Abstract
Accuracy of aminoacylation is dependent on maintaining fidelity during attachment of amino acids to cognate tRNAs. Cis- and trans-editing protein factors impose quality control during protein translation, and 8 of 36 Plasmodium falciparum aminoacyl-tRNA synthetase (aaRS) assemblies contain canonical putative editing modules. Based on expression and localization profiles of these 8 aaRSs, we propose an asymmetric distribution between the parasite cytoplasm and its apicoplast of putative editing-domain containing aaRSs. We also show that the single copy alanyl- and threonyl-tRNA synthetases are dually targeted to parasite cytoplasm and apicoplast. This bipolar presence of two unique synthetases presents opportunity for inhibitor targeting their aminoacylation and editing activities in twin parasite compartments. We used this approach to identify specific inhibitors against the alanyl- and threonyl-tRNA synthetases. Further development of such inhibitors may lead to anti-parasitics which simultaneously block protein translation in two key parasite organelles, a strategy of wider applicability for pathogen control.
Collapse
Affiliation(s)
- Sameena Khan
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
- These three authors have contributed equally to this work
| | - Arvind Sharma
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
- These three authors have contributed equally to this work
| | - Abhishek Jamwal
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
- These three authors have contributed equally to this work
| | - Vinay Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith University, Banasthali, Rajasthan 304 022, India
| | - Anil Kumar Pole
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Kamal Kishor Thakur
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | - Amit Sharma
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| |
Collapse
|
46
|
Abstract
The majority of human cells do not multiply continuously but are quiescent or slow-replicating and devote a large part of their energy to transcription. When DNA damage in the transcribed strand of an active gene is bypassed by a RNA polymerase, they can miscode at the damaged site and produce mutant transcripts. This process is known as transcriptional mutagenesis and, as discussed in this Perspective, could lead to the production of mutant proteins and might therefore be important in tumour development.
Collapse
Affiliation(s)
- Damien Brégeon
- Université Paris Sud-11, Institut de Génétique et Microbiologie, CNRS UMR 8621, Bât 400, F-91405 Orsay Cedex, France, Tel : +33 1 69 15 35 61, Fax : +33 1 69 15 46 29,
| | - Paul W. Doetsch
- Departments of Biochemistry and Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, 1510 Clifton Rd NE, Atlanta, Georgia 30322, USA, Tel : +1 (404) 727-0409, Fax : +1 (404) 727-2618,
| |
Collapse
|
47
|
Reynolds NM, Lazazzera BA, Ibba M. Cellular mechanisms that control mistranslation. Nat Rev Microbiol 2010; 8:849-56. [PMID: 21079633 DOI: 10.1038/nrmicro2472] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mistranslation broadly encompasses the introduction of errors during any step of protein synthesis, leading to the incorporation of an amino acid that is different from the one encoded by the gene. Recent research has vastly enhanced our understanding of the mechanisms that control mistranslation at the molecular level and has led to the discovery that the rates of mistranslation in vivo are not fixed but instead are variable. In this Review we describe the different steps in translation quality control and their variations under different growth conditions and between species though a comparison of in vitro and in vivo findings. This provides new insights as to why mistranslation can have both positive and negative effects on growth and viability.
Collapse
Affiliation(s)
- Noah M Reynolds
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
48
|
Severe oxidative stress induces protein mistranslation through impairment of an aminoacyl-tRNA synthetase editing site. Proc Natl Acad Sci U S A 2010; 107:4028-33. [PMID: 20160114 DOI: 10.1073/pnas.1000315107] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress arises from excessive reactive oxygen species (ROS) and affects organisms of all three domains of life. Here we present a previously unknown pathway through which ROS may impact faithful protein synthesis. Aminoacyl-tRNA synthetases are key enzymes in the translation of the genetic code; they attach the correct amino acid to each tRNA species and hydrolyze an incorrectly attached amino acid in a process called editing. We show both in vitro and in vivo in Escherichia coli that ROS reduced the overall translational fidelity by impairing the editing activity of threonyl-tRNA synthetase. Hydrogen peroxide oxidized cysteine182 residue critical for editing, leading to Ser-tRNA(Thr) formation and protein mistranslation that impaired growth of Escherichia coli. The presence of major heat shock proteases was required to allow cell growth in medium containing serine and hydrogen peroxide; this suggests that the mistranslated proteins were misfolded.
Collapse
|
49
|
Drummond DA, Wilke CO. The evolutionary consequences of erroneous protein synthesis. Nat Rev Genet 2009; 10:715-24. [PMID: 19763154 DOI: 10.1038/nrg2662] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Errors in protein synthesis disrupt cellular fitness, cause disease phenotypes and shape gene and genome evolution. Experimental and theoretical results on this topic have accumulated rapidly in disparate fields, such as neurobiology, protein biosynthesis and degradation and molecular evolution, but with limited communication among disciplines. Here, we review studies of error frequencies, the cellular and organismal consequences of errors and the attendant long-range evolutionary responses to errors. We emphasize major areas in which little is known, such as the failure rates of protein folding, in addition to areas in which technological innovations may enable imminent gains, such as the elucidation of translational missense error frequencies. Evolutionary responses to errors fall into two broad categories: adaptations that minimize errors and their attendant costs and adaptations that exploit errors for the organism's benefit.
Collapse
Affiliation(s)
- D Allan Drummond
- FAS Center for Systems Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | |
Collapse
|
50
|
Soung GY, Miller JL, Koc H, Koc EC. Comprehensive analysis of phosphorylated proteins of Escherichia coli ribosomes. J Proteome Res 2009; 8:3390-402. [PMID: 19469554 DOI: 10.1021/pr900042e] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phosphorylation of bacterial ribosomal proteins has been known for decades; however, there is still very limited information available on specific locations of the phosphorylation sites in ribosomal proteins and the role they might play in protein synthesis. In this study, we have mapped the specific phosphorylation sites in 24 Escherichia coli ribosomal proteins by tandem mass spectrometry. Detection of phosphorylation was achieved by either phosphorylation specific visualization techniques, ProQ staining, and antibodies for phospho-Ser, Thr, and Tyr; or by mass spectrometry equipped with a capability to detect addition and loss of the phosphate moiety. Enrichment by immobilized metal affinity and/or strong cation exchange chromatography was used to improve the success of detection of the low abundance phosphopeptides. We found the small subunit (30S) proteins S3, S4, S5, S7, S11, S12, S13, S18, and S21 and the large subunit (50S) proteins L1, L2, L3, L5, L6, L7/L12, L13, L14, L16, L18, L19, L21, L22, L28, and L31 to be phosphorylated at one or more residues. Potential roles for each specific site in ribosome function were deduced through careful evaluation of the given phosphorylation sites in 3D-crystal structure models of ribosomes and the previous mutational studies of E. coli ribosomal proteins.
Collapse
Affiliation(s)
- George Y Soung
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|